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Abstract—The coronavirus disease (COVID-19) pandemic has caused more harm than expected in
developed and developing countries. In this work, a fractional stochastic model of COVID-19 which
takes into account the random nature of the spread of disease, is formulated and analyzed. The exis-
tence and uniqueness of solutions were established using the fixed-point theory. Two different frac-
tional operators’, namely, power-law and Mittag—Leffler function, numerical schemes in the stochas-
tic form, are utilized to obtain numerical simulations to support the theoretical results. It is observed
that the fractional order derivative has effect on the dynamics of the spread of the disease.
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1. INTRODUCTION

Since the emergence of coronavirus in Wuhan in 2019, the scientific community has been making
efforts to understand and defeat the Coronavirus disease (COVID-19) [1—3]. This infectious disease,
caused by the pathogen coronavirus SARS-CoV-2, was widely spread across the world’s nations by asymp-
tomatic and pre-asymptomatic individuals who travelled unrestricted to other nations [4—6]. The manner
in which COVID-19 has been spreading within the different nations of the world varies with the differ-
ences in each nation’s economic, social, and geographical structures. Owing to its high rate of propaga-
tion, COVID-19, within a wholly susceptible population, has been known to lead to a break down in
health care systems. Places such Italy, Milan and New York city are examples of cities and countries whose
hospitals were overwhelmed by the virus. In most countries, the first COVID-19 case were found in major
cities since the population there is well-travelled. It is clear, therefore, that to understand how COVID-19
hot-spots are formed, it is vital understand the movement of individuals between different communities.
Decisions regarding the relaxation or tightening of lockdown rules are dependent on a good understanding
and accurate prediction of the spread of COVID-19. Hence, several models have been developed to gain
insights into the dynamics of COVID-19 [3, 8—14]. Due to the inclusion of the nonlocality effect into the
formulation of the model, the use of ordinary differential equations will inevitably lead to inaccurate
results. We mitigate for this problem by using fractional calculus throughout this paper. Fractional oper-
ators representing dissipative effects or damage are important considerations for modelling real-world
problems [15—17]. Caputo and Fabrizio [18] defined a fractional operator using the exponential decay
function without singular kernel, whilst Losada and Nieto [19] investigated the properties the fractional
operator as defined in [18]. Recently, Atangana and Baleanu suggested two fractional operators with non-
singular and non-local kernel in Liouville—Caputo and Riemann—Liouville sense based on the general-
ized Mittag—Leffler function. These operators serve to describe better complex physical problems that
follow simultaneously, the power and exponential decay law [13, 21—24].

Therefore, the purpose of this study is to develop a COVID-19 model that considers the stochastic
nature of the disease spread, present Atangana—Seda modified schemes for the stochastic model and use
these schemes to provide numerical solutions for the model with different fractional operators.
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The manuscript is organized as follows: In Section 2 we give mathematical preliminaries. In Section 3
we give a mathematical model that describes the spread of COVID-19 pandemic and a stochastic version
in Section 4 with mathematical analyses. Section 5 presents the numerical simulations using two different
operators and, finally, a brief conclusion in Section 6.

2. MATHEMATICAL PRELIMINARIES

Here, we give some mathematical definition for differential and integral operators with singular and
nonsingular kernels as follows. Thus, the fractional derivatives with Mittag— Leffer/power law and expo-
nential decay are given below as in [11]:

Definition 1.

ﬁDf‘g(r)=m digg(q)(t—gr"dg, (1)
0
: ’ ~L(-)
CSQ’%OF%? | digg((;)e{ "" x}dg 2)
0
ase o AB() [ d [_L _ }
o Dig(n)= =y _O[dgg(G)Ex ]_X( x) |ds 3)

Next, we give the fractional integrals with Mittag—Leffler kernel, exponential decay and power law as fol-
lows:

t

Sk () =—— (-9 g()ds )
x (%)%
(I () = Lg(n)+—E—[g(q)dg, 5)

M(x) M(%)3

et (0)= 2B g

= x dc. (6)
AB () 9" g(c)dg

Y
+AB(x)x(x)£(t

The benefits of fractional order integrals/derivatives over the classical integrals/derivatives are that we
obtain extra degrees of freedom by using fractional order integrals, and the fractional order derivatives
have a memory property that classical derivatives lack. It is observed from the definition of the nonsingular
operator, given in Eq. (1) in [27] that the derivative at a point ¢ is dependent on all the information within

the interval [0, 7]. The classical derivative operator only depends on 7, and thus has no memory. Polyno-

