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Abstract—The issues of the mathematical modeling of a thermoporoelastic medium taking its damage
into account are considered. The employed model generalizes the classical Biot model simulating the
behavior of a poroelastic medium taking the thermoelastic effects into account. In order to describe
the damage of the medium, the approach of continual damage mechanics is used, in which the state
of the medium is described by the scalar damage parameter, which affects the elastic and poroperm
characteristics of the medium. The system of the governing equations for the model consists of the fun-
damental mass, momentum, and energy conservation laws and is closed by thermodynamically con-
sistent constitutive relations. Moreover, the medium’s energy expression takes into account its changes
due to the formation of damaged zones. The computational algorithm is based on the finite-element
method. A monolithic approach is used, which assumes that all groups of equations (mechanics, heat
transfer, and flow) are solved simultaneously without being split into physical processes and/or itera-
tions between groups of equations. The system of equations of thermoporoelasticity is approximated
by a fully implicit scheme. The damage parameter’s evolution depending on the stress-strain state of
the medium can be described in terms of both instant and finite-time kinetics. This paper briefly
describes the mathematical model and presents a detailed description of the computational algo-
rithm and its implementation. A significant part of the study is devoted to the application of the
developed approaches for solving several model and realistic three-dimensional problems. The
analysis of the geomechanical problems of thermal enhanced oil recovery methods, which require a
consistent description of the elastic, filtration, and thermal fields’ dynamics taking into account the
evolution of the medium’s fracture, is considered to be the main field of the application of the model
and algorithm.
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1. INTRODUCTION
This work is devoted to the mathematical modeling of the dynamics of a thermoporoelastic medium

that takes the damage into account. The employed mathematical model is a generalization of M. Biot’s
classical model of poroelastic medium. The model is thermodynamically consistent in the sense of the ful-
fillment of the basic laws of mass, energy, and momentum conservation, as well as entropy inequality in
the required form, see [1].

Within the Biot model, the medium is described as a set of two interpenetrating continua (phases): the
elastic skeleton (solid phase) and the f luid that saturates it (mobile phase). Under the influence of external
loads applied to it, the dynamics of the medium is determined by the joint evolution of the stress-strain
state of a porous permeable deformed solid and the pressure fields of the f luid filtering into it. The equa-
tions of the model represent a strongly connected system of equations of thermomechanics and filtration.
Typical applications of the Biot model include problems of hydrogeology [2], analysis of processes in bone
and soft biological tissues [3, 4], and hydrogels.

It should be noted that the Biot model is not the only known model for describing the dynamics of a
poroelastic medium. In particular, there is a notable model proposed in the works of V.N. Dorovskii and
his colleagues. The model is thermodynamically consistent and is obtained within the theory of multive-
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locity continuum developed by the authors [5–7]. The specific feature of this model is that the poroelastic
medium is described by three elastic moduli, which are uniquely determined by the propagation velocities
of elastic waves [5]. This model is used to describe the motion of Stoneley waves [6], in problems of seismic
exploration [7], and in other areas.

One of the important applications for the models of the considered class is the problem of petroleum
geomechanics, especially in relation to the analysis of modern methods for enhanced oil recovery, in par-
ticular, the so-called thermal methods, which supply heat to the reservoir by pumping a thermophore or
using a conductive heat exchange [8]. On applying the thermal treatment methods, the development pro-
cess involves manifested effects such as the change in the properties of the formation f luid, the course of
chemical reactions, and the change in the poroperm properties of the formation due to the change in the
mobility rate of the f luid filling the pores and the formation of microcracking zones. The understanding
of the complex interrelated processes accompanying the thermal effect on an oil-bearing stratum can only
be enhanced by providing a comprehensive description of the main processes occurring in the stratum,
including the geomechanical effects and the formation’s damage.

