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Abstract—The method of Lebesgue moments for simulating the reversal of resonances, resonance self-
shielding, and block effect in the neutron spectra of extended heterogeneous objects, such as nuclear
reactors, radiation shielding, and installations for studying the properties of matter, is developed. The
method uses a more accurate averaging procedure over neutron energy than the group averaging. The
main components of the method are the refinement of the resonance structure of neutron cross sec-
tions by dividing the energy scale into a series of sets called carriers of resonances, Lebesgue averaging
of cross sections and neutron flux within carriers, and the expansion of the neutron flux in a series in
basis functions that depend on the magnitude of the neutron cross sections. The expansion coeffi-
cients (the so-called Lebesgue moments) can be calculated by any available method for solving the
neutron transport equation.
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INTRODUCTION
The aim of this paper is to describe the method of Lebesgue moments designed for simulating neutron

fields in nonuniform heterogeneous objects, including effects such as the resonance self-shielding of the
neutron f lux in the depth of zones containing homogeneous material and the block-effect (reducing the
resonance self-shielding near the boundaries of zones containing different materials). The method has
three important components:

(I) refinement of the resonance structure of neutron cross sections by dividing the energy scale
 into resonance carriers that are analogs of groups that may consist of a series of short intervals

rather than a single interval;
(II) Lebesgue averaging of the neutron transport equation with respect to energy within the resonance

carriers;
(III) expansion of the neutron f lux in a series of basis functions that depend on the value of the neutron

cross section.
We show that the division of the neutrons’ energies into resonance carriers makes it possible to approx-

imately separate variables E and  on which the neutron cross sections and the neutron f lux depend.
The Lebesgue averaging monotonizes the cross sections and the f lux by replacing the neutron energy by a
new variable that is the measure of Lebesgue sets. These sets are built within each resonance carrier. The
gain obtained by joining the energy points into one computation point is approximately equal to the num-
ber of resonances on the carrier. This gain can be as high as two orders of magnitude. The expansion of
the neutron f lux in a series of basis functions of the spectrum defines the optimal finite grid of the points
on the measure of the Lebesgue sets; this grid describes the evolution of the neutron field in an object with
the minimal (in a certain sense) error. In addition, the expansion makes it possible to approximately
restore the neutron energy spectra lost as a result of the Lebesgue averaging. The name Lebesgue moments
denotes the dependence of the basis functions on the magnitude of the total cross section for the interac-
tion of neutrons with matter.

The procedure of the Lebesgue averaging (the second component above) has discrete analogs: the
exponential sum method for approximating the transmission function [1], the method of subgroups [2,
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3], the probability table method [4], and the multiband method [5, 6]. In contrast to these methods, the
method proposed in [7–9] and in the current paper is based first on the procedure of dividing the energy
scale into resonance carriers and second on the transition from the Riemann integration to the Lebesgue
integration of functions. The resulting averaged particle transport equation depends on the continuous
Lebesgue variable. Moreover, even more importantly, this equation is “cross-cutting” for the object in
which the neutron cross sections have spatial discontinuities. This equation does not require setting addi-
tional boundary conditions (in addition to the conditions on the external boundaries) that describe neu-
tron transitions between subgroups of different materials on the materials’ interfaces in order to maintain
the continuity of the neutron f lux through the boundaries. The presence of such internal conditions sig-
nificantly reduces the efficiency of, e.g., the subgroup method. The Lebesgue averaging was described in
the author’s previous papers [7–9] simultaneously for the transport of photons and neutrons. In this
paper, a version of the method that is adapted to the problems of neutron transport and adjusted for use
in the method of moments is described. A number of issues, e.g., the averaging of neutron differential
cross sections, are considered in more detail. The effectiveness of the method in photon transfer problems
is confirmed by the calculations (see [10, 11] and references in them). An outline of the Lebesgue moment
method for the photon and neutron transport can be found in [12].