F(B) oM

mials such as (¢t — a)B_1 integrate to the function ———~—(¢ — a)ﬁ_l, whilst " integrates to A "e"’, where

I'(a+B)

Re (L) > 0. For trigonometric functions, sin A integrates to A *sin (kt - 0(71'5)’ whereas a product of an

exponential and trigonometric function eMcosht integrates to the following

At
e

aacos(yr—oag), y>0, ¢=arctan (%)

(@ +7)

It is observed that the extra degree of freedom in polynomials is used to control both the scale and shape
parameter, whilst for the exponential graphs, the extra degree of freedom is used to change the scale of the
graph. For trigonometric functions, the extra degree of freedom is used to control the location and the
scale of the graph. In the case of product of a trigonometric function and an exponential function, we

MATHEMATICAL MODELS AND COMPUTER SIMULATIONS  Vol.15 No.2 2023



340 BONYAH et al.

Table 1. Model state variables and parameters descriptions

State variable Description
S.(7) Susceptible class
E(%) Exposed class
1(?) Symptomatic and infectious class
A(?) Infectious but asymptomatic class
1) Treatment class
R(?) Recovery class

Symbol Parameter description

IT Recruitment rate
B Transmission rate
u Human mortality rate
0 Modification parameter for 7 class
c Proportion of individuals in class £
o Recovery rate of treated individuals
Vi (vy) Progression rate from /to 7(R) classes
p Proportion of individuals who become infected

observe that the fractional order derivative/integral introduces a new location and scale parameter. These
extra degrees of freedom are useful in fitting our models to data with a greater degree of accuracy.

3. COVID-19 MATHEMATICAL MODEL

We study the spread of COVID-19 using by considering the human population sub-divided into five
distinct classes given in Table 1 with the descriptions of the state variables and parameters. The transmis-
sion rate function, which considers the Infectious classes is given by:

A=B(I(r)+6,T(r)+6,4(1)),

where 6, and 0, are the modification parameters for infectiousness. Note that the individuals in the class
T are in controlled environments hence they have a reduced infectiousness compared to those in the class

A. Therefore 0 < 6, <0, <1.

The model flow diagram is given in Fig. 1. The nonlinear ordinary differential equations is obtained by
combining the descriptions in Table 1, model Fig. 1 and assumptions is given as follows:

V2I
pl w7 1R
o(l— p)E‘@
nA

Fig. 1. COVID-19 model flow chart.
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S, =m-\S, —uS.

E =AS-QEFE
I =opE-0,1
A = o(1-p)E —pd
T =viI-0fT,

where O, = (L+06), 0, = (L+ Vv, +V,), Oy = o + W, with the initial conditions

S.(0)>0, E(0)=0, I(0)20, A(0)20, T(0)=0, R(0)=0

341

(7)

®)

and the recovered class is redundant. We assume that all the model parameters nonnegative over the mod-

elling time.

4. THE STOCHASTIC MODEL USING ABC

Through the introduction of white noise from the environment, the deterministic model (7) is con-
verted into a stochastic model using the approach as in [11, 25]. This is achieved by adding nonlinear per-
turbations into each equation of the system known as white noise (that is, the derivative of Brownian
motion). See [11] for full discussion on impact of white noise on for the existence of stochastics process

for ordinary differential equations We perturb only the rate of each class as shown below

S (1) A= A+ (ALS +ApR)B(1),
E(t): —6— —0+(AyS. +Ay)B, (1),
I(t): =vi = =vi+(AyS + Ay)Bs (1),
A(t): = A+ (AyS. + Apn)By (7).
T(t): —o— =+ (AsS. + As)Bs (7).

In the above equation, 3 ) () s represents the standard Brownian motions and A  for j,k =1,..5 are pos-
itive and denotes the intensities of environmental random perturbation as described in [11, 25]. Therefore,

the stochastic model is given by:

dS, =[n— (A +W)S.]dt + (AS,. + Ayy) S.dp, (1)
dE [XSC —QIE] dt + (A21E + A22)EdBZ (t)

dl [GpE — Qzl] dr + (A31[ + A32)]dB3 (t)
dA=[c(1-p)E —pd]dt + (AyA + Ayy) AdB, (1)
dT = [Vll — Q3T]dt + (AHT + Alz)TdBS (t)

Therefore, the stochastic model is given by.

