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Abstract—A Galilean-invariant generalization of the Brinkman volume penalization method (BVPM)
for compressible f lows, which extends the applicability of the method to problems of the f low around
moving obstacles, is proposed. The developed method makes it possible to carry out simulations on
non-body fitted meshes of arbitrary structure, including completely unstructured computational
grids. The efficiency of the Galilean-invariant generalization of the BVPM for compressible f lows
around moving obstacles is demonstrated for a number of test problems of the direct reflection of a
one-dimensional acoustic pulse from a stationary and moving plane surface, scattering of an acoustic
wave by a stationary cylinder, and the subsonic f low of a viscous gas around an oscillating cylinder. The
numerical results agree closely with the reference solutions and theoretical estimates of the conver-
gence of the method and they confirm the invariance of the proposed formulation with respect to the
Galilean transformations.
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1. INTRODUCTION
The efficient numerical simulation of f lows around moving obstacles is quite a difficult task. From a

mathematical point of view, the f low geometry is determined by the corresponding boundary conditions
on the surface of moving solid bodies. At the moment, there are two main approaches to model f lows with
a complex geometry: the classical approach based on body-fitted meshes [1, 2], and the alternative f low
approach, which uses immersed boundary methods [3, 4]. In the classical approach, when solving prob-
lems characterized by a complex geometric shape of the obstacles, the construction of a body-fitted com-
putational mesh is often a resource-intensive task that cannot always be solved. The construction of body-
fitted computational meshes becomes much more complicated for moving obstacles since it requires con-
tinuous adaptation or the construction of a new mesh. In this case, methods of modeling moving bodies
for meshes can be used. The most common ones among them are the use of sliding meshes [5], the Chi-
mera technology [6], and the transition to a non-inertial coordinate system [7]. The implementation of
the first two approaches requires re-interpolation of the solution from mesh to mesh, which can lead to a
significant loss in the accuracy of the numerical solution, especially in the case of a sharp contrast in the
mesh resolution in areas of body fitted meshes or in the presence of shock waves. The main disadvantage
of using a non-inertial coordinate system is its inapplicability for several obstacles moving according to
different laws.

The immersed boundary method (IBM) makes it possible to avoid the cost and difficulties related to
the construction of meshes and set boundary conditions on the surface of solid bodies without positioning
mesh nodes on the boundary of the obstacles, which greatly simplifies the construction of the computa-
tional mesh, which is then solved in the entire domain of the problem definition, including the rigid body.
In the IBM, the boundary conditions on the obstacle surface are specified by introducing additional terms
in the system of equations, and depending on the way boundary conditions are imposed, the immersed
boundary methods can be divided into two main classes: discrete [3, 8, 9] and differential (continuous)
[10, 11] methods. Discrete approaches are based on changes in discretized equations by introducing addi-
tional feedbacks that ensure the satisfaction of boundary conditions, which makes them difficult to gen-
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GENERALIZED BRINKMAN VOLUME PENALIZATION METHOD 717
eralize due to their direct dependence on numerical methods. Perhaps, the biggest disadvantages of dis-
crete immersed boundary methods are the lack of mathematical proofs of their convergence and the dif-
ficulty of controlling the error in approximating the boundary conditions [4].

The volume penalization methods (VPMs) constitute a separate subclass of differential immersed
boundary methods, in which the effect of the presence of solid bodies is achieved by introducing addi-
tional terms in differential equations that describe the evolution of a liquid or gas f low, after which the
modified equations are discretized and solved using an appropriate computational method. Starting with
the work of Arquis and Caltagirone [10], which presented the formulation of the Brinkman VPM
(BVPM), significant efforts were invested in the development of the BVPM for modeling viscous incom-
pressible f luid f lows around solid obstacles [11–13]. The main idea of this method is to model a solid as a
porous medium with low permeability, approaching zero. The principal advantage of the BVPM in com-
parison to discrete immersed boundary methods lies in the possibility of analytical evaluation and active
control of the error of the solution of the penalized equations by changing the values of the parameters of
the penalty functions [11, 12].

The BVPM was generalized to compressible f lows in [14], where, in addition to introducing penalty
functions into the momentum and energy conservation equations, the continuity equation was also mod-
ified in such a way that the problem inside the body was reduced to a f low in a porous medium with a large
acoustic impedance, leading to the slight penetration of acoustic waves. As in the case of an incompress-
ible viscous f low, in the generalized BVPM, the error in solving the penalized equations can be strictly
estimated and controlled by the values of the porosity and permeability parameters. The generalized
BVPM has been successfully used to simulate viscous [14] and inviscid [15] subsonic compressible f lows
around stationary bodies. However, as was shown in [16], the original formulation of the generalized
Brinkman penalty method [14] is not Galilean invariant. In [16], an extension of the generalized BMVP
with a Galilean-invariant formulation of the continuity and momentum conservation equations was pro-
posed. However, the formulation proposed by Komatsu et al. [16] is not Galilean-invariant for the energy
conservation equation.