In photon transfer problems, the discrete analogs of the Lebesgue averaging method are the exponen-
tial sum method [13–15], the k-distribution method [16, 17], and the correlated k-distribution method
[18–21]. A more complete bibliography can be found in [10]. Like the method of subgroups, these meth-
ods require setting internal conditions on the interfaces of different materials in the object. For photons,
there are other methods of monotonizing the cross sections [22–25]. The transport equation in the case
of a periodic dependence of cross sections on the photon frequency was obtained in [22]. In [23] and inde-
pendently in [24], a change of variables relating one of the cosines of the direction of f light with the photon
cross section was proposed. As a result, the coefficients of the averaged equation become monotonic func-
tions of the new variable, and the dimension of the problem decreases by one. Note that the replacement
of Riemann integration by the Lebesgue integration of functions does not change the problem’s dimen-
sion. Unfortunately, this method is inapplicable in problems in which the particles are scattered, and it has
limitations related to the spatial symmetry of problems.

Basic equations. In this paper, we discuss how to solve the linear Boltzmann equation for the neutron
flux

(1)

Here  is the neutron f lux per unit volume, unit energy, and unit solid angle at time ;  ( )

is the direction of the f light of particles;  is the magnitude of the velocity (neutron speed); 
[1/cm] is the total macroscopic cross section for the interaction of a neutron with energy E [eV]; and 
is the prompt neutron source or the rate of prompt appearance of neutrons in the neutron beam

. The prompt neutrons are born in reactions s of the interaction of the primary neutron
 with the nuclides of matter,  is the total macroscopic cross section for reactions s

resulting in the emergence of prompt neutrons,  is the multiplicity or the total number of prompt

neutrons at the output of reactions regardless of their energies and f light directions, 
[1/eV] is the indicatrix of reactions s (normalized differential cross section),  (−1 ≤ η ≤ 1) is the

cosine the angle between the f light directions of the prompt neutrons and the primary neutron, and 
is the source of external neutrons, including the independent (from ϕ) neutron source/sink 
and the source of delayed neutrons . Delayed neutrons are emitted by fission fragments (the

so-called precursors of delayed neutrons);  is the index of the group of precursors,  [1/eV] is the
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spectrum of delayed neutrons, and  [1/s] is the constant of spontaneous decay of the precursors of group
. The variations of precursor densities  [cm–3] are described by the system of transport equations

(2)

where  is the multiplicity (number) of the precursors in group  at the output of the fission
reactions and u  is the velocity of the substance.

Limitations. Equations (1) and (2) are solved subject to the initial and boundary conditions imposed
on the neutron beams that move from the outer boundary  into the depth of the object :

(3)

where  is the external normal vector to the boundary,  is the f lux of external neutrons pass-
ing through the boundary from the outside, and  is the cross section of the neutron
reflection from the boundary.

Summation of cross sections. The macroscopic cross section of a reaction or group of reactions x will
be denoted by the uppercase letter , the microscopic cross section per nuclide with the atomic number
A will be denoted by the lowercase letter  [cm2], and   is the nuclide density. The total
cross section  and the cross sections for the yield of the reaction products are given by the sums

(4)

where  and  are the cross sections of the neutron capture reactions leading to the death of the neutron
due to the α, β, γ-decay of the compound nucleus;  and  are the cross sections of the reactions result-
ing in the emergence of prompt neutrons;  and  are the cross sections of the nuclear fission reactions;

 and  (m = 1) are the cross sections of the elastic (el) and inelastic (in)
scattering;  and  (m = 2, 3) are the cross sections of the neutron multiplication reactions; νx(E, r, t)
and  are the multiplicities of prompt neutrons at the output of the reactions x = s, f, m × n, …; and
ντ(E, r, t) and  are the multiplicities of precursors of delayed neutrons in group  at the output of the
fission reactions x = f. The differential cross sections are summed similarly:

(5)

Here ,  ( ) are the indicatrices of the reaction group x and

,  are the spectra of delayed neutrons. All indicatrices and spectra are normalized to unity:
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(6)

Nuclide densities. If we want to consider the variations of the nuclide densities  in space and
time, then Eqs. (1)–(3) are complemented with the coupled system of the nuclear reaction equations

(7)

Here  is the spontaneous decay constant of nuclide B with the emergence of nuclide A in reaction z,
 is the cross section of the corresponding induced reaction,  and  are the multiplic-

ities of nuclides A at the output of the reactions.

