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Abstract—A two-dimensional version of the conservative entropy-stable discontinuous Galerkin
method is proposed for Euler equations in variables: density, momentum density, and pressure. For
the equation describing the dynamics of the mean pressure in a finite element, an approximation is
constructed that is conservative in the total energy. A special slope limiter ensures that the entropy
inequality and a two-dimensional analog of the monotonicity conditions for the numerical solution
are satisfied. The developed method is tested on some model gas-dynamic problems.
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1. INTRODUCTION

Recently, the attention of researchers has been attracted by conservative entropy-stable (i.e., satisfying
a discrete analog of the entropy inequality) numerical methods for solving gas dynamic problems [1—12].
One of the numerical methods that underlies the creation of entropy-stable schemes is the discontinuous
Galerkin method (DGM) [13—20], which has a compact template and a potentially high approximation
accuracy. Various versions of the entropy-stable modifications of the DGM, proposed to date, continue
to be developed and improved. In particular, as it was established in [20] for spatially one-dimensional
problems, entropy-stability should be combined with some degree of monotonicity of finite-element (FE)
approximations of the DGM. This combination is achieved by constructing special limiting functions. In
the case of functions of two or more spatial variables, generalizations of the concept of monotonicity are
necessary, which could be successfully applied to multidimensional numerical solutions.

One of the topical areas of research is the choice of variables in which the gas dynamic equations should
be numerically integrated over time in order to obtain the best result. In [21], a conservative entropy-stable
spatially one-dimensional version of the DGM was proposed, in which the time integration is carried out
in the variables density, momentum density, and pressure instead of the traditional set of conservative
variables. In this case, in order to ensure the monotonicity requirements, limiting is carried out in relation
to the DGM coefficients of pressure, and not the total energy, as was the case in the previous version [20].
As aresult of this modification, it was possible to significantly improve the accuracy of the numerical solu-
tion of the Einfeldt problem [21] when calculating the specific internal energy. It is noted in [22] that
methods based on the total energy conservation law sometimes lead to a poor prediction of the specific
internal energy if kinetic energy is dominant. Indeed, the total energy is the sum of the internal and kinetic
energies. Summation, generally speaking, leads to the loss of information about the terms. Therefore,
arithmetic operations with summing can lead to a violation of the correct balance between the terms if one
of them significantly exceeds another in absolute value.

This study extends the approach used in [21] for spatially one-dimensional problems to the Euler equa-
tions with two spatial variables. The variables density, momentum density, and pressure are selected due
to the fact that the pair of variables, density—pressure, together with the equation of state, determines the
equilibrium thermodynamic (TD) state of the gas at each point of the system, as a result of which the
numerical algorithm can have a higher accuracy in describing the TD gas properties compared to the tra-
ditional use of conservative variables. Since the total energy of a perfect gas linearly depends on pressure,
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the replacement of the total energy by pressure as one of the variables over which the time integration is
carried out makes it easy to modify the discrete analog of the total energy conservation law so that the latter
is fulfilled.

The material of the work is presented in the following sequence. Section 2 describes the formulation of
the problem; Section 3 derives the DGM equations in variables of gas density, momentum density, and
pressure; in Section 4, the limiting of the leading coefficients of the FE approximations is carried out,
based on some generalization of the conditions of monotonicity and entropy-stability. In Section 5, the
results of the numerical calculations are discussed. Section 6 contains the conclusions.

2. PROBLEM STATEMENT

We consider an initial-boundary value problem for the system of Euler equations describing two-
dimensional gas dynamics in dimensionless variables:

U | JF,(U) + B, (U) _
ot ox, 0x,

X =(x, x;) € Il =(q, b) X (ay,b,), >0,

0, Ux,0)=Uyx), Q8

where U(x,r)=U", U @ U u (4))T is a column vector of conservative variables and

F,(U) = (F", F?, F?, F")" is the column vector of fluxes in the direction of the Ox; axis ( = 1, 2). On
the boundaries of rectangle I'l, certain conditions are set using ghost cells adjacent to the outside of bound-
ary I. The system of Egs. (1) is closed by the equation of state for an ideal gas

p=—-Dpe, Y=cp/cy. )

The following notation is used above: p is the pressure, p is the density, € is the specific internal energy,
v = 1.4 is the adiabatic exponent, and cp and ¢, are the heat capacity of an ideal gas at constant pressure
and constant volume, respectively. For the momentum density and its components, as well as the total
energy density, we will use the notation

1=, 1), I,=pu, E=p/(y-D+U+1)/2p), 3)

where u = (y, u,) is the velocity vector. In the accepted notation, the column vector of conservative vari-
ables and the column vector of fluxes take the form

P p I
-1
u I L1+ pd, ;
u=|" =L B =P T “)
pu, I, p LI, +P82,j
ple+ @ +u)/2)) \E (E+pp I,

where §; is the Kronecker symbol.