In this paper, we propose a fully Galilean-invariant generalization of the BVPM [14, 16] for the numer-
ical simulation of compressible f luid f lows around moving bodies. The effectiveness of the proposed for-
mulation was demonstrated in solving test problems of the direct reflection of a one-dimensional acoustic
pulse from a f lat stationary and moving surface, scattering of an acoustic wave by a stationary cylinder,
and subsonic f low of a viscous gas around an oscillating cylinder.

All problems considered in this paper were solved using the finite volume/finite difference method on
unstructured computational meshes based on the edge-based reconstruction (EBR) scheme [17], whose
accuracy is increased due to the quasi-one-dimensional edge-oriented reconstruction of variables.

The rest of the article is organized as follows. The second section describes the generalized BVPM. This
section also provides a Galilean-invariant generalization of the BVPM for modeling a compressible vis-
cous f low around moving bodies. The third section briefly describes the numerical method based on the
finite volume EBR scheme. The results of numerical simulation of test problems are given in the fourth
section. Finally, in the fifth section, conclusions are drawn and directions for further development of the
topic are outlined.

2. BRINKMANN VOLUME PENALIZATION METHOD
2.1. Mathematical Model

As a basic mathematical model for describing the f lows of a viscous compressible medium around solid
obstacles, we use the system of Navier–Stokes equations, written with respect to physical variables: den-
sity ρ, component of the velocity vector ui, and specific internal energy ε in the following way:
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718 ZHDANOVA et al.
All variables of system (1) are assumed to be dimensionless. The characteristic size of body L and the
characteristic parameters of the undisturbed medium—the speed of sound c0 and density ρ0, which deter-
mine the acoustic Reynolds number —are chosen as the nondimensionalization parame-
ters. The pressure and specific internal energy are nondimensionalized by the values  and ; and the
temperature, by , where R is the gas constant. This implies that the relationship between dimension-
less temperature and dimensionless specific internal energy .

The system of equations (1) is closed by the ideal gas equation of state  and γ = 1.4 is the
adiabatic index. The following notations are introduced in system (1):

 is the viscous stress tensor,

 is the heat f lux,  is the Prandtl number, and μ is the coefficient of molecular

viscosity. Note that for convenience, we use implicit summation over repeating direction indices i, j =
1, …, d, where d is the dimensionality of the problem.

2.2. BVPM for Compressible Flows
We consider the problem of a viscous compressible f low around a rigid obstacle, described by the

Navier–Stokes equations (1). We assume that the problem is solved in the domain Ω, containing a body
occupying a region of space ΩB. The velocity and temperature of a f luid at the boundary of a solid body
∂ΩB satisfies the no-slip and isothermal conditions given as

where  and  are the speed and body temperature terms, respectively. In BVPM, generalized in [14]
for a compressible gas, in addition to the no-slip condition and isothermality on the body surface, speci-
fied implicitly by adding Brinkman volume penalization to the momentum and energy conservation equa-
tions, the mass conservation equation was also modified so that inside a body the equation was reduced to
the equations of conservation of mass in a porous medium. Thus, the dimensionless penalized Navier–
Stokes equations for a compressible gas in the formulation of [14] for motionless obstacles, i.e., in the case

, can be written in the following form:

(2)

where  is the total energy determined taking into account the ideal gas equation of
state, ϕ is the porosity,  is the normalized viscous permeability,  is the normalized thermal permea-
bility, and the spatial position of the solid body is determined by the marking function :

where . It was shown in [14] that for small values of the parameters ϕ, , and , when
, the error in solving the penalized system of equations (3) converges as .

2.3. Galilean-Invariant BVPM for Compressible Flows
When solving problems of the f low around moving objects, it is important that the equations and

boundary conditions remain invariant in the moving reference frame; i.e., the penalized equations must
satisfy the Galilean invariance conditions. In [16], an extension of the generalized BVPM [14] with the
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Galilean-invariant formulation of the continuity and momentum conservation equations was proposed.
However, the formulation proposed by Komatsu et al. [16] is not Galilean-invariant for the energy con-
servation equation.

