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Abstract—An entropic regularization of the conservative stable discontinuous Galerkin method
(DGM) in conservative variables for two-dimensional Euler equations is constructed based on a spe-
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1. INTRODUCTION

One of the promising areas of research in the development of numerical methods for solving gas-
hydrodynamic problems is the creation of algorithms that are conservative and entropy stable [1—12].
Many different versions of entropically stable schemes have been proposed; however, research in this area
is still far from complete.

Among the multitude of numerical methods used in the designated area, the discontinuous Galerkin
method (DGM) should be singled out [13—19], which, on the one hand, is characterized by a compact
stencil, and, on the other hand, by the potentially highly accurate finite element (FE) approximations.
Various modifications of the DGM have been proposed that are conservative and possess the property of
entropic stability [13, 20—25]. Nevertheless, there is still a need to further improve the entropically stable
versions of the DGM in order to improve the quality of numerical solutions.

Initially, we proposed a variational method for the entropic regularization of the DGM, in which the
values of the DGM coefficients are determined as a solution to some variational problem for the condi-
tional minimum [20] with a convex constraint that ensures the fulfillment of the entropic inequality. How-
ever, it was soon discovered that the formal fulfillment of the entropic stability condition alone, which
consists in the nonnegative production of entropy, is insufficient for the numerical stability of the algo-
rithm [21]. Further, it was found that to ensure the computational stability of the algorithm, some degree
of monotonicity of FE approximations is necessary. As a result, the set of constraints in the corresponding
variational problem was supplemented by a system of linear inequalities expressing the monotonicity of
FE approximations [22]. As a result of this modification, a computationally stable version of the entropi-
cally regularized DGM was obtained. When solving problems with two or more spatial variables, for exam-
ple, multidimensional problems of gas dynamics, there is a need for effective generalizations of the con-
cept of monotonicity. One of the possible approaches was proposed for the DGM in nonconservative vari-
ables in the case of the Euler equations [23—25]. In this paper, we construct an entropically stable DGM
for the Euler equations in traditional conservative variables using the generalized monotonicity conditions
similar to those used in [25]. The need to build a version of the DGM in conservative variables is due to
two circumstances. First, conservative variables are traditionally used in numerical methods for problems
in continuum mechanics. The study would be incomplete if we restricted ourselves to the case of noncon-
servative variables, which is not typical. Second, on the same grid, the algorithm in conservative variables
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turns out to be more computationally efficient. The computational cost of the version in conservative vari-
ables for the same problems turns out to be lower by factors of 2 to 3 than the version in nonconservative
variables. At the same time, the accuracy of the approximate solution on the selected test problems
remains approximately the same.

The material of the work is presented in the following sequence. Section 2 consists of the problem
statement; Section 3 derives the DGM equations in conservative variables density, pulse density, and total
gas energy; in Section 4, the leading coefficients of FE approximations are limited based on the monoto-
nicity condition generalized to the case of two spatial variables and the entropic stability condition; and in
Section 5, the numerical results are discussed.

2. PROBLEM STATEMENT

We consider a system of Euler equations describing two-dimensional gas dynamics in dimensionless
variables, for which we set an initial-boundary value problem in a rectangular domain I1:

U + —aF‘(U) + —aFZ(U) =0, Ux,0)=Uyx),
ot ox; 0x, (D
X:(XI,XZ)E H z(alabl)x(a29b2)a t >0’
where U(x,7) = (U (1), U (2), U (3), U (4))T and F;(U) = (Fj(l), Fj(z), Fj(3), 1‘7].(4))T are column vectors of conservative
variables and fluxes in the direction of axis Ox; (j = 1,2), respectively. Conditions at the boundary oIl of

rectangle IT are given by ghost cells that are adjacent to the boundary oIT outside (the boundary conditions
are specified in Section 5). The ideal gas equation of state

p=(—-Dpg, v=cp/cy ()
closes the system of equations (1). In Egs. (1) and (2), the following notations are used: p is pressure, p is

density, € is specific internal energy, y = 1.4 is the adiabatic index, and ¢, and ¢, are the heat capacities of
an ideal gas at constant pressure and constant volume, respectively. Taking into account the equation of
state (2), for the momentum density and total energy density, respectively, the following designations are
used:

I1=(,0), I,=pu;, E=p/(y-1)+U+1)/2p), 3)

where u = (¢, u,) is the velocity vector. Taking into account (3), the explicit expressions for the column
vector of conservative variables and the column vector of fluxes, respectively, take the form

p 1

I p LI + pd,
U= FO=|", , (4)

2 p I;+pd,;

E (E+pp 1,

where 0 is the Kronecker symbol.
Satisfaction of the entropic inequality [26]
t+At

H [(ps)(t + At) — (ps) (D) ldx,dx, + j drgS s(Iv, + I,v,)dG > 0 (5)

Q t Q

in any subdomain Q c IT with a fairly smooth boundary dQ is an important prerequisite for a physically
correct description of gas-dynamic processes, where v = (v,,V,) is the outer normal vector to dQ2 and s is

the entropy density
s=1Inp—-7ylnp. (6)

The numerical solution of problem (1) is based on the entropically regularized DGM, a general
description of which is given in [22—25]. In contrast to [25], here we construct the classical DGM in con-
servative variables p, /, and E. The proposed algorithm is characterized by the implementation of discrete
analogs of conservation laws and a discrete analog of the entropic inequality in variables p, 7, and E.
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3. EQUATIONS FOR THE DGM COEFFICIENTS

In a closed rectangle IT = IT U 911, we define a Cartesian grid with nodes

X, = (x", x") = (@, + mh,a, + nh)), m=0,...M; n=0,.. N, (7)
h=b—-a)M, h=(b—-a)/N. (8)
Obviously, grid (7) is related to a set of computational cells K, = (x\" ", x"™) x (x{"™”, x”). Each cell
K, has four neighbors (on the sides) that are nearest to it: Km_lqn, K, .. Km w10 and K., with which it
exchanges mass, momentum, energy, and entropy.
We introduce the local variables
g =2 - x" ) =1, =12 ©)

in order to use them to write equations for the DGM coefficients in a single calculation cell X,,,. Local
variables (9) take values in the interval (—1, 1).

To construct an approximate solution within the computational cell K,,,,, we will use the local polyno-

mial basis related to this cell. Let us present an approximate solution of problem (1) U, in cell K,,, as a
linear function of local space variables

U,(21,2,1) = Up(?) + U (0)z; + Uy ()2, (10)
limited formally to the second order of approximation. Using the standard technique for deriving equa-
tions for the DGM coefficients [12, 17, 18], we arrive at a system of ordinary differential equations
(SODE) with respect to the required coefficients U,(¢), U,(¢), and U,(¢)

2
dU,(¢ 1, -
dUo() _ B, = —h i '@ > vFdo,
dt gk =1
du (1)
—L—~=B, = —3n"'h (ﬁZV,ZJFldG J.Z_FldxldXZ J (11)
dt gk =1 X 1= 70

j=12.

Recall that in Egs. (11) in integrals over the boundary 0K of cell K (indices m and » are omitted for brevity)

v, denotes the component of the external normal to the boundary 0K along the axis Ox,, and F, is the cor-
responding numerical Godunov flux. The right parts of Egs. (11) are transformed to the following form:

1 1
B, = _ij]m(l’ %)~ F(-12,)ldz, - 2—22{[F2<zl,1> — Fy(z.-Ddz, (12)

1
B, = —%{ [ IF(1,2) + Fi= 1 2z,
(13)

-1 -1

-— I [F,(z1,1) = Fy(z,—-D]gdz, — J‘dZI j deFl(zl,zZ,t)}

B, = - 2h2{j [Bx(@ 1) + Bz, - Dz,
| | (14)
j [F.(,2) - Fi(-L2)ladz, - [ da | dz2F2<z1,z2,r>}

-1 -1

where the components of the numerical fluxes F; are considered as complex functions of local coordi-
nates (9):

F; = ¥;(2, 2,1 = F;(U(z, 25,1))- (15)
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Note that any explicit time discretization of SODE (11), generally speaking, does not generate a com-
putationally stable numerical algorithm for the approximate solution of the Euler equations (1). To obtain
a stable numerical method, it is necessary to modify system (11) accordingly.