A correct description of gas-dynamic processes presupposes the fulfillment of the entropy inequality
[23] in any subdomain Q < IT with a fairly smooth border 0Q:

+At
H[(ps)(t + Af) — (ps)(1)1do + j du]S s(Ldv) > 0, (5)
Q t 0Q

where dG is the area element, d7 is the element of time, dv is the vector element of the length, and s is
the entropy density defined by the equality

s=Inp—-ylnp. (6)

To solve problem (1), we will use an algorithm based on the DGM, a general description of which is
given in [13, 16, 17]. The main features of the proposed algorithm are as follows: (a) together with the ful-
fillment of discrete analogs of the conservation laws, the discrete analog of the entropy inequality (5) also
holds; (b) the variables of integration over time are p, I, and p rather than the traditional set of conservative
variables p, I, and E.
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3. EQUATIONS FOR DGM COEFFICIENTS IN NONCONSERVATIVE VARIABLES

In a closed computational domain 1 = IT U 9I1, we define a rectangular mesh with nodes

Xy = (", XY = (@) + mhy, ay + nhy), m=0,...M; n=0,...,N, (7)

where h = (b —a)/M, h =(b,—a))/N. ¢))

Grid (7) generates the set of computational cells K, = (xl('"_”, xl('")) X (xé"_l), xé")), each of which has
four nearest neighbors (on the sides): X, ,, K, K., and K,, ., with which it exchanges mass,

momentum, energy, and entropy.

To describe the DGM equations in each computational cell K,,,, it is convenient to introduce local

variables "
-1 (m-1) .
z, =2k (x, = X" =1, j=1,2, )

taking values in the interval (-1, 1). When constructing the DGM, we restrict ourselves formally to the

second order of approximation, presenting an approximate solution to problem (1) U, in the cell K,,, as a
linear function of local spatial variables

U,(21,22,1) = Ug(0) + U (N7 + Uy(1)z,. (10)

Using the well-known technique of deriving equations for the DGM coefficients [13, 16, 17], we arrive
at a system of ordinary differential equations for the desired coefficients U(¢), U,(¢), and U,(?):

D~ B, =~ 'IF(L0.0 ~ F-L0.0] - 1 TE0.L) ~ FO-Lo)],
1 1
0 _ g, = 37 | K100 + Fi-10.0 -1 [ a5 [ deFia 00 | an
di 237
1 1
00O _ g, = 31| By0.10) + B0, -0~ [ e, [ desFoazonn) |
dt 24 7

In Egs. (11) related to the cell K,,,, functions F,, are considered as composite functions of the corre-

sponding local variables (9), and the exact solutions of the corresponding one-dimensional problems of
discontinuity breakdown [23] are used at the cell boundaries; Godunov fluxes are applied. In this case,

the integrals over each side of the rectangular cell K,,, are approximated by the simplest quadrature for-
mula of rectangles with the node lying in the middle of the corresponding side.

Equations (11) describe the standard DGM. The version of the DGM proposed in this study uses
Egs. (11) to determine only the first three components of coefficients U; describing the dynamics of mass

and momentum. In contrast to the traditional approach, instead of energy density U* = E as a variable of
integration over time, the pressure is used, which in cell K, is also approximated by a linear function
Pu(z1,22,8) = po(8) + pi(D)z; + pr (D)2, (12)
Let us introduce the following notation for the kinetic energy density

=1

1 -132
U)=-p 1
o) 29 5

P+ ) = WO WY + W), (13)

In what follows, it is assumed that in the right side of (13) instead of U “ (j =1, 2, 3) their linear approx-
imations (10) are substituted.