To derive a generalized BVPM that satisfies the conditions of Galileo invariance, we rewrite the penal-
ized Navier–Stokes equations (2) for fixed bodies with respect to density variables ρ, a component of the
velocity vector , and specific internal energy ε:

(3)

System (3) can also be interpreted as a system of equations written in the coordinate system of a body
moving at speed UB. Rewriting the system of equations (3) in a fixed coordinate system using the Galilean
transformations

we obtain the following Galilean-invariant form of the penalized Navier–Stokes equations, written for
density variables ρ, the component of the velocity vector , and specific internal energy:

(4)

Rewriting the system of equations (4) with respect to conservative variables of the density ρ, the com-
ponents of the momentum vector , and full of energy E, we obtain the following Galilean-invariant sys-
tem of penalized Navier–Stokes equations:
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where  are the components of the outer normal n to the edge of the body . Using the equation for
the components of the velocity vector of system (4) under the assumption that there is no rotational
motion of the streamlined body, we obtain the following chain of equalities:

(6)

Neglecting the contribution of the last two terms in the second equality of expression (6) due to their
small magnitude, it is easy to obtain the following approximation for calculating the total force

(7)

Note that in formula (7), in addition to the second term, which represents the well-known formula for
calculating forces when using the BVPM in the case of stationary obstacles [18], there is also a term asso-
ciated with the acceleration of the added fluid mass inside the obstacle. We also note that formula (7) can
also be used in the case of a non-inertial frame of reference. In this case, an additional term arises due to
the presence of body forces caused by its acceleration.

3. NUMERICAL METHOD
The method proposed in this paper is implemented based on the NOISEtte software package

described in [19, 20].
Spatial discretization of the convective part of the system of equations (5) is based on a finite-volume

approach with the determination of the desired variables at the mesh nodes around which the computa-
tional cells (muzzle mesh) are built. To increase the order of accuracy, a scheme based on the quasi-one-
dimensional reconstruction of variables along a mesh edge (EBR schemes) is used. This class of schemes
is described in detail in [17]. For the spatial approximation of viscous terms, the Galerkin finite element
method based on linear basis functions is used. The source nondifferential terms on the right-hand side
of system (5) are specified at the mesh nodes. The differential terms on the right hand side are approxi-
mated similarly to the density transfer in the convective part of the system, except for the term ,
for which the f low on the edge of the computational cell separating nodes L and R and having an oriented
area , is defined as . Here it is assumed that the velocity vector  does not depend on
the spatial variables.

Integration over time is carried out according to an implicit three-layer scheme of the 2nd order of
approximation, followed by the Newton linearization of a spatially discretized system of equations. At
each Newtonian iteration, the stabilized biconjugate gradient method (BiCGSTAB) is applied to solve the
system of linear equations.

4. NUMERICAL RESULTS
4.1. Reflection of a One-Dimensional Acoustic Pulse

To estimate the accuracy of approximation of the boundary conditions when using the Galilean-
invariant generalization of the BVPM for compressible f lows, we consider the reflection and transmission
of a one-dimensional acoustic pulse incident on a moving solid wall. This problem is a good test case for
checking the amplitude and phase errors in the solution of penalized equations and was used as a test prob-
lem in [14] for the case of a fixed wall. The problem of reflection of an acoustic pulse has an exact solution
for the Euler equations. In this paper, it is solved in the inviscid approximation, i.e., the system of Navier–
Stokes equations was used for a large Reynolds number Re = 5 × 105. Periodic boundary conditions are
set on the upper and lower boundaries of the computational domain; and the Dirichlet conditions deter-
mined by the undisturbed parameters of the medium, on the left and right boundaries.

The problem is defined in a rectangular domain of  × , consisting of the f low
region  =  ×  and porous media region of  =  × , the
interface between two media in the case of a fixed wall (  = 0) corresponds to a straight line x = 0, and
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Fig. 1. Reflection of an acoustic pulse from a solid wall: (a) the reflected wave profile, (b–e) the convergence of the solu-
tion with respect to penalty parameters.
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in the case of moving boundaries, a straight line . The velocity of the walls was set to  = ±0.2.
To carry out numerical calculations in the region Ω, an unstructured triangular mesh with a characteristic
element size of  was built.

At the initial time, a one-dimensional acoustic pulse was set:

where  = , , .

In Fig. 1a the solution of the reflected pulse for different values of porosity ranging from ϕ = 10−2 to
ϕ = 1 and normalized permeabilities  =  = 10–3 is given. The comparison with the exact solution, also
shown in the figure, shows the amplitude and phase errors decreasing from 15 to 2% with the decrease in
the value of the porosity coefficient from the value ϕ = 1.0 to the value ϕ = 0.01.