4. ENTROPIC REGULARIZATION OF THE SYSTEM
OF EQUATIONS FOR DGM COEFFICIENTS

Let us construct an entropic regularization of fully discrete explicit schemes based on SODE (11).
Since the explicit Runge—Kutta methods of high orders of accuracy consist of intermediate steps similar
to the Euler scheme, we restrict ourselves to considering the simplest explicit first-order time integration
method based on the Euler scheme.

As is known, the explicit numerical integration of SODEs for the DGM coefficients (11) in the case of
gas-dynamic problems with strong shock waves turns out to be unstable, and these coefficients require
correction [12, 16]. The method of numerical integration must satisfy, at each time step, the discrete ana-
logs of the laws of conservation of mass, momentum, total energy, and entropic inequality. Let us pay
attention to the fact that the first equation in Egs. (11) dU(¢)/dt = B, just describes the discrete analog of
the laws of conservation of mass, momentum, and energy for a cell K, [20, 22] in continuous time.
Approximation of this equation by the explicit Euler method with a time step T

Uyt + 1) = Uy(®) + By (7) (16)

retains the conservation property. Discrete analogs of the corresponding conservation laws for a cell K,
hold in discrete time ¢ = 0, T,27,.... Therefore, the transition rule (16) of zero coefficients to the next time
layer remains unchanged.

Due to the orthogonality of the system of functions in the form of a linear combination of which an
approximate solution is sought in (10); the equations for the remaining DGM coefficients do not affect
the conservation property. Correction (regularization) of other coefficients in order to ensure the stability
of the algorithm is usually done by limiting them [12, 16]. As a result, after correction, the numerical
scheme for the remaining coefficients takes the form

U,t+1=U,0)+1B,(n, j=12. (17)

Thus, instead of the original SODE (11), some modified system is numerically integrated. In the case
of entropic regularization, in addition to stability, it is required to ensure that, at each time step, the dis-

crete analog of the entropic inequality (5) is satisfied for the cell K,,,,.

In the variational approach [22], the values B ; (/ =1,2) in (17) can be considered as a solution to the
problem of determining the conditional minimum point of the quadratic function

2
®(B,,B,) = > B, - B, (18)
Jj=l

on some convex constraint set including the entropic inequality, where || . || denotes some Euclidean norm.

Since the solution of the conditional minimum problem for function (18) in each finite element K, at
each time step is very computationally expensive, in practice we have to resort to approximate methods for
solving problem (18) and simplified approaches, for example, limiting the DGM coefficients [22].

Let us list the conditions that an entropically regularized DGM must satisfy.

(D) FE approximations (10) must satisfy at each time step some generalized monotonicity conditions
that ensure the stability of the numerical algorithm.

(IT) Some of the gas dynamic parameters, such as gas density p, pressure p, and total energy density E,
have positive values in their physical sense. The algorithm must ensure that the indicated parameters are
positive at each time step.

(ITI) In each finite element K, entropic inequality (5) must be satisfied at each time step.
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Let us ensure the fulfillment of each of conditions I—III in the version of the DGM proposed here.