Then the DGM equations for the pressure coefficients take the form
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1 1
dp,(t) _ = _ 1 00U, (21,20,1) | ;-1 p® @)

+ n'[BY01Ln- K0~ z)]},

1 1
M - = _ _ 1 aQ(Uh(ZlaZZat))
P ¢ =-3(y 1){4:[1&6121:[(122 B v

(14)

-1 -1

1 1
+ hl_1 {E(‘t)(la 05 t) + E(4)(_15 07 t) - % J‘ dzl J‘ dzzFi(4)(zlaz27t)]}a

1 1
() o o]l I0(U,(2,.,.1))
Bl =, =3y 1){4 j dz f O

1 1
+ h;l {1;2(4)(0, Lo+ Fz(4)(0,—1,f) - % J. dz, J. dZZF'2(4)(Z]aZ2at):|}'

-1 -1

Note that the partial time derivative of the kinetic energy (13) can be found analytically taking into
account Egs. (11) for the first three components of coefficients U,.

4. NUMERICAL INTEGRATION OF EQUATIONS FOR DGM COEFFICIENTS,
LIMITING AND ENTROPY-STABILITY

We consider the simplest explicit method for integrating the system of Eqgs. (11) and (13) of the first
order in time based on the Euler scheme. Note that the explicit Runge—Kutta methods of high orders of
accuracy consist of stages similar to Euler scheme, and, in this sense, in their implementation they are
reduced to it.

As noted in the previous works [13, 15—17], direct numerical integration of the system of ordinary dif-
ferential equations for the DGM coefficients in the original form (11) turns out to be ineffective in a num-
ber of problems in gas dynamics. This is especially true for problems with strong shock waves. To improve

the quality of the numerical solution, we resort to the regularization of the highest DGM coefficients U,

and U, (limiting, etc.). Let us construct the method in such a way that at each time step the numerical
solution satisfies discrete analogs of the laws of conservation of mass, momentum, total energy, and
entropy inequality.

Note that the first equation in Egs. (11) dU,(¢)/dt = B, describes some discrete analog of the laws of

conservation of mass, momentum, and energy for cell K,,, [20] in continuous time. Its simplest difference
approximation by the explicit Euler method with a time step T

Uy + 1) = Uy(t) + B (¥) (15)

also expresses the difference analog of the corresponding conservation laws, but with respect to discrete
time ¢t = 0, 1, 27, .... Therefore, we will assume that relations (15) are satisfied. The zero DGM coefficient
for pressure is determined as follows:

Pt +7) = (= DUt + 1) = Ot + D], a6)
UsP(0) = (Y = 1) py(0) + 0y(0),

where
1 1
0i0) = ; [ da [ dz:0(U, (@ 200) (7
0

is a discrete analog of the average value of the gas kinetic energy in cell K, at time 7.
The Euler scheme is also used to determine the leading DGM coefficients (see (13)):
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Ul +9=U"0+1B)®, pl+71) = p0)+70,0),

(18)
j=1,23% k=12

Calculation of coefficient p,(¢) by formulas (16) and (17) assumes that the vector U (¢ + T) and the first
three components of the coefficients U, (r + 1) (k = 0, 1, 2) related to density and momentum are known,

but this is so in accordance with (15) and (18). After the method of numerical integration as a whole is
described, let us turn to the procedure for its sequential application.

At the first stage, the limiting of the highest DGM coefficients related to the density and momentum
is carried out, which is required for the stability of the numerical method. In the papers [20, 21], devoted
to the solution of one-dimensional gas-dynamic problems, the importance of fulfilling the monotonicity
conditions for the highest DGM coefficients is noted. For functions of many variables, the concept of
monotonicity is hardly applicable, but some generalizations of it can be proposed. Let us consider one
such generalization, which is close to the approach developed in [20, 21].

Assume f = f,,, is the finite real sequence given in each cell K,
Inside every cell K,,, lying in I'l, we define the quantity

Smn(f):mianm—l,n_fmn fm,n—l_ mn fm+1,n_fmn ) (19)

Let us denote by {Uéj (1)} (j =1, 2, 3) the totality of all values of the zero DGM coefficients U(()j ) with
the given index values; in all cells K, at time ¢. This set further plays the role of sequence fin relation (19).
Let us define the quantities

including ghost cells external to I1.

no

b b

fm,n+l_ mn

D50 = min (25, U O olUh,0

) ) (20)
@) = gsm,,«z/é”(t)}), j=23.

In (20) indices m and » indicate that the DGM coefficient U, é},),m(t) isrelated to cell K,,, < I1, and d and
O are some positive parameters.