One of the important aspects of the Galilean-invariant generalized BVPM is the possibility of actively
controlling the numerical solution error by changing the penalty function parameters ϕ, , and  to lev-
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els that provide the desired order of error. The efficiency of the generalized BVPM is shown in Figs. 1b
and 1d, where the results of the convergence of the relative amplitude error of the reflected pulse are given

as the penalty parameters tend to zero. The amplitude error was defined as , where  is the

magnitude of the pressure disturbance at the crest of the wave, and A = 10−3 is the exact value of the ampli-
tude of the oncoming pulse.

Graphs illustrating the results of the convergence of the solution at fixed values  and ϕ are

shown in Figs. 1b and 1c, respectively. Note that the same mesh with the characteristic size  was
used in the calculations for all the porosity values ϕ and normalized permeability values η. As can be seen

from Figs. 1b and 1c, the amplitude error converges as  for a fixed value of η and as  for a
fixed value of ϕ. The type of graphs in Fig. 1d confirms that the numerical convergence is on the order of

, which matches the results of the theoretical studies [14].

Satisfaction of the Galilean invariance condition follows from the convergence graphs shown in Fig. 1e
for stationary and moving walls. We can see a satisfactory agreement between the graphs and the corre-

spondence of the theory with respect to the order of convergence of .

4.2. Scattering of a Two-Dimensional Acoustic Pulse
The second test problem considers the scattering by a cylinder of an acoustic wave generated by a local-

ized acoustic source. This problem was considered as a test problem at the conference on computational
acoustics [21]. Unlike most of the methods used to solve the test problems of the conference and based on
solving the Euler equations, when solving the second test problem, the generalized BVPM was based on

the Navier–Stokes equations for a compressible gas with an acoustic Reynolds number of Rea = 5 × 105.

The numerical results are compared with the exact analytical solutions for the Euler equations.

Schematically, the problem statement is shown in Fig. 2a. A cylinder with diameter D = 1 is placed in
a rectangular computational domain Ω = [−10, 15] × [−10, 10] at a point with coordinates (0, 0). At the
initial moment of time at the point (4, 0), an acoustic disturbance is set in the form of a Gaussian pulse:

For the numerical simulation, an unstructured triangular computational mesh was constructed, which
refines near the cylinder boundary with the characteristic size of the mesh element h = 0.001, while the
mesh parameters outside the condensation region are chosen in such a way as to provide sufficient reso-
lution of the acoustic source (h ~ 0.05).

The initial localized disturbance leads to the formation of a cylindrical acoustic wave propagating radi-
ally from the source. Upon reaching the surface of the cylinder, the wave is reflected from its surface and
propagates towards the boundaries of the computational domain. The third wave is formed behind the cyl-
inder as a result of the collision of two waves split by the cylinder. It should be noted that the error in solv-
ing the second and third reflected waves depends entirely on the accuracy of the generalized BVPM used
to approximate the cylinder, and is a good test of the effectiveness of the method.

The calculation was carried out until the time t = 10. To assess the accuracy of the obtained numerical
results, the evolution of the solution is considered at three control points located around the cylinder with
coordinates: A(5, 0), B(0, 5), and C(–3.54, 3.54). Figures 2b–2d show the change in pressure f luctuations
depending on time at these points, obtained by numerical calculation with the values of the porosity coef-

ficient, ϕ = 1.0 and ϕ = 0.01; in this case, the permeability coefficient did not change: η = 10−4. Their
comparison with the exact solution indicates sufficient accuracy of the numerical simulation of acoustic
wave scattering on a cylinder by the generalized BVPM. It can be seen that the introduction of the math-
ematical model of a porous medium into the continuity equation (ϕ = 0.01) allows elimination of the
phase and amplitude errors in the modeled reflected acoustic waves, which are observed for ϕ = 1.0.

4.3. Oscillation of a Two-Dimensional Cylinder in a Medium at Rest
In this subsection, we consider the problem of the oscillating motion of a two-dimensional cylinder in

a viscous medium, where the position of the center of mass of the cylinder is determined by the harmonic

law , .

For an incompressible medium surrounding a cylinder, the problem depends on the following dimen-

sionless parameters: Reynolds numbers  = 100 and Keulegan–Carpenter number
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Fig. 2. Acoustic scattering on the cylinder: (a) formulation of the problem, (b–d) pressure pulsations at control points A,

B, C, respectively.
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 = 5. Here, D is the diameter of the cylinder,  is the maximum speed of the cylinder,

and f is the oscillation frequency. In the case of a compressible medium, an additional dimensionless

parameter is added, the Mach number , where  is the speed of sound in a gas at rest.