Let each cell K,,, be put into correspondence with a real number f,,,; i.e., f = {f,,,} can be viewed as
a piecewise constant function defined at every cell K,,,,. In addition, we define a finite set of integer two-
dimensional vectors (translations) A = {(o,B)}. To each cell K, < II, we assign a nonnegative number

Spn(F) = M| frvcinsp = S (19)
and in what follows, as a working set of translations, we choose the set
A ={(1,0);(=1,0);(0,1);(0,—1)}. (20)
Let us also define the quantities
D =250 D) = min(28),0).0- 011, ) @)
for some parameters 6 € (0,+<0) and ¢ € (0,1) and the limiting function
1, |x| <M,
A(x7 M) = —1 X € (—oo’ oo)’ M e (03 oo) (22)
M~

For the DGM coefficients U, and U, in cell K,,,, let us construct a limitation procedure, the purpose

of which is to obtain their values that satisfy requirements I—I1I formulated above.
Considering the DGM coefficients U (z + 1) already known as a result of applying formula (17) and

denoting the set of values of components / of these coefficients for all cells as {U, él)(t + 1)}, we calculate the
quantities

DL ULE+1))), =14
w = [P 0D 23
Dmn({UO (t + T)}), l = 273
and
r=|U"@ + B 0|+ v 0) + 1BV ). (24)
Next, we determine the corresponding DGM coefficients using the limiting function (22)
Ut +1) = A, MU (1) + 1BV ()] (25)

According to (17), we obtain ]§j = ‘C_][Uj(t +1-U;(0].

The generalized monotonicity conditions consist of applying the method for calculating the DGM
coefficients U; and U, in accordance with (23)—(25). Note that, together with these conditions, the pos-
itiveness of the gas density p (/ = 1) and total energy density £ (/ = 4) is also ensured due to the use of the
special limiter D, defined in (21).

To ensure positive pressure p in cell K,,,,, generally speaking, requires an additional constraint on the
DGM coefficients U, and U, in addition to what has just been discussed. Hence, we introduce an auxiliary

function

UL + AU | +|UPDF +108” + AU + U7

oM =1 07 -0+ 09 (26)
dominating the kinetic energy in the cell, and the function
POV = (y=DIUS” = A(ut?|+ ) - o, 27)
which is a lower bound for the pressure p in it.
To ensure that the pressure is positive, we check the condition
PQ1)—-cP(0) 20, (28)
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where the value of parameter G is the same as in (21), the DGM coefficients U, and U, are calculated in

accordance with (23)—(25), and the value P(0) is considered positive. If inequality (28) is satisfied, then
the values of coefficients U; and U, are kept the same. Otherwise, the latter are limited by the rule

U, - kUj, where A € [0,1) is the root of the equation
P(\) = (1-0)P(0). (29)

In order to avoid the complication of the notation further, we will keep the old notation U, and U, for the
new values of coefficients AU, and AU,.

Finally, we will provide fulfillment in the cell K,,, of the entropic inequality (5) in the approximate
solution (10). To do this, we consider the linear function of local coordinates

Vu(z1,20,1) = Up(0) + WU, (0)z; + Uy ()z,), (30)

where parameter | € [0,1], and define the pressure function for it

G + 02y
Pz 20t) = (Y= D| VY - — (31)
W,
and the entropy function
1 1
h
S, 1) = 17}’2 j dz, j dz,V, (In p, — yIn¥,"). (32)

-1 -l
The last term on the left side of (5), which is a flux term, is approximated in accordance with the Euler
scheme (16)

+At
(1) = cﬁ UV, + Iv,)do], = é j dt(f) s(I,v, + 1,v,)do. (33)
t

oK oK

The next approximation of the left side of inequality (5)
Ps() = S, 7+ 1) = S(1, 1) + 1D 4(7) (34)

will be called the discrete analog of entropy production in cell K = K,,,. Next, we choose value 1 € [0,1]
according to the rule

_ {1, Ps(1) =2 0; (35)

w, o P(u*) =0,

and we use expression (30) with the value (35) of the parameter L as an approximate solution to (10)
incell K,,,,.