Let us apply the limiting procedure to coefficients Uy, (t + 1), ( = 1, 2, 3; k = 1, 2), determined in
accordance with (15), assuming their new values are equal to

Tt +7) = min(Di (¢ + 0,[UL),. ¢ + Dsen @, ¢ + D). 1)

At the second stage, additional limitation of the coefficients U, ,({’ ,),m(t + 1) is made, ensuring the positive
mean pressure p,(¢ + 1) in cell K,,,,. We consider the function

1 1
P00 = (= D)| U0~ [ da, [ da0Vita22.0) |

-1 -1

V(21 2,1) = Up(t) + MU, ()7 + U,(0)2,],

(22)

in which the function Q(V;) depends only on the first three components of the coefficients U, ,({’ ,),m(t + 1)

¢G=1, 2, 3) and does not depend on the fourth component U,Ef,)n,,(t+‘c). Further, assuming that
P(0, t + t) > 0, we check the condition

P(A) =P\ t+1)—0cP0,t+1)>0. (23)

If inequality (23) is satisfied, then we put A = 1, and the coefficients [j,ﬁ{,)nn(t +17)(G=1,2,3;k=1,2)
retain their current values. Otherwise, we find the root A € [0,1) of function P,(\) and further limit the
coefficients U, ,(/ ,)n,,(t + 1), replacing their current values with new values AU ) ( + 7). Note that the func-

k,mn
tion P;(A) is convex upward and decreases monotonically as A € [0,1). Therefore, it is convenient to deter-
mine its root by the Newton method. In the future, after the second stage of limiting the coefficients, for

convenience, we will retain their old designations U ,i’ ,),,,,(t + 7).
As a result of the second stage, the zero pressure coefficients become known
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pot+ 1) = PQL), (24)

and the path leads to the third stage of limiting the higher pressure coefficients p,(f + t) and p,(r + 1)
defined in (18). In each cell K,,, < I the latter are subjected to a procedure similar to (20) and (21):

~ . 4
Pt +T) = min(Di)(t + 1),

pk,mn(t + T)|)Sgn(pk,mn(t + T))a
D) = min (g SO, cslpo,mn<r|)), k=1,2.

As a result of three stages of limiting, all the higher coefficients of the DGM have been determined, but
the entropy stability of the method has still not been guaranteed, which ensures the fulfillment of a discrete
analog of the entropy condition at each time step. The last, fourth, stage of limiting provides the entropy-
stability of the proposed version of the DGM.

(25)

We consider an auxiliary function in cell K, < I1:

1 1
Q1) = [ d5 [ dap, (@ 5.0l 2,1 2.0) = VINPy G120

-1 -1
Pu(z120,1) = Ughn(®) + WU (02 + Us(025), (26)
pu(zl’ z2:t) = P(“’ t) + l"l(ﬁl,mn(t)zl + ﬁz,mn(t)z2)s

where the function P(\,7) is determined by relation (22), and the tilde means that the higher DGM coef-
ficients have passed through the three previous stages of limiting.

In order to calculate the expression for the discrete analog of the entropy condition (to be presented
below), it is necessary to find the total numerical entropy flux (Godunov flux) across the cell boundaries

K., which is defined similarly to the right-hand sides of Egs. (11) using the solutions of the discontinuity

breakdown problem
@) = A 1F"0,0,0) = F(=1,0,0]+ b [F2(0,1,0) - F2(0,~1,0)],
(21, 22,0) = Ul O + U 00 02 + U5 O2) I, 0) + Brons 21 + Prnn)22) (27)
Y InUsp® + Uiz + Us02)],  j=1,2.
Relations (26) and (27) make it possible to obtain an explicit expression for the discrete analog of the
entropy condition
Pt +71) =1 [Q1+7) — QLY+ @) 2 0 (28)

depending on the entropy-limiting parameter .. The function on the left-hand side of equality (28) will
be called entropy production.

Assuming that P,(0,7 + 1) = 0, we check the fulfillment of inequality (28) for value u =i = 1. If it is
fulfilled, then there is no need for entropy limiting and the current values of the higher DGM coefficients
are taken as final. Otherwise, we find the root [1 € [0,1) of the function P.(,7 + T) using the Newton

method and further limiting the coefficients U,(({,im(t+‘c) and p, ,..(t+7) (G =1,2,3; k=1, 2) by replacing

their current values with the new values iU, ,(C{,Zm(t + 1) and [ip, (¢ + 7), and keeping their old designations
for the latter.