There are several models that enable taking these phenomena into account. In most of these models,
the damageability of the medium is described within the theory of continuous damage [9, 10], when the
so-called damage parameter is introduced in the set of thermodynamic parameters describing the state of
the medium. The evolution of this parameter is determined by a kinetic equation that connects the value
of the parameter (or the rate of its change) with the stress-strain state of the medium. In turn, the same
parameter is included in the main constitutive relations and affects the poroperm, thermodynamic, and
geomechanical parameters of the oil reservoir.

In this study, the thermodynamically consistent mathematical model proposed in [1] is used to
describe the evolution of a thermoporoelastic medium taking into account the continual damage.

The distinctive feature of the model is that, on the one hand, it is obtained within a strict thermody-
namic formalism, which guarantees its correctness, and on the other hand, it can be practically applied to
solve problems in realistic settings.

In the considered approximation, the system of poroelasticity equations is a coupled problem for an
elliptic equation (describing the stress-strain state of a saturated medium) and parabolic equations
(describing the laws of conservation of the f luid mass and energy of the system). To solve this system of
equations, various methods can be used, including the finite-volume method, the finite-element method,
and the method of boundary integral equations.

For approximations in time, completely implicit schemes are most often used; they will also be applied
in this work. In this case, the complete system of equations can be approximated as a whole, or the prob-
lem is “decoupled” and its solution is obtained in the course of certain iterations between the groups of
filtration and elasticity equations. The latter approach is most often employed when two different pro-
grams are used to solve the problem for calculating the filtration part (for example, using an industrial fil-
tration simulator) and for solving the problem of elasticity theory. The construction of effective iterative
methods for solving such problems is a separate problem; see, for example, [11].

A characteristic property of the system of poroelasticity equations in the considered approximation is
that, after approximation in time, the system of equations has the form of a saddle point problem [12]. In
this case, for the stability of the problem’s solution both in the continuous and in the discrete setting, it is
necessary to satisfy the so-called inf-sup conditions (the Ladyzhenskaya–Babushka–Brezzi conditions)
[12]. Violations of these conditions in poroelasticity problems leads to numerical instabilities and effects
of the locking of the finite-dimensional solution, especially in the incompressible limit (see [13] and ref-
erences there). The simplest example of a finite element satisfying these conditions is the Taylor–Hood
element [14], in which second-order finite elements are used to approximate displacements, and first-order
finite elements are used to approximate pressure. Moreover, both systems of functions are specified on the
same partition of the domain into finite elements. This finite-element type guarantees the optimal rate of
convergence, including in poroelasticity problems [15]. This approach will be used in this study as well.

An alternative approach is such a regularization of the original problem (see, for example, [16–18]), for
which the inf-sup conditions are satisfied using the standard pairs of spaces (finite elements of the same,
first, order for both the displacement field and the pressure and temperature).

In this study, the finite-element method is used. Its advantages include a fairly formal way of construct-
ing a finite-dimensional problem and efficiency when using unstructured computational grids. Unlike a
number of other works (see, for example, [19, 20]), in this paper the problem is considered in a completely
MATHEMATICAL MODELS AND COMPUTER SIMULATIONS  Vol. 13  No. 2  2021
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linked (monolithic) statement, when all the equations of the model are solved simultaneously, within a
single system of equations. Thus, there is no iterative connection between the groups of equations of the
theory of elasticity, filtration, and energy balance, which is especially important in relation to the multi-
disciplinary nature of the problem and taking into account the additional effects (direct damage and the
dependence of the model parameters on it).

The main aim of the study is to describe the model, a set of computational algorithms, and their soft-
ware implementation, which give an idea of their capabilities and show the applicability of the considered
approaches for solving problems in statements that are close to real ones.

2. MATHEMATICAL MODEL

Let us consider a thermoporoelastic medium consisting of two continuums: a porous deformable skel-
eton and a single-phase weakly compressible f luid. The system of equations describing the behavior of
such a medium has the following form [1]:

(1)

where  is the mass of phase  in some elementary volume,  is the f luid density, 
stands for the filtration rate,  denotes the total stress tensor,  is the specific internal energy,  is the
pore pressure,  stands for the heat f lux vector,  is the permeability tensor,  is the f luid
viscosity,  stands for the coefficient of thermal conductivity, and  is the temperature.