5. RESULTS AND DISCUSSION

Let us check the DGM developed in Section 4 with an entropic slope limiter in conservative variables
on the two-dimensional Riemann problems from [27]. Each of these problems is posed as follows: at 7 = 0
the computational domain 0 <x,y <1 (q = a, =0, b, = b, = 1) is divided into four equal squares (quar-
ters), in each of which some constant density, pressure and velocity are specified (see Table 1). The gas is
assumed to be diatomic, Yy = 1.4. A symmetry condition is set on the boundary of the computational

domain: dU/dn = 0. It is required to determine the gas flow up to the time 7 = ¢,,,, inclusive.

Calculations using the regularized DGM will be performed on a grid of 200 X 200 cells with the fol-
lowing parameter values: & = 2 and 6 = 107> with the Courant number 0.2. The integrals are calculated
using the Gauss method. In addition, we will make a comparison with the bicompact SDIRK3B4 scheme
from [28]. This scheme uses locally one-dimensional splitting and the conservative monotonization
method. On smooth solutions, the SDIRK3B4 scheme has the fourth order of approximation in space and
the second order in time. The calculations according to the bicompact scheme were performed on the
same grid of 200 % 200 cells, with the Courant number 0.8 and monotonization parameter C; = 10.
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584 BRAGIN et al.

Table 1. Initial gas parameters and values #,,,, in two-dimensional Riemann problems

Left quadrant Right quadrant
Problem Tmax
p p uy U p p u L]
3 upper 0.3 0.5323 1.206 0 1.5 1.5 0 0 0.3
lower 0.029 | 0.138 1.206 1.206 0.3 0.5323 0 1.206
4 upper 0.35 0.5065 0.8939 | 0 1.1 1.1 0 0 0.25
lower 1.1 1.1 0.8939 | 0.8939| 0.35 0.5065 0 0.8939
6 upper 1 2 0.75 0.5 1 1 0.75 |-0.5 0.3
lower 1 1 —0.75 0.5 1 3 —0.75 |-0.5
12 upper 1 1 0.7276 0 0.4 0.5313 0 0 0.25
lower 1 0.8 0 0 1 1 0 0.7276
15 upper 0.4 0.5197 |—0.6259 | —0.3 1 1 0.1 —-0.3 0.2
lower 0.4 0.8 0.1 —0.3 0.4 0.5313 0.1 0.4276
17 upper 1 2 0 —0.3 1 1 0 —-0.4 0.3
lower 0.4 1.0625 0 0.2145 0.4 0.5197 0 —1.1259

Problem 3. The lines of the initial discontinuities in this problem are shock wave fronts. In the process
of their motion, three new shock waves arise. The latter limit the zone, in which the pressure is lower than
the initial pressure in the upper right quarter of the computational domain. This difference in pressure
causes a mass injection that has the shape of a mushroom in the density isoline pattern. Accordingly, the
resolution of this smooth mushroom structure and seven shock waves is of interest.

Figure 1 shows at ¢ = 0.3 entropy production rate P, in the DGM and solutions (parameters p, p, u;,
u,) for the DGM and the bicompact scheme. First of all, we note that the developed method of entropic
regularization provides nonnegative entropy production in all cells, as was required. Both schemes resolve
all shock waves equally well. However, the bicompact scheme resolves the aforementioned mushroom
structure better, which is explained by its higher approximation orders (on smooth solutions).

Problem 4. Similarly to Problem 3, the initial discontinuities are shock waves. As they diverge, they cre-
ate an area of increased pressure in the form of a lens bounded by two new shock waves. The shock wave
propagation velocities in Problem 4 are higher than in Problem 3. In addition, the solution of Problem 4
does not contain structures of other types, which makes it possible to test the schemes on shock waves with
greater clarity.

y y
1.0 50 18 1.0 1.8
1.6 1.6
40 1.4 1.4
osh 30 10 s o
: 20 0.8 0.8
N 0.6 0.6
10 0.4 0.4
0.2 0.2
L 0 0 0
0 0.5 1.0 ) 0 0.5 1.0
X X