5. CALCULATION RESULTS AND DISCUSSION

Let us test the above-constructed DGM with the entropy slope limiter on the well-known two-dimen-
sional Riemann problems from [24]. Further, for brevity, we will call it the Entropic Slope Limiter Dis-
continous Galerkin (ESLDG) scheme.

Let us describe the formulation of these problems. When carrying out numerical calculations, the fol-
lowing parameter values were used: g, =a,=0, b =b,=1, and M =N =200 in (7) and (8), the limiting
parameters in (19), (22), and (24) were set equal to d =2 and ¢ = 107. The integration step was chosen
in the standard way [23], based on the estimate of the maximum gas velocity in the cells. Thus, the com-
putational domain is the square (0,1) x (0,1).
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Table 1. Initial gas parameters and values #,,,, in two-dimensional Riemann problems

Left quarter Right quarter
Task Frnax
4 [y U U 4 p u U

4 Upper 0.35 0.5065| 0.8939| O 1.1 1.1 0 0 0.25
Bottom 1.1 1.1 0.8939 0.8939| 0.35 0.5065| 0 0.8939

6 Upper 1 2 0.75 0.5 1 1 0.75 —0.5 0.3
Bottom 1 1 —0.75 0.5 1 3 —0.75 —0.5

17 Upper 1 2 0 —0.3 1 1 0 —0.4 0.3
Bottom 0.4 1.0625( O 0.2145| 0.4 0.5197( 0 —1.1259

At the initial moment of time (¢ = 0), the computational domain is divided into four equal parts, each
of them has its own constant distribution of gas parameters specified. The symmetry conditions are set at

the boundaries of the computational domain. It is required to calculate the gas flow until ¢ = 7,,,,, inclusive.

Of all the two-dimensional Riemann problems available in [24], we will consider cases 4, 6, and 17. The
initial gas parameters and values ¢,,,, for them are given in Table 1.

In addition, we will make a comparison with the locally one-dimensional bicompact scheme
SDIRK3B4 [25, 26] of the fourth order of approximation in space and the second order of approximation
in time. Calculations by the bicompact scheme will be carried out using the conservative limiting method
[26] (the parameter of this method C, = 10) on the same grid with the Courant number 0.8. In the calcu-
lations using the ESLDG scheme, a smaller time step (Courant number 0.2) was chosen, since in the cur-
rent implementation this scheme has the first order of approximation.

Case 4. The lines of initial discontinuities in this problem are shock fronts. Over time, from the point
of their initial convergence, a new region of continuous flow is formed, which has the shape of a lens and
is bounded by two shock waves. The choice of this particular test problem is due to the fact that its solution
has no other strong discontinuities, except for the aforementioned six shock waves; this makes it possible
to examine the schemes separately only on jumps of this type.

Figure 1 shows for ¢ = ¢, the entropy production rate P, and solution (parameters p, p, u,, u,) for the
ESLDG scheme, as well as the solution calculated according to the SDIRK3B4 scheme. It can be seen
that the entropy slope limiter of the ESLDG scheme ensures the inequality P, > 0 in all cells of the grid;
therefore, it meets its purpose. Note that the ESLDG scheme has a large numerical dissipation in com-
parison with the bicompact SDIRK3B4 scheme: this can be understood from the thickness of shock waves
and from the shape of the density isolines in the lens region. The plot of P, confirms that the maximum
entropy production, or dissipation, is concentrated at the shock fronts.

Case 6. The lines of initial discontinuities in this problem are surfaces of moving tangential shocks.
Their movement leads to the appearance of a zone of moderate gas rarefaction in the form of a parallelo-

0.5F

0 T b
0 0.5 1.0 x 0 0.5 1.0x 0 0.5 1.0x

Fig. 1. Results in Case 4, time ¢ = 0.25. Left: ESLDG entropy production. In the center: pressure (color fill), density (iso-
lines from 0.52 to 1.92 with a step of 0.05), velocity (vectors in a scale of 0.1), obtained using the ESLDG scheme. Right:
the same, obtained using the SDIRK3B4 bicompact scheme. Calculations for both schemes are performed on a grid of
200 x 200 cells.
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y y