The system of equations (1) is closed by the following set of defining relations [1]:

(2)

where  is the elastic coefficients tensor,  is the Biot coefficient,  is the tensor of the thermoelastic

coefficients,  is the strain tensor,  stands for the skeleton displacement vector,
 denotes the Biot module,  are the coefficients of thermal expansion of the skeleton and

fluid, respectively,  and  is the heat capacity of the skeleton and f luid,  is the generalized thermo-
dynamic force related to damageability, Kf is the bulk f luid compression module,  is the phase entropy

,  is the damageability parameter, , and  is the reference parameter value .

The expression for the internal energy of the skeleton is
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where

(3)

The expression for the internal energy of the f luid has the form

(4)

where  is the porosity.
The coefficients in the defining constitutive can be functions of the parameters of the medium’s state

. In relation to this, the model was supplemented in order to take into account the depen-
dence of the formation’s permeability and f luid viscosity on the current state parameters

.
The primary unknowns of the system of equations (1) are displacements ξ, pressure p, and temperature T.

The problem is considered in a three-dimensional domain  with boundary  on which the Dirichlet
( ) or Neumann ( ) boundary conditions are defined for each parameter  = . The
Dirichlet condition  = 0 is the rigidly fixed boundary of the domain,  is the pressure on the

domain boundary, and  is the temperature on the domain boundary. The Neumann condition

 is the normal stress vector on the domain boundary,  is the f luid f low across the
domain boundary, and  is the heat f lux across the domain boundary.

Note that for each variable , domains  and  are specific, that is, for variable

. However, to simplify the further calculations, we will assume that they coincide.

3. WEAK PROBLEM STATEMENT

Let the variables of the problem ( ) be elements of spaces of sufficiently smooth functions that
satisfy the Dirichlet boundary condition. In order to construct a weak statement of the problem, we mul-
tiply each equation in system (1) by the corresponding test function and integrate over domain . Then,
in accordance with Green’s formula, taking into account the defining relations, the system of equations
(1) will take the form

(5)

where  are the trial functions defined in domain Ω such that  = 0.

We represent the symmetric strain and stress tensors using the Voigt vector notation [21], i.e.,
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In this case, the relationship between stress and strain for an isotropic medium can be written as ,
, where ,

Using expressions (3) for the internal energy of the skeleton, we find its time derivative

In the last formula, it is assumed that  and . Similarly, for the internal energy of the
fluid (4), we obtain

Thus, the time derivative of the total internal energy is written as  where the
form of the terms is defined above.

4. FINITE-DIMENSIONAL APPROXIMATIONS

Let us consider a spatial approximation of the system of equations (5). We introduce finite-dimen-
sional spaces , while  = , where  are the basic functions. Then for
an arbitrary function f we have

Accordingly, the approximation of system (5) in matrix form is written as
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(7)

The integrals in Eq. (7) are calculated using second-order Gauss quadrature formulas [22].
In order to discretize Eq. (8) in space, we used a tetrahedral grid with quadratic basis functions for dis-

placements and linear ones for pressure and temperature (Taylor–Hood elements [14]).
In order to approximate the system of equations in time, we will use a scheme that is completely

implicit with respect to displacements x, pressure p, and temperature T. The damage parameter D will be
taken into account explicitly. Let  be the value of some quantity at a point in time , then

 is its value at time . Accordingly, the system of equations (6) after approximation in
time takes the form

(8)

Due to the fact that the system of equations (8) is nonlinear, Newton’s method [23] is used for its solu-
tion. The criterion for the convergence of the iterative algorithm is the simultaneous fulfillment of the fol-
lowing conditions:

where  is the increment value of unknowns at the current iteration,  is the value of nonlinear residual,
and  are the parameters.
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where

and

The system of linear equations (8) is solved at each Newtonian iteration using the biconjugate gradient
stabilized method (BiCGStab) [24]. Incomplete LU decomposition with single-level filling (ILU (1)) was
used as a preconditioner.