Fig. 1. Results in Problem 3, time # = 0.3. Left: plot of entropy production in the DGM. Center: flow pattern obtained by
DGM. Color fill shows pressure, isolines show density (values from 0.16 to 1.71 with a step of 0.05), vectors show velocity
(with a multiplier of 0.05). Right: flow pattern obtained by the bicompact scheme. All calculations were performed on a

grid of 200 % 200 cells.
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y y y
1.0 7 10 1.0 3.0 1.0
8 2.5
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0.5F ) 0.5 1.5 0.5
J 1.0
2 0.5
L 0 0
0 0.5 1.0 0 0.5 1.0 0 0.5 1.0
X X X

Fig. 2. Results in Problem 4, time 7 = 0.25. Left: plot of entropy production in the DGM. Center: flow pattern obtained
by DGM. Color fill shows pressure, isolines show density (values from 0.52 to 1.92 with a step of 0.05), vectors show
velocity (with a multiplier of 0.1). Right: flow pattern obtained by the bicompact scheme. All calculations were performed
on a grid of 200 x 200 cells.

y y
10 11 1.0 11
1.0 1.0
0.9 0.9
0.8 0.8
0.5 0705 07
0.5 0.5
0.4 0.4
' 03 03
' 0.2 0.2
0 0.5 0

X

Fig. 3. Results in Problem 6, time 7= 0.3. Left: plot of entropy production in the DGM. Center: flow pattern obtained by
DGM. Color fill shows pressure, isolines show density (values from 0.25 to 3.05 with a step of 0.1), vectors show velocity
(with a multiplier of 0.1). Right: flow pattern obtained by the bicompact scheme. All calculations were performed on a

grid of 200 % 200 cells.

The flow patterns at = (0.25, obtained by the DGM and the bicompact scheme, are shown in Fig. 2.
It can be seen that the DGM smears the shock waves more strongly when compared with the results in
Problem 3. Entropy production is nonnegative in all cells; it is maximum in shock waves. The bicompact
scheme demonstrates the same spatial resolution as in the previous problem. Note that the solution cal-
culated by the bicompact scheme contains small nonmonotonicities near the convergence points of the
shock waves.

Problem 6. This problem tests the resolution of four moving contact discontinuities. In addition to
them, the gas also has a diamond-shaped zone of moderate rarefaction.

From the visualizations of the flows at # = 0.3 in Fig. 3, we can conclude that the entropically regular-
ized DGM resolves moving contact discontinuities on 16—20 cells. Excessive numerical dissipation also
shows up in the entropy production plot. The bicompact scheme resolves contact discontinuities on 5 to
6 cells, which is typical for schemes of this class and order of accuracy. Nevertheless, the bicompact

scheme allows a negative production of entropy on rarefaction waves, but it is small and amounts to 0(1:3)
att — 0[29].

Problem 12. The initial jumps in this problem are two shock waves and two stationary contact discon-
tinuities. Moving away from the center of the computational domain, the shock waves leave behind a high-
pressure zone bounded by two new shock waves. The fact that the solution of Problem 12 contains both
shock waves and contact discontinuities (moreover, stationary) distinguishes it from Problems 3, 4, and 6
considered above.

Figure 4 shows at time ¢ = 0.25 entropy production in the DGM and solutions calculated using the
DGM and the bicompact scheme. As before, the new entropic regularization method excludes negative
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0.5 H 12 1.2
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Fig. 4. Results in Problem 12, time # = 0.25. Left: plot of entropy production in the DGM. Center: flow pattern obtained
by DGM. Color fill shows pressure, isolines show density (values from 0.54 to 1.7 with a step of 0.04), vectors show veloc-
ity (with a multiplier of 0.1). Right: flow pattern obtained by the bicompact scheme. All calculations were performed on
a grid of 200 x 200 cells.