The dependence of the cross sections ,  on the energy. This dependence
includes a number of resonances that arise when the neutron energy coincides with the difference in the
energies of the quantum states of the compound nucleus. In the vicinity of the resonances, the cross sec-
tions sharply increase in magnitude, sometimes by several orders of magnitude. For heavy nuclei, the
region of resonances extends from energies of ∼0.5 eV to energies of ∼1 KeV = 103 eV; and for light and
medium nuclei, it extends to ∼1 MeV = 106 eV. The number of resonances of each nucleus is typically
large, and the resonances are narrow. In heavy nuclei, the widths of narrow resonances are of the order
∼1 eV, and in medium and light nuclei, they are ∼1 KeV. For medium nuclei, in addition to the narrow
resonances, medium resonances with widths of ∼10–100 KeV and giant resonances with widths up to

 are sometimes observed. With increasing energy, the distance between the resonances decreases and
becomes comparable with their width near the upper boundary of the region. This is called the unresolved res-
onance region. Figure 1 shows the difference in the position of the resonance region for some nuclei.

The measurement of neutron resonance parameters is the subject of many studies. The results are eval-
uated (e.g., see [26–28]) and published in nuclear data libraries [29]. The most complete libraries are
ENDF (Evaluated Nuclear Data Files) [30], ROSFOND (Russian Library of Estimated Neutron Data
Files) [31], JEF (Joined European Files) [32], and JENDL (Japanies Evaluated Nuclear Data Library)
[33]. A description of the data, formulas, and computer codes performing the reconstruction of cross sec-
tion can be found in the descriptions of the libraries and in [28, 34–36].

The representation (formulas) of cross sections in terms of experimentally measured resonance param-
eters is given by the theory of nuclear reactions at low energies . This theory is thoroughly
expounded in textbooks and monographs. To represent the cross sections, the Breit–Wigner, Rich–
Moore, and Adler–Adler formulas are used. The total cross section , the cross section of elastic scatter-
ing , and the cross section of inelastic reactions  ( ) in the single-level Breit–Wigner approx-
imation are as follows:

(8)

Here r is the resonance index; the quantum numbers l and  are the angular momentum of the incident
neutron and the total spin of the compound nucleus, respectively; σp(E) is the cross section of potential
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Fig. 1. The total cross sections of the interaction of the neutron with the nucleus (in barns = 10–24 cm2) for certain ele-
ments. The figure is taken from [26].

Neutron energy, eV

104

100

106105104103102101100 10710–310–2

241Am

104

100

235U

101

100

208Pb

104

100

197Au

103

100

107Ag

103

100

55Mn

102

100

27Al

104

100

6Li

To
ta

l c
ro

ss
 se

ct
io

n 
(b

)

scattering,  and  are the symmetric and antisymmetric resonance profiles; 
( ) is the de Broglie wavelength;  is the probability of realization of the collision chan-
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changes faster than other functions.
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and  are the expansion coefficients.

The indicatrix of fission reactions of nuclides of thorium, uranium and transuranium elements 
(E → E ′, η) (x = f) weakly depends on η and the energy of the primary neutron E ′, and it strongly depends
on the energy of prompt neutrons E. The zero-order expansion coefficient (E → E ′) is called the spec-
trum of fission neutrons. The neutrons are born with energies , which are much higher
than the resonance region. The average energy of 235U fission neutrons is E ≈ 2 MeV. All the spectra are
normalized to unity:

The elastic neutron scattering indicatrix  ( ) is a function with bounded support.
It strongly depends on the energy difference . The dependence on  is significant only for
scattering by light nuclei. An approximate formula can be obtained from the laws of energy and momen-
tum conservation under the assumption of scattering isotropy in the system of the center of mass of the
neutron and nucleus (see, [37, p. 280]). If we change to the observer’s coordinate system, a strong relation
arises between the neutron energy loss and the scattering angle  in the observer’s system expressed by
the δ-function:

(10)

Here  is the width of the indicatrix support (deceleration step).