1.0 1.0 1.0 1.1 1.1
1.0 1.0
0.8 0.9 0.9
0.8 0.8
- 0.6 0.7 0.7
0.5F 04 0.5 8’? 8'?
— 0.4 0.4
0.2 0.3 0.3
‘ 0.2 0.2
0 . 0 0 I~ 0.1 0.1

0 0.5 1.0 x 0 0.5 1.0 x x

Fig. 2. Results in Case 6, time ¢ = 0.3. Left: ESLDG entropy production. In the center: pressure (color fill), density (iso-
lines from 0.25 to 3.05 with a step of 0.1), velocity (vectors in a scale of 0.1), obtained using the ESLDG scheme. Right:
the same obtained using the SDIRK3B4 bicompact scheme. Calculations for both schemes are performed on a grid of
200 x 200 cells.

y y y

1.0 1.0 1.0 L1 1.0 1.1
1.0 1.0
0.8 0.9 0.9
0.8 0.8
0.6 0.7 0.7
0.5} 0.5 0.6 0.5 0.6
0.4 0.5 0.5
\ 0.4 0.4
[ 0.2 0.3 0.3
0.2 0.2
0 T 0 0 0.1 0 0.1

0 0.5 1.0 x 0 0.5 1.0 x x

Fig. 3. Resultsin Case 17, time ¢ = 0.3. Left: ESLDG entropy production. In the center: pressure (color fill), density (iso-
lines from 0.54 to 1.99 with a step of 0.05), velocity (vectors in a scale of 0.08) obtained using the ESLDG scheme. Right:
the same, obtained using the SDIRK3B4 bicompact scheme. Calculations for both schemes are performed on a grid of
200 x 200 cells.

gram. The potential for the appearance of nonphysical rarefaction shocks in it and the difficulty of accu-
rately resolving tangential discontinuities served as the motivation for choosing this particular test.

The flows obtained by both schemes and the field P, at the moment ¢ = ¢,,, are visualized in Fig. 2.
The ESLDG scheme again has nonnegative entropy production. However, its numerical dissipation quite
noticeably smears the fronts of the tangential discontinuities when compared with the SDIRK3B4 scheme
(more than 20 cells versus 5—6 cells). Similarly to Case 4, the largest entropy production falls on strong
discontinuities in the flow parameters.

Case 17. In this test, both vertical initial discontinuities are tangential jumps, and the left horizontal
discontinuity is a shock wave. After the initial moment of time, the right horizontal discontinuity turns
into a rarefaction wave. In the vicinity of the point of convergence of the shock wave and both tangential
jumps, there is a moderate rarefaction of the gas. An interesting feature of the flow is that, far from this
circular rarefaction zone, both tangential discontinuities remain motionless while near them they experi-
ence a slow displacement. This feature, as well as the presence of two other signature gas-dynamic struc-
tures, a shock wave and a rarefaction wave, explain the choice of this particular test problem.

Figure 3 shows the plot of P,and flow picturesat ¢t = 7,,,. It isimportant that the entropy regularization
algorithm in the ESLDG scheme ensures the fulfillment of a discrete analog of the entropy inequality.
The fixed sections of tangential discontinuities are resolved by the ESLDG scheme on one cell (in the
transverse direction), which is explained by the well-known property of the Godunov flux. The
SDIRK3B4 bicompact scheme smears out these regions, since it uses the global Lax—Friedrichs flux
splitting. However, it better resolves shock waves and moving tangential discontinuities.
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6. CONCLUSIONS

(1) A conservative entropy-stable version of the discontinuous Galerkin method (ESLDG) is formu-
lated for the Euler equations with two spatial variables, in which the time integration takes place in non-
conservative variables: density, momentum density, and pressure.

(2) The proposed version of the DGM can be easily generalized to equations with three spatial vari-
ables.

(3) The developed numerical algorithm and the corresponding computer program for performing
numerical calculations were verified on test problems in [24]. The tests carried out have shown satisfactory
results. The advantage of the proposed ESLDG method is nonnegative entropy production.

(4) Although, as it turned out, a high-order accurate bicompact scheme, as a rule, has a better spatial
resolution than the ESLDG. A further improvement in the quality of the numerical solution with the
ESLDG scheme is possible by increasing its approximation order and by improving the procedure for lim-
iting the higher DGM coefficients, which is supposed to be carried out in future studies.
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