4.1. Uniqueness and Existence of Solutions in Stochastic Fractional
Using Atangana— Baleanu

We show that the solutions to the model (9) exists and is unique. For the sake of simplicity, we set

dS, = G,(1,S,,E, 1, A,T)dt + H,(1,S.)dp,
dE = G, (1,S,,E,1,A,T)dt + H, (1,S,)dpt,
dl =G, (1,S,,E,1,A,T)dt + H,(1,S,)dByt,
dA =G, (1,S,,E,1,A,T)dt + H,(1,S,) dBs,
dT =Gy (1,S,,E,1,A,T)dt + H(1,S,) dpst.
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In order to proof that, we convert the equation (9) into a Volterra integral given as follows:

S.(1) = S.(0)+ [ G (.., E. 1, AT)dg + [ H, (G, S.) B, ()

E(t)= E(0)+ [G(6 S E. 1L AT)de + [ Hy (. E)dBs (<),

t

1(t)=1(0)+ [ Gy(¢.Se E.LLAT)ds + [ Hy( 1)dBs ()

A(1) = A(0) + [ Gy (6. o E.LAT) ds + [ H, (. A)dBs (o),

0

T(1)=T(0)+ [Gs(c. S E, 1L AT)ds+ | Hs(¢.T)dps (o).

To present our proof, we give state and apply the following theorem as in [11, 25].

Theorem 1. Assume that, there exist K, IQ such that the following conditions:

2

(1)|G1(x,t)—Gl(xL,t)|2 <K |x-x ? <I(~;|x—xl|2,

H (x,t)— H (x,1)

b

(2) ¥ (x,t) € R’ x[0,T], then

G, (x,1)’, 2 <Ko + 1),

H, (x,1)

are satisfied fori = 1,2,...,5.

(10)

There exists a unique solution @(t) e R’ for Eqg. (9) and it belongs to M ([O, T],RS). The proof pre-

sented in the paper follows the approach used in [25] in proving the existence and uniqueness of solutions.
We verify that the conditions (1) and (2) in Theorem 1 holds for our model. Firstly, we investigate the

functions G, (1,S,, E,I,A,T) and H_{1}(,S_c) for the susceptible population. We show the proof for the

function G by using (7,S,).
Proof. Let

G (1,5.) = G, (1,5 = |+ 1) (S. = S

The following norm,
[¥]. = sup ¥
e[0,7]
transforms (11) to

G, (1,S.) = G, (1,8, < sup]I(k + ) (S, = S

(0,7
<[+ WL IS = Sal
< IC] |Sc - Scl|2 )

and
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|H, (S.,1) = H, (S, 1) = [(A1sS, + M) S, = (A + Ap) Sl
< (A (87 - 82) - A (S-S
< (A (S, +S.) + Ap)’ LS. = S.
< (ALS, + S0+ 2A0 A (S, + 84) + AL IS, = S.

< (AL (82 +280 +83) + 280 A, (S, + Sa) + AD)IS. = S

cl’

< (,S[‘é,% ()| + 2 sup, |S. (1) Sgg]lScl (1)
* 5 0] 280 5.0
- sup I, 0+A§yg-sm2

tE

(All( 2 ||m + Sfl m)
+ 2AA ), ”Sc"w ” cl"w + A12)|Sc - Scl|2

= I€1 |Sc - Sc1|2 s

in which
Ko = A7 (s ISl +[S2)L) + 280 A IS ISl + AL

=An(||5c||w IISaILII + 280 A ISl ISalL | + A%

343

(12)

In a similar manner, we can show that the remaining equations of model (8) satisfies condition (1) of The-

orem 1. Thus,

IEL +HIELD + 2800 |ELL B + A,
AL (L + 1AL + 285 As L L + A3
@—AMML+MLW+%MAMMUML+M»
Ks = A5 (7L + T + 2858 [T I + A%

Further, we consider the E class and obtain

2
2
2

G, (E,t)— G, (Ep,t) = -0 (E - E,),

<2|0f|E - Ef

b

where K, = 2|Q1|2.
Also, for the I class we have that
Gs (1,0) = G (1,0 =]~ (1 = 1),
<2|0.L |1 - 1],

<K|-1f,
where K, = 2 |Q2|2. Similarly, we have that
|Gs (A, 1) = Gs (Alat)z = |-u (4 - A1)2 )
<2l Af,
< Kyla-Af
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and

G5 (T.1) = G5 (T,,1)" = |-, (T - T,

S’(‘5|71_t1|23

where /K, = 2|u[* ?_ respectively.