Dependence of cross sections on coordinates. The microscopic cross sections  (x = t, s, c, f,
) depend on the coordinates  through the temperature of the substance . This depen-

dence is not indicated in the list of arguments. The thermal motion of atoms and molecules broadens nar-
row resonances. Accordingly, in formulas (8) (and in similar formulas), the resonance profiles  and

 are convolved with the rapidly decreasing Gaussian distribution. If the temperature does not exceed
, then the distortions affect the cores of narrow resonances within the Doppler width leaving the

wings unchanged. The temperature dependence is weak almost everywhere.

Unlike the microscopic cross sections, the macroscopic cross sections  (
) can strongly depend on the coordinates . An object in which the neutrons move usually

consists of spatial zones filled with materials with different nuclide composition. The nuclide densities
 can experience a discontinuity on the zones’ interfaces; e.g., they can vanish. Furthermore, the

densities of nuclides can vary in space and time within the same material. For example, in the fuel ele-
ments of a nuclear reactor, a nonuniform burn-up of 235U occurs due to the self-shielding effect.

Inversion of resonances. Consider a heterogeneous object. Let the neutron f lux  on the
interfaces between the zones change relatively slowly with E. In the depth of the zone filled with a homo-
geneous material, the solution to Eq. (1) asymptotically tends to the stationary point of the equation, i.e.,
to the regime in which the balance between the rate of departure and the rate of arrival of neutrons into
the beam is maintained:

(11)

The neutron arrival rate  varies with  relatively slowly compared to the function of large and
sharp variation . Therefore, in the depth of the zone, the neutron f lux  is rugged with deep
dips in the form of inverted resonances in the vicinity of the resonance energies . These dips
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decrease the rates of reactions , including fission reactions. This effect is called the reso-
nance self-shielding of the neutron field. A similar effect—resonance damping of the f lux—is observed
when the radiation of a boundary source propagates into the depth of the object.

The specific dependence of the fission indicatrix and elastic scattering indicatrix (10) on the energy of
prompt neutrons E allows us to estimate the E-dependence of the functional  (see [37,
p. 286]). In the first approximation (narrow resonances, the Wigner approximation), the synthetic spec-
trum  is a certain crosslinking of the fission neutron spectrum, the Fermi spectrum , and the
spectrum of the neutron thermalization region. In problems of radiation shielding and neutron diagnos-
tics, if the object does not contain fissile materials, then the fission neutron spectrum is replaced by the
spectrum of the boundary source . Wide resonances with a width exceeding the width of the scattering
indicatrix support (see (10)) can introduce small-scale disturbances into the synthetic spectrum. These
disturbances can be found analytically or numerically. In the data processing system NJOY [34, 35], the
calculation is performed by the Flux calculator.

The asymptotic spectrum ϕ0 is used to prepare the group constants [6, 34–38] by Bondarenko’s
method [39]. These constants are used in calculations of neutron transport in the multigroup approxima-
tion [40–43].

1. SEPARATION OF VARIABLES AND RESONANCE CARRIERS

Outside the resonance region, where the neutron cross sections are slowly varying functions of energy,
we will use group averaging of cross sections and the multigroup approximation of neutron transport. In
the region of resonances, we will perform more accurate averaging. Let us reduce the dimension of the
problem by combining the nuclides into several components.