Since quantities D and  are the characteristic parameters of the problem, it is easy to obtain expres-
sions for the dimensionless frequency and dimensionless displacement amplitude, which are defined as

 and , respectively.

For the case of incompressible f lows, the problem was solved by the authors using the BVPM in the
incompressible f low formulation [22]. In this study, the oscillating cylinder interacts with a compressible
flow at the Mach number M = 0.4.

The computational domain has the shape of a square with sides l = 20.0, whose center coincides with
the origin.

Numerical calculations were carried out using an unstructured triangular mesh. In the region of
motion of the cylinder, the mesh thickens with the characteristic size of the element h = 0.02. The problem
was solved in three formulations:

1. In an inertial coordinate system, where the boundary condition is modeled by the Galilean-invariant
BVPM (designated on the graphs by GI BVPM).

2. In a non-inertial coordinate system related to a cylinder, where the boundary condition is modeled
by the Galilean-invariant BVPM (designated on the graphs by GI BVPM).

3. In a non-inertial coordinate system related to the cylinder and on a body-fitted mesh (designated on
the graphs by BFM).

The results of numerical simulation demonstrated that a quasi-stationary periodic f low is achieved

. In this case, a force induced by the external environment begins to act on the surface of the cyl-
inder. For a comparative analysis of the calculation results, we considered the temporal distribution of the

= maxcK U Df maxU

= max 0M /U c 0с

maxU

= 1 cf K = π2cA K f

>( 10.0)t
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Fig. 3. Flow around an oscillating cylinder. The distribution of the lift force coefficient, obtained by numerically solving
the problem in various formulations, was used to calculate the coefficient: (a) formula (7) without taking into account the
force related to the acceleration of the added mass, (b) formula (7).
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transverse component of the force Fy, expressed in terms of the lift coefficient:  (  is the

density of the unperturbed gas).

To calculate the components of the force vector, formula (7) is proposed in this paper, which allows
performing calculations without integrating directly over the body’s boundary. The latter circumstance
becomes especially important for the methods of immersed boundaries, since when they are used, the
interface between two media is not explicitly defined.

In Fig. 3a, the time distributions of the coefficient Cl are presented, determined in the numerical solu-

tion of the problem in three formulations. In this case, the coefficient was calculated according to the stan-
dard formula for determining forces without taking into account the acceleration of the added fluid mass
(the second term in (7)). It can be seen that the results obtained using the BVPM for different coordinate
systems coincide with each other, but differ markedly from the body-fitted mesh results. The difference is
due to the need to take into account the non-inertial force. The application of formula (7) made it possible
to obtain close agreement between the results of the numerical calculations of this problem in all three for-
mulations (Fig. 3b).

5. CONCLUSIONS

This paper proposes a Galilean-invariant generalization of the BVPM for compressible f lows, which
extends the applicability of the method to problems of the f low around moving bodies. The developed
method provides the possibility of performing calculations on structured and unstructured non-body fit-
ted computational meshes. The Galilean-invariant formulation is obtained using the Galilean transfor-
mations of the penalized Navier–Stokes equations for a compressible gas in a frame of reference related
to a moving body.

The Galilean-invariant generalized BVPM allows numerical simulation of compressible f lows around
both stationary and moving bodies. The effectiveness of the developed method is demonstrated for test
problems of the direct ref lection of a one-dimensional acoustic pulse from a f lat stationary and moving
surface, scattering of an acoustic wave by a stationary cylinder, and the problem of subsonic f low of a vis-
cous gas around an oscillating cylinder. The obtained numerical results are in close agreement with the
reference solutions and theoretical estimates of the convergence of the method, and they confirm the
invariance of the proposed formulation with respect to the Galilean transformations. This paper also pro-
poses a method for calculating the total force acting on a body during its translational motion, using the
integration of the BVP over the space occupied by this body, and taking into account the acceleration of
the attached fluid mass inside it.

On the whole, the results obtained in this work indicate the effectiveness of the numerical simulation
of problems of the aerodynamic f low using the Galilean-invariant generalization of the BVPM for com-
pressible f lows. Further development is connected with the use of the VPM together with mesh adapta-
tion, which allows the local resolution of complex geometry with the given accuracy without excessive res-

= ρl 0 max2 /yС F U ρ0
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olution far from the boundaries. Of particular interest is the joint application of the VPM and the node
redistribution method, which allows, in addition to making a mesh more refined/coarse, to adapt the
anisotropy of the mesh without changing the topology of the mesh. The potential benefit of such an
extension is a significant reduction in grid nodes with the optimal representation of the anisotropy of the
solution.
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