0.5r

Fig. 5. Results in Problem 15, point in time 7 = 0.2. Left: plot of entropy production in the DGM. Center: flow pattern
obtained by DGM. Color fill shows pressure, isolines show density (values from 0.43 to 0.99 with a step of 0.02), vectors
show velocity (with a multiplier of 0.1). Right: flow pattern obtained by the bicompact scheme. All calculations were per-
formed on a grid of 200 x 200 cells.

values P,. Note that the DGM resolves stationary contact discontinuities on one cell, which is explained
by the well-known property of the numerical Godunov flux. The bicompact scheme uses the global
Lax—Friedrichs flux splitting, so its resolution of contact discontinuities does not depend on the veloci-
ties. The contact discontinuity is smeared by a bicompact scheme into 5 cells, as in Problem 6. As for the
resolution of shock waves, it repeats that obtained in Problem 4.

Problem 15. At the initial moment of time, the quarters of the computational domain are separated by
two moving contact discontinuities, the shock wave, and the discontinuity, which subsequently turns into
a continuous rarefaction wave. As the gas moves, two small-amplitude shock waves additionally appear in
it. A feature of this problem (relative to Problems 3, 4, 6, 12) is the presence of all three typical structures:
a rarefaction wave, a contact discontinuity, and a shock wave.

Figure 5 shows at # = 0.2 the flow patterns calculated using the DGM and the bicompact scheme, as
well as the graph P, for the DGM. It can be seen that the second law of thermodynamics in the difference
form holds in the regularized DGM without any violations. The width of the smearing of contact discon-
tinuities in the DGM is proportional to their velocities, which corresponds to the results in Problems 6 and
12. The bicompact scheme still resolves these structures on five cells. The resolution of the primary shock
wave in the DGM and in the bicompact scheme is almost the same.

Problem 17 is similar to Problem 15, the difference lies in the immobility of contact discontinuities in
its initial condition. In the course of time, however, they begin to move in some of their parts.

The calculation results presented at = 0.3 in Fig. 6 repeat what was obtained in the other problems. It
is curious to note that the moving parts of contact discontinuities appear on the graph P, due to their
numerical dissipation.

MATHEMATICAL MODELS AND COMPUTER SIMULATIONS  Vol. 14 No.4 2022



ENTROPIC REGULARIZATION OF THE DISCONTINUOUS GALERKIN METHOD 587

y y y
1.0 25 1.0 L1 1.0 1.1
1.0 1.0
2.0 0.9 0.9
0.8 0.8
1.5 0.7 0.7
0.5 0.5 0.6 0.5 0.6
1.0 0.5 0.5
0.4 0.4
0.5 0.3 0.3
0.2 0.2
: 0 0.1 0.1
0 0.5 1.0 0 0.5 1.0 0 0.5 1.0
by x by

Fig. 6. Results in Problem 17, time # = 0.3. Left: plot of entropy production in the DGM. Center: flow pattern obtained
by DGM. Color fill shows pressure, isolines show density (values from 0.54 to 1.99 with a step of 0.05), vectors show
velocity (with a multiplier of 0.1). Right: flow pattern obtained by the bicompact scheme. All calculations were performed
on a grid of 200 x 200 cells.

6. CONCLUSIONS

A new conservative entropically stable version of the discontinuous Galerkin method in conservative
variables for the Euler equations with two space variables is proposed, which can be generalized in an obvi-
ous way to equations with three space variables. The advantage of the proposed method is nonnegativity
of the entropy production.

A new conservative entropically stable version of the DGM was tested on problems from [27]. Its test-
ing showed satisfactory results. Compared to the version of the DGM in nonconservative variables [25],
the new algorithm turns out to be faster by factors of 2 to 3 in the same problems.

The high-order bicompact scheme has a better spatial resolution than the proposed version of the
DGM, which is due to the higher order of accuracy of the bicompact scheme both in space and time. Fur-
ther improvement of the quality of the numerical solution in the entropically stable version of the DGM
is possible by increasing its approximation order and improving the procedure for correcting the leading
coefficients of the DGM.
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