Components. The component C is the set of nuclides the densities of which vary similarly to each other
within the object

(12)

Here  is the component density, C is the component index,  is the object volume, and  is
the time interval characteristic of the problem. If the nuclide densities satisfy (12) in certain zones of the
object and in other zones the densities are close to zero, then the nuclides make up a component. The
nuclides that are not involved in nuclear transformations can be combined into components. These are
light nuclides of neutron moderators and nuclides of structural materials (concrete or steel). The fission
fragments and transuranic nuclides that occur in chains of nuclear reactions in similar proportions from
zero or small initial density are also combined into components. The main fissile nuclides 233U, 235U,
238U, 239Pu, and 232Th are considered to be separate components if they cannot be assigned to one of
groups (12). In terms of components, the neutron cross sections have form (4) and (5) with the replace-
ment of the nuclide index A by the index of the component C and the replacement of the microscopic cross
sections

(13)

The total macroscopic cross section  can be written as the sums

(14)

where  is the macroscopic cross section of the component C and  is the cross section
of the component dilution.
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44 SHILKOV
Resonance carriers. Proposition 1. The region of neutron resonances can be partitioned into a number
of sets , , called the carriers of resonances. A carrier generally
consists of several intervals. The relative width of the resonance carrier does not exceed the given number 

(15)

(If (15) is not satisfied, then the carrier can always be partitioned into more compact carriers.) Within the
carrier, the total macroscopic cross section allows an approximate separation of variables E and  that
is valid at all points of the object:

(16)

where  are nonnegative functions and  is a bounded function of small variation in
neutron energy E

(17)

If the function  is independent of energy, then the variables are exactly separated on the
resonance carrier.

The existence of partitions satisfying properties (16) and (17) follows from (14) and the presence of res-
onances. The resonance carrier  of component  includes the intervals of energy ΔE that are close
to the strong resonances of  and do not include the resonances of other components. Then  con-
tains the resonances of the component  and the background cross section (wings of the resonances) of
all the other components. Formula (16) coincides with (14) for , , and

, where  has small variations on  at any point of the object  regardless of
whether the material contains the component C ( ) or does not contain it .

Remark. In the theory of photon transfer, the assumption that the variables E and  are separable in
the entire spectrum of the particle energies  ( ) is called the Milne–
Eddington model.

Mean cross sections. In what follows, the term mean cross sections denotes the total macroscopic cross
section  averaged over the volume of the object and the time interval, unless otherwise specified. The
mean total cross section   is the sum of the mean total cross sections of the components .
The means depend only on the neutron energy E

(18)

 is the weight function that selects cross sections in regions of the object if this is required by specific
properties of the problem. In the nonspecific case: .

The algorithm of partitioning. The algorithm of partitioning the resonance region into resonance carri-
ers uses the mean cross sections (18).

(A) The interval of energies  is included in the resonance carrier  that accumulates the reso-
nances of component  if the mean macroscopic cross section of this component on this interval is greater
than the macroscopic cross section of any other resonance component: ,  (see Fig. 2).

(B) If the mean macroscopic cross section of a resonance-free component (e.g., neutron moderator)
dominates the interval , then this interval is included in the nearest carrier. The low density compo-
nents may remain without carriers of their resonances.
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Fig. 2. Partitioning the spectrum into the resonance carriers of components C and D.
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(C) If a resonance carrier contains wide resonances with the width exceeding the width of the scattering
indicatrix  (see (10)), then it is divided into two carriers: the carrier of the left resonance wings con-

sisting of the intervals on which the cross section  grows and the carrier of the right resonance wings
consisting of the intervals on which this cross section decreases. This makes it possible to take into account
the asymmetry of the spectrum of moderating neutrons arising in the wings of wide resonances.

Example. If an object consists of zones filled with a resonance-free moderator component and a reso-
nance component that has narrow resonances, then, according to the algorithm, the resonance region will
be partitioned into ordinary groups . The number of groups  depends on the
choice of number Kg in (15). If an object consists of zones filled with moderator and resonant components

 and , then the resonance region is partitioned into the resonance carriers of the components  and 
(Fig. 2). The total number of carriers does not exceed .