In order to ensure the stability of the finite-dimensional problem, several approaches were used, in
accordance with which the matrix of system (8) was transformed. For mass matrices , , , and

, the method of mass matrices’ diagonalization (mass lumping, [25]) was used. In order to reduce the
bandwidth of the sparse matrix in the system, the Cuthill–McKee algorithm [26] was used.

5. MODELING RESULTS

This section presents the results of simulation using a software package based on the mathematical
model and computational algorithm described earlier. The algorithm was validated using several tests
(Terzaghi’s problem, Mandel’s test, and the test for one-dimensional nonisothermal expansion), for
which an analytical solution is known [27]. Further we present the simulation results for several problems
in realistic settings.

In the calculations, the following settings for the convergence of Newtonian iterations were used:
. If the number of iterations in one time step exceeds 5, the time step is halved

and the iterative algorithm is repeated from the beginning. In the case of the successful convergence of the
algorithm, the next time period is calculated with a gradual increase in the time step. The criterion for
stopping the linear iterative process is the achievement of the residual norm of quantity .

In order to simulate the dependence of the permeability on the parameters of the medium state, we
used the dependence [28], i.e.,
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Table 1. Values of the input parameters for the thermal stimulation model

Parameter Value

Young’s modulus, 20 GPa
Poisson’s ratio, 0.3
Bio module, 10 GPa

Module of volumetric f luid compression, 3.3 GPa

Biot coefficient, 0.79

Permeability,  m2

Porosity, 0.1
Viscosity, 1 mPa s

Skeleton density, 2100 kg/m3

Fluid density, 1000 kg/m3

Volumetric thermal expansion coefficient of the skeleton,  1/K

Volumetric thermal expansion coefficient of f luid,  1/K

Specific heat capacity of the skeleton, 1000 J/(kg K)

Specific heat capacity of the f luid, 4200 J/(kg K)

Effective thermal conductivity, 2 W/(m K)

E
ν

N

fK

b

k 161 10−×
ϕ
μ

sρ

fρ

sα 61 10−×

fα 41 10−×

psc

pfc

κ

where  is the value of the initial permeability and  is the average stress. For the fur-

ther calculations, the values from [28]  were taken as the values of coefficients
 and .

In order to describe the dependence of viscosity on temperature, the Baggs–Robinson correlation is
used [29]:

(10)

where  is the pore f luid’s viscosity in cP (1 cP = 0.001 Pa s) and  is the f luid’s density in .
In order to describe the evolution of the damageability parameter, an explicit dependence is used [30]:

(11)

where  are the principal strains and . The parameters of dependence
(11) were taken equal to    and .

The values of the other input parameters for all the presented models are given in Table 1.

5.1. Modeling Thermal Action on a Formation with Production and Injection Wells
This calculation simulates the response of the formation when a system for maintaining reservoir pres-

sure is used, in which an injection well pumps f luid at a temperature of °C with an injectivity of
0.2 m3/day. The production well operates at a constant bottomhole pressure of 100 bar. Initial reservoir
pressure is 200 bar, initial temperature is 100°C; the stresses along the axes , and  are 300, 330, and
550 bar, respectively; and the initial strains are equal to zero.

An isotropic formation of  m is considered. The wells are located at opposite ends of the
formation’s diagonal. For a more correct account of the effects arising in the near-wellbore zone, the

0k 1 3( )x y zσ = σ + σ + σ
−α = β = 10.1 and 0.05 Pa

α β
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Fig. 1. Distribution of pressure p (row 1), temperature T (row 2), damage parameter D (row 3), permeability k (row 4)
after 6 months (left), 12 months (center), and 5 years (right).
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computational grid is locally refined along the model boundary. The mechanical boundary conditions are
    bar,  bar, and
 bar. The filtration and thermal boundary conditions include a thermally insulated imper-

meable boundary.
The development of the reservoir was simulated for five years. Based on the results of the calculations,

the change in the pressure, temperature, damageability parameter, and permeability with time was esti-
mated. The field distributions of the corresponding values in the lateral section after 6, 12, and 60 months
are shown in Fig. 1. The distribution of the values in the vertical section is not given due to the constancy
of the properties in the vertical direction.