Next, we verify that conditions (2) hold for our model (9)

Gy (St = - (W) S
<[ns. - (A+wS.[,
IS fm -+
< (|SC|2 +1)|TC—(7\.+M)2,

< (|SC|2 - l)tes[lg%h —(A+p),

<K' (|S(_,|2 + 1),

K'= sup [m— (A +p).

e[0,7]
Also,

b

|H1 (Sc’t) - cls

| llS +A12 S

< (A
< (Ay

< (A
<K' (|Sc| + 1),

(|S| +1)

in which

ICI = (All

In similar fashion
IC = (A +Ap)’|E?
= Ay + Ap)’ |17
= (A + A’ |47,
i€5 = (A5 + AT

b
oo

b
oo

Also, forthe E,1,A, and T classes, we have that

|H>

=]\S, - QE
<[AS, - Q1|
(|E| + 1)

b

I,

rel0.7
< K*(|Ef +1),
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|Hy (1,1 =|opE - .1,
<|opE -0 |1,
< (|17 _
< (j1f +1) sup lopE - 0,

<K (17 +1),

2

b

[Hy (A =[o(1-p) E -]’
<o (1-p) £~ |7

<(|4F +1) sup o (1-p) £ -u

2
5

<KHAP +1)
and
\HS (T, 1) = v\I - QT
< -0 T

Vll - Q3|2 5

< (|T|2 + 1) r:[%IT)”
< k(| +1),

K= sup,cor)fo(l-p)E - u|2 and

where K’ = SUPye[0,7] ”VII -0 K= SUDye[0,7] |GPE -0,

K> = sup,or Vil - Oy

Since both G, and H, for i =1,2,...,5 satisfies all the conditions given in Theorem 1 thus model (9)
exists and have a unique solution. This completes the proof.

4.2. Application of the Schemes to the Model

In this subsection, we apply the suggested numerical schemes to solve our model. Using the CF frac-
tional derivative,

¢'DES. = m—B(I*+0,T*+ 0,4 +1)S,,

o DI'E = B(I*+6T*+6,4+u)S, - QF,
o DI = 6pE -0,

o DfA =c(1-p)E -4,

SEDMT = v I - Q4T

To reduce complexity, we rewrite the model equations as follows.

o' DIS. = 8! (1,8, E.1,AT),
o' D'E = EX1,S.,E,1,A,T),
o' DM = I%(1,S.,E, 1,A,T),
SCDFA = AM1,S.,E,1,A,T),
SF DT =T*t,S,,E,1,A,T).
Thus,

4

Sk+1: l—x |:

e s* (zkﬂ,sf +AISE ES £ AENTF 4 AT, AS - AT ¢ Asz*)
%
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—Sf(tk,Sf,Ek,I",Ak,T")J+ X [Qsj‘(zk,Sf,E",I",A",T")At
M (y)L12

_ ‘g‘sj‘ (zk,sj‘ +ALSY T — AtER TF — AT A — At T - AzT"*)At
15 ox k Kk (k=1)% -k Kk (k=1)% &k kex
+ 7 (g, 8" = ASIT — ArSU B — AEM - AECT il

— ATV 4 AR AtATTVI TR AT AttT(k_l)*)At},

E'= %[E*(zkﬂ,sf + At BN+ AtEN T+ AT AN+ A" T ¢ AtTk*)
X

- E*(tk,Sck,Ek,Ik,Ak,Tk)} + L[EE*(tk,Sf,Ek,Ik,Ak,Tk)At
M (x)L12
4

- gE*(rk,sc" +ALSE E* — AEM TF - AT, AF — A T - AtTk*)At

+ L;E*(tk_z,Sck — AIS = ASH TR EE  ACEM — AcECTVE T~ Arr

— ATV A5 A A AtATTR AT AttT(H)*)AtJ,

" = ﬁ[l*(:kﬂ,sf NS B+ MBS 1 A A AT AT
X

_ I*(tk,Sf,Ek,lk,Ak,T")J + L[Eﬁ(tk,sf,y‘,]",A",T")Ar
M (y)L12

_ ‘5‘ 1*(tk,sf + ALK BN — AtENE TF — AT A — At T - AtTk*)At
+ 51*(zk_2,sf ~ALSE = ArSE T EE  AES — AbERTR T A