Proposition 2. On the resonance carrier, the local macroscopic cross section of any group of reactions
x at point  is related to the mean total cross section  by a dependence that is close to the linear
dependence

(19)

where  is a function of small variation in the argument  at any point of the object. If the func-

tion  is zero in certain zones of the object, then the macroscopic cross section is determined only

by the function .

To prove this proposition in the case , we average (16) over the object, express  in terms of

, and substitute it into (16). This gives (19) with the coefficients ,

. The Breit–Wigner formulas (8) imply that the microscopic cross sec-
tion of the reaction group x and the total microscopic cross section are related by a dependence that is
close to the linear dependence . Here  and  are slowly varying func-

tions of the neutron energy compared with . Therefore, (19) can be extended to any group of reac-
tions x. Below, the superscript t for the mean total macroscopic cross section will be sometimes omitted:

.

Proposition 3. All materials and geometric zones of the object are involved in the formation of the neu-
tron field. The neutron f lux at any point  of the object can be represented by the function

(20)

( ')EΔ
( )tS E

1{ }g g gE E E−ω = < < gg I=

С D С D
2I

( , )tr ( )tS E

( , , ) ( , ) ( ) ( , , ), , ( ), 0 ,x x t x
g g gE t A t S E B E t E V t t TΣ = + ∈ ω ∈ ≤ ≤r r r r

( , , )x
gB E tr E

( , )x
gA tr

x
gB

x t= ( )gs E

( )tS E ( , ) ( , )t
g g gA t a t a=  r r

( , , ) ( , , ) ( , )t t
g g g gB E t b E t A t b= −  r r r

( ) ( )x x t x
A A A AE d E eσ = σ + ~x x

Ad Γ Γ x
Ae

( )t
A Eσ

( ) ( )tS E S E≡

( , )tr

[ ]( , , , ) ( ) ( ( ), , , ) ( , , , ) , ,g g gE t F E Z S E t E t Eϕ = ⋅ + ε ∈ ωΩ r Ω r Ω r
MATHEMATICAL MODELS AND COMPUTER SIMULATIONS  Vol. 13  No. 1  2021



46 SHILKOV
where  and  are functions of small variation in E,  is the representative synthetic spectrum
of the problem (see (11)), and  is a complicated function depending on the neutron energy through
the mean (over the object) cross section .

We restrict ourselves to considering the stationary problem without reflection of particles from external
boundaries. In the more general case, the proof is similar. Let us write the solution to the transport equa-
tion (1) along the characteristic of the transport operator within the zone of the object containing a homo-
geneous material

(21)

Here  and  are the characteristic coordinates of the observation point  and the entry point of the char-
acteristic into the zone , and  is the neutron f lux on the boundary of the zone.

The approximate estimate of the neutron f lux is valid because the cross section  varies continu-
ously within each zone. Formula (21) gives the rate at which the solution reaches the asymptotics of the
stationary regime (11), which settles deep inside the zone of infinite length. The rate depends on the cross
section  at different neutron energies. Let us substitute the expression of the cross section on the
resonance carrier in form (19) into (21). If the neutron f lux on the boundary of the zone  can be
represented in form (20), then (21) can also be reduced to (20). Let us move along the characteristic from
the entry point into the object while this condition holds true. By sequentially calculating the functions

 at the points of intersection of the interfaces between the zones, we can always reduce solution
(21) to form (20).

2. LEBESGUE AVERAGING
This section describes the averaging of resonance cross sections and the neutron f lux over a system of

Lebesgue sets. The sets are constructed independently within each resonance carrier. The reader is not
required to know the measure theory or the Lebesgue integral. We will use only the construction of the
integral that is suitable for averaging resonance cross sections. All functions under consideration are
assumed to be bounded, Riemann and Lebesgue integrable, and both integrals are equal.