Also, this model was calculated without taking into account the damage. Comparison of the distribu-
tions of the strain tensor component  at the time point of five years both in the presence and in the

( 0) 0,x x = =ξ ( 0) 0,y y = =ξ ( 0) 0,z z = =ξ ( 100) 300x x = =t ( 100) 330y y = =t
( 1) 550z z = =t

xxε
MATHEMATICAL MODELS AND COMPUTER SIMULATIONS  Vol. 13  No. 2  2021



SIMULATION OF A THERMOPOROELASTIC MEDIUM 227

Fig. 2. The component  of the stress tensor at the moment of time 5 years when the damage was taken into account
(left) and without the damage being taken into account (right).
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absence of damage is shown in Fig. 2. It can be seen from this figure that taking into account the destruc-
tion of the rock significantly affects the calculation of the stress-strain state (for this test, the difference in
the values of the strain tensor reaches 20%).

5.2. Modeling the Development of Damageability Near an Injection Well

The calculation presented below considers the damage to the bottomhole zone of an injection well
when a heat transfer f luid is pumped into the formation at a high pressure at the initial moments of time.
In order to assess the emerging effects, the numerical simulation was carried out for a model sized

 m, in the corner of which a well with a radius of 0.1 m was located, injecting f luid at a tem-
perature of 300°C at a constant injectivity of 1m/day. The initial and boundary conditions are similar to
those used in the previous case. The permeability and Young’s modulus are specified in the model in
accordance with the Gaussian distribution. The computational grid was constructed taking into account
the well geometry, the total number of finite elements of the grid was 59508, and the number of nodes was
120183.

Figure 3 shows the fields of the dynamic parameters at the time of 12 h. The calculation results show
almost complete destruction of the reservoir within a radius of 0.2 m from the well. At the same time, the
damage is largely caused by the increased reservoir pressure (over 800 bar), since the temperature increase
in this zone is insignificant. Also, it was found that the permeability was twice as high as the initial one.

For this model, the influence of permeability on the distribution of the pressure field was assessed. In
Fig. 4 the comparison of the distribution of the pressure field is presented for the case when the change in
permeability of the state of the medium (on the left) is taken into account and in the case of constant per-
meability (on the right). As a result of the calculations, a difference in pressure of more than 50 bar was
obtained.

6. CONCLUSIONS

In this paper, a mathematical model and a computational algorithm for modeling the evolution of a
thermoporoelastic medium taking damage into account are presented. The model is a generalization of
the Biot model and takes into account deformation, filtration, and nonisothermal effects. The damage of
the medium is modeled within the continual damage theory. The system of equations consists of funda-
mental conservation laws and is closed by thermodynamically consistent constitutive relations.

0.5 0.5 0.2× ×
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Fig. 3. The distribution of the damageability parameter , pressure , temperature , ratio of current and initial perme-

ability , and the lateral components of the stress tensor  and  after 12 h.
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Fig. 4. Comparison of the pressure field after 12 h taking into account the change in permeability (left) and with constant
permeability (right).
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The system of equations is solved in a fully coupled statement and the computational algorithm is based
on the finite element method. For the approximation in time, a completely implicit scheme is used, and
the Taylor–Hood tetrahedral elements are used as finite elements

The operation of the algorithm is exemplified by problems of modeling thermal effects on an oil reser-
voir. Based on the results of the calculations, the impact of the damage was evaluated for various param-
eters of the wells and the formation. It was found that the damage noticeably affected the value of the elas-
tic moduli and, as a consequence, the stress-strain state of the medium.
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