— AT AR A AR AT AT - AttT(k_l)*)At},

el %[A*(Ikﬂ,sk + ArSE B+ AEM 1 A AR+ A T+ AT
X

- A*(tk,Sf,E",Ik,Ak,Tk)J + L[QA*(tk,Sc",E",I",A",T")Az
M (x)L12
4

- gA*(tk,Sck +ALSE ES — AEMTF - AT, AF — At T - AzT"*) At

+ SA*(tk_z,S" — ArSE* — ArSET* EF — AtEF — AE T - e

— ATV A5 A A AtATETR AT AttT(H)*)AtJ,

= ;/[;(X)[T*(tkﬂ,Sf + ASE B+ MBI A A+ MA T+ T
X

_ T*(tk,sf,E",Ik,Ak,Tk)] + L[ET*(tk,sf,E",]k,Ak,Tk)At
M (x)L12
_ %‘T*(;k,sf + ALSY BN — AEME TF — AT, AN — At T - AtT"*)At
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+ ST*(tk L, 8K = AtSP = AtSY TR ER — AtE — AT TE — AT

— ATEE AR A AR AT AT - AttT(k_l)*)AtJ.

The ABC numerical solution of the model is:

§K = AIB;(X)Sj (oo SE + eSS B+ AEV 1F o AT A - AT+ AT
X

+ X(A’ i Z[ ? ( t5, St — AtS™ — AtSYV* B — AtE™ — AtEVTT
AB(x)o(x +1)4

AT ATV A At — AATIT AT ArtT(“”*ﬂ I1

k

Z[ (St - ATSE B - MET - AT A~ AA™T

L

(At)"
AB(x)o(x +2)

—AzT‘*)—SZ‘ (rl,z,sg—ms — AtS“V* B - AtEY - AeEYT T

— AT = A A = AT = AT - AT - AttT(‘_')*)J >

X k
KA Z[s;“ (6L EL I, A TY) - 25 ( LS — ArS™ E
24B(x)o(x +3) =

= AIET = M A" = NAT' = AT )+ ST (15,5} = ArSt* = Ans! ™ '
— ME™ = MEY 1 = AT — ATV A = At - AT

— AT = AT * )J A,

EM = ;B;X)E*(rkﬂ,sf + AISE EF + AEM TF 4 AT, A+ AAM T+ AtTk*)
e

=

X
N (CY) S > [E*(tl_z, St — At — AtSYT* B — AtE™ — AtEUT T
AB(x)o(x +1)=

AT ATV A At — AATIT AT AnT(“”*ﬂ I1
k

X
+ X(At) Z[E*(H,S —ASY E' — AtEVT' = AtT A" = AtAYT"
AB X+2

1=

—AtT‘*)—E*(tl,z,SC‘—AtS — AtSUTVF B - AtEY — AECTF T

— AT = A A = AL = AATT - AT - AttT(‘_')*)} >

X k
X(At) Z[E*(z,.,sg,E‘,ﬂ,A‘,T) 2E*(1 LS =A™ E!
2AB(p)o(x+3)<

= MEST = M A = NATT - AT+ E*(q_z, St — AtS™ — AS'V* B
— AtEY = AtECTE Y A = ATV A = AtA — AT
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— AT — ATV )] A,

= (X)I*(tk+l,Sf NS B+ MBI A A 8A T T

X k

X§A’z 5 Z[l*( .St — AT = ArSU* B — AtEY — AEYT T
B(x)o(x+1)&E

— A = AT A = AA™ = AAT T~ AT —AttT(H)*)JH

k

X
(At) A= [1 *( LSt — AtS™ E' — AtEYT — AT A — AtATT

AB(x)o(x+2)4&

- AtT‘*) - 1*(t1_2, S — AtS™ — AtSC T B = AtEY — AECTF

— AT = ATV A A A - AATT AT AttT(‘_')*)} >

X k
i X(At) 3 Z[l*(t,.,sg,E‘,F,A‘,T‘) - 21*(&,1,5; _A1SY, B
X +

l
~ ME*I = AT A — AT — AT ) + I*( St — ASY = ArSU B
— AtE™ = AtEYT T = AT — AT A — At — AtA" T

— AT = AT * )J A,

A = AB(X)A (tk+1,S + 1SS ER + AEN T+ AT AN+ AA T + AtTk*)