System of embedded sets. We construct within carrier g a system of sets (see Fig. 3) by including in the
set  the energies  at which the mean cross section (18) (averaged over the object) does not exceed

the S, . This set consists of the set of intervals ,  . The left and right
boundaries of the intervals  are the points with the same mean cross section  or the
boundaries of resonance carriers. As the level S increases, the left boundaries can only move to the left and
the right boundaries can move only to the right. Therefore, we have the embedding of sets

, , where  is the level at which the set is empty  and 
is the level at which the set corresponds with the resonance carrier .

Define the measure  [eV] of the set  using the integral

(22)

where  is the dimensionless weighting spectrum that is proportional, e.g., to the Wigner synthetic
spectrum (see (11)). If the weighting spectrum is difficult to determine, then set . The spectrum can
be adjusted when typical problems are solved. The measure varies from zero to the integral of the weighting
spectrum over the resonance carrier. If , then the measure equals the sum of the lengths of the inter-
vals on which .
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Fig. 3. A fragment of the resonance carrier g consists of two intervals. The Lebesgue set ω(S(m)) consists of four intervals.
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Remark. The Lebesgue averaging can be performed using the reference functions  and
 that depend on the energy of particles and on the coordinates [7–10]. In the neutron transport

problems, it suffices to consider the case  and .

Since the measure is a nondecreasing function of level S, then there exists a nondecreasing inverse
function specifying the dependence of the level on the measure  ( ). We param-
eterize the system of sets  in terms of their measure m making the change of variables by the inverse
function . If m = 0, then the Lebesgue set is empty . If , then the set

ω(mg) densely fills the resonance carrier ωg. A part of the boundary points of the set 

are the points with the same mean cross section . At these points:  and

. The remaining points are the boundaries of the resonance carrier. At these points, we have

.

By differentiating (22) with respect to measure m under the condition that it is an independent variable,
we obtain an identity expressing the relationship between the derivatives of the direct and inverse functions

(23)

where   

The summation is over the boundary points  with the same mean cross section . The
boundaries of the resonance carrier are not included in the sum because  at these points. All
terms in the sum are nonnegative.

Lebesgue neutron flux. Let   be the cumulative distribution of neutrons on the
system of embedded sets built inside carrier g:

(24)

If m = 0, then the distribution is zero; if m = mg, then it equals the integral of the neutron f lux  over
the resonance carrier g. We will call the distribution density

( , , )S E tr
( , , )F E tr

( )S S E= ( )F F E=

( )S S m= 0 ( )g gS S m S≤ ≤
( , )g Sω

( , ( )) ( , )g S m g mω = ω (0)ω = ∅ gm m=
( ( )) ( )k kE S m E m± ±=

( ) ( )kS E S m± = 0kE m+∂ ∂ ≥
0kE m−∂ ∂ ≤
0kE m±∂ ∂ =

( )

( )

( ) ( ) 1,
k

k

E m
k

k
k kE m

Em F E dE F E
m m m

+

−

+

−

∂∂ ∂  = = = ∂ ∂ ∂  

( ) ( ) ( ) ,k k k
k k k

E E EF E F E F E
m m m

+ + −
+ −

−

∂ ∂ ∂  = − ∂ ∂ ∂ 
0,kE

m

+∂ ≥
∂

0.kE
m

−∂ ≤
∂

kE ± ( ) ( )kS E S m± =
0kE m±∂ ∂ =

( , , , )gT m tΩ r − −2 1[cm s ]

( )

( , ) ( )

( , , , ) ( , , , ) ( , , , ) .
k

k

E m

g
kg m E m

T m t E t dE E t dE

+

−ω

= ϕ = ϕ Ω r Ω r Ω r

( )Eϕ
MATHEMATICAL MODELS AND COMPUTER SIMULATIONS  Vol. 13  No. 1  2021



48 SHILKOV
(25)

the Lebesgue neutron f lux. The last equality is obtained taking into account identity (23). It is clear that
the Lebesgue neutron f lux  [eV–1 cm–2 s–1] is the ratio of the neutron f lux  to the

weighting spectrum  averaged over the set of boundary points of the Lebesgue set 
( .) at which the mean macroscopic cross section takes the same value . This defi-
nition is correct because all the terms in the sum are nonnegative. The dependence of the Lebesgue f lux

 on measure m corresponds to the dependence of the neutron f lux  on energy E. The summa-

tion over the points  with the weight  does not reduce the number of independent argu-
ments of functions.