x k
+ %z [A*(tl_z, S' — AtS™ — AtS" T B — AtEY — AtEUTV T
B(x)o(x+1)=

= A = AV A A = AAT AT - AttT(‘_l)*)J I1

b4 k
X(Af) Z [A*( LSt — AIS™ E' — AtE™ T — AT A — AtA™T
AB(x)o(x +2)

l

- AtT‘*) - A*(tl_z, S = ArS™ — AtS“ T B = AtEY — B

— AT = A A = AA™ = AT - AT - AttT(H)*)} >

x k
2AB(x X(At) 3) Z[A*(ti,Si,E‘,IL,A‘,T) 24%(1, St = ASL, E!
X+ 1=2

— MEV T - Atl‘*, A = AT - AzT‘*) + A*(tt,z, S\ — AtS™ — At B!
— AE™ = AtEC 1 = A = AT A — AtA — AtANTE T
— AT = AT * )} A,
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Table 2. Parameter values used for numerical simulations

Symbols Baseline value, day ™!
11 0.6
B 0.6
u 0.1
0 0.8
c 0.6
o 0.4
Vi (V) 0.04 (0.005)
p 0.6

T = ﬁT*(tk+l,Sf +ALSSE ER + AtENTF o+ AT AN+ AA T+ AtT"*)
X

X k
+LZ[T*(M,S§—A¢S — AtS"* B — AtEY - AtEUTVE T
AB(x)o(x +1)1=

— A = AT A — At = AANTE T - AT —AttT(H)*)JH

x(Ar)" &
+A o(x+2) Z[

1=2

(LI,S —ASTE = MEY T = AT A = AAT T

- AzT‘*) - T*(tl_z, S — AtS™ — ArSY* B~ AtEY — AECTR 1

— A = AT A — A — AtAYVE T AT —AnT(“‘)*)}Z

x k
YT X(A’) 5 Z[T*(ti,S;,E‘,I‘,A‘,T) 241, St - ASL E'
X + L:2

— ME*|T' - Atl‘*, A — AtA* T - AzT‘*) + T*(tl_z, St — AtS™* — AtS" T B
— AtE™ — AECE 1 A = AT A = At — AR T

_ AT - AtT(H)*)}A.

5. NUMERICAL SIMULATION

The numerical scheme employed here is based on the recently developed Atangana—Seda scheme [11].
We obtain the numerical simulation results for both the power-law and Mittag—Leffler functions. The
step size and the time interval considered in this work are 1073 and [0, 20], respectively. The estimated
parameter values used is given in Table 2.

5.1. Numerical Simulation Using Caputo Operator

Figure 2 gives the simulation results for the model based on Atanagana—Seda (2021) stochastic Mit-
tag—Leffler numerical scheme. Figure 2a represents the number susceptible humans S,(7). The number of
individuals in this class decrease as the fractional derivative order increase from 0.75 to 1. The dynamics
of the exposed class E(7) given in Fig. 2b shows an increase in the number of individuals as the fractional
order increases and further the number of exposed individuals begin to decrease as the fractional derivative
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Fig. 2. Simulations for fractional stochastic COVID-19 model (9) via Mittag—Leffler function at o = 1, 0.9, 0.85, 0.75.

increase. Figure 2c, represents the symptomatic and infectious class /(7), the number of individuals reduce
as the fractional order rises from 0.75 to 1. Figure 2d depicts the changes in infectious but asymptomatic
class A(r). We observe that the number of individuals in A(7) increases as the fractional order increases. In
Fig. 2e, the number of treated individuals 7(f) decrease as the fractional order increases.

5.2. Numerical Simulation Caputo Fabrizio Operator

Figure 3 is the numerical simulation results based on some selected fractional stochastic order.
Figure 3a shows a decrease in the number of susceptible individuals S.(¢) as the fractional order increases.
In Fig. 3b, the random effect is highly noticed and the number of individuals in the exposed class E(7)
increase for a short time and after 6 days, the number of individuals begin to reduce as the fractional order
increases from 0.75 to 1. In Fig. 3¢ we observe a decrease the number of infectious individuals /() as the
fractional order increases from 0.75 to 1. In Fig. 3d, the random effect is pronounced and the number of
individuals in the infectious but asymptomatic class A(f) increase as the fractional order increases. The
simulation results for the treatment class 7(¢) is shown in Fig. 3e, where the number of individuals getting
treated decrease as the fractional order increases toward the classical part.
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Fig. 3. Simulations for fractional stochastic COVID-19 model (9) via exponential decay law at o = 1, 0.9, 0.85, 0.75.

5.3. Numerical Simulation Using ABC Operator

Figure 4 is the numerical simulation results based on the recent, stochastic numerical scheme devel-
oped by Atangana and Seda [11] with power law. In Fig. 4a the number of susceptible humans S,.(7)
decreases with time. This is expected, because, as more people get infected in the community, the virgin
population will naturally reduce. In this situation, as the fractional order o increases from 0.75 to 1, the
number of susceptible individuals decreases. Figure 4b shows that the number of exposed E(7) begins to
increase with an increase in the fractional order. However, after some time, symptoms begin to manifest,
and more of the individuals in the class £(f) then move to the infectious class. As a result, the number of
exposed starts decreasing as the fractional order increases. Figure 4c shows the dynamics of the symptom-
atic and infectious class /(7). Here, the number of infectious humans decreases as the fractional order
increases. In Fig. 4d, the population of the infectious but asymptomatic class A(7) increases as the frac-
tional order increases. The dynamics of the treatment class 71(¢) are given in Fig. 4e which shows a decrease
in the number of individuals treated as the fractional order increases.

5.4. Model Fitting and Prediction of Future Number of New Cases and Deaths Using ACF

In this subsection, we use the seasonal autoregressive integrated moving average (SARIMA) method
for time series forecasting with univariate data containing trends and seasonality [26]. The data used is the
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Fig. 4. Simulations for fractional stochastic COVID-19 model (9) via power law at o = 1, 0.9, 0.85, 0.75.

COVID-19 data for South Africa from March 2020 to July 2021. SARIMA is an extended version of
autoregressive integrated moving average (ARIMA), which unlike ARIMA, supports data with seasonality
and trends. It has three more frame works, which spell out the auto regression (AR), the number of times
data series has to be differenced (1) and the moving average (MA) for the periodic component of the series,
and another parameter for the interval of the seasonality. We employ the partial autocorrelation (PACF)
and autocorrelation (ACF) to obtain parameters for the AR model and the MA model, respectively. Fig-
ures 5 and 6 represents graphs of autocorrelation functions for the infected and deaths in South Africa.

Next we fit the SARIMA model to COVID-19 South Africa data by first identifying the composition
of the SARIMA (p,d,q)(P,D,Q), secondly, we approximate unspecified parameters, then, perform good-
nessfit tests on the estimated residuals and finally we predict future outcomes based on the known data.
The results from these processes are given in Figs. 7 and 8.

6. CONCLUSIONS

In this study, a stochastic fractional-order COVID-19 model was formulated. The existence and
uniqueness of solutions was established, and two fractional operators (CF and ABC) were employed to
examine the numerical dynamics of the COVID-19 disease in the light of the power-law and Mittag—Lef-
fler function. A detailed numerical scheme for each operator in a stochastic standpoint was also presented.
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Fig. 5. Data fitting for South Africa COVID-19 cases and SARIMA prediction and forecasting.
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Fig. 8. Data fitting for South Africa COVID-19 cases and SARIMA prediction and forecasting.

The probabilistic nature of the study presented the true picture of the COVID-19 dynamics in any affected
community. The numerical schemes were used to simulate the theoretical results and the results indicate that
the fractional-order derivative either helped increase or decrease the number of individuals in each compart-
ment. In particular, we notice that the number of infectious individuals decrease with an increase in the frac-
tional order, This suggests that a decrease in the fractional order can help curb the disease spread. The model
was also fitted to data from the South Africa COVID-19 cases and the SARIMA technique for time series
forecasting was used to predict the future behavior of COVID-19 with dead and infectious cases studied in
South Africa. Using the stochastic approach, our results suggest the possibility of a continuous exponential
growth of the pandemic and the spread of the fourth wave of the virus in South Africa.
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