Example. Let the Lebesgue f lux  be independent of m. Then:

Assuming m = mg, we find that ; i.e., the Lebesgue f lux equals the ratio of
the integral of the neutron f lux on the resonance carrier  to the corresponding integral of the weighting
spectrum.

Evaluation of integrals. An important and useful property of the Lebesgue integral is its ability to effi-
ciently evaluate integrals of nonmonotonic resonance functions of many variables

(26)

where  is the given complicated function depending on energy E through a rela-
tively “good” function X(S) and a strongly nonmonotonic function S(E); and ϕ is the neutron f lux. For
m = mg, the integration is carried out over the resonance carrier g. The numerical evaluation of integrals
(26) according to the Riemann scheme at points in space  requires a large amount of compu-
tations on a fine nonuniform grid. The accuracy of the computations depends on the art of grid selection.
However, if we construct a system of Lebesgue sets based on the function S(E), then the integrals can be
represented in the form

(27)

The function  is taken out of the sum because it takes the same value  at the points .
The level  is a nondecreasing function of m independently of how many resonances  has on the
carrier ωg. The functions  and ψg(m) have good monotonicity properties with respect to argument
m. Therefore, the integrals may be evaluated on a coarse grid at a low computational cost.

The gain from the transition to Lebesgue distributions is achieved by combining points with the same
macroscopic cross section  into one computation point and due to the momotonization of
the sections. The gain in magnitude is approximately equal to the number nonmonotonicities (reso-
nances) on the carrier. The functions  and  must be known in advance. The relationship between
the evaluation of integrals (26), (27) of nonmonotonic functions according to Riemann and Lebesgue is
similar to the relationship between positional and nonpositional number systems—“eggs may be counted
one-by-one or by dozens.”
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Let us calculate the departure rate of neutrons whose energy lies within the set  from
beams, and the emergence rates of prompt neutrons, fission fragments (see (2)), and nuclides (see (7)) in
reactions x:

Let us write the integrals of interest as the Lebesgue integrals (27)

(28)

Here the ratios  at the boundary points  are replaced by the average

 calculated at the same points. The functions  and  are called
the Lebesgue cross section and the Lebesgue multiplicity of the reactions of group x, respectively:

(29)

The Lebesgue cross section is the average cross section calculated on the set of boundary points ,

 with the weight .

In contrast to (27), equality (28) is approximate. Let us calculate the error

(30)

Here we used representations of the cross section (19) and neutron f lux (20) on the resonance carrier g in

the form of separated variables E and (r, t). The terms  and  are not included

in the final sum because they take equal values  and  at the summation points

. The error depends only on the functions of small variation  and . The quantities 
and  are the mean values of the functions calculated over the summation points.

For the error δ to be small, it is sufficient that at least one of the following inequalities holds:
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(31)

Here  and  are the variances of the distributions ,  on the set of boundary

points ,  Since  and  are functions of small variation (this is a consequence of the
separation of variables on the resonance carrier), both inequalities in (31) are simultaneously satisfied.
The error in the calculation of rates (28) is negligibly small.

Moreover, the error  vanishes if the sums over k consist of only one term. This happens in
the corridors of monotonicity . If we decrease the width of the resonance carriers (the

number  in (15)), then the mean cross section  at some point becomes a monotonic function on
the entire resonance carrier, the corridors merge into a single corridor, and the error  vanishes
on the entire resonance carrier.

The arrival rates of prompt neutrons  and  in the set  and
the unit interval of the measure m are calculated in accordance with the general rule of averaging over the
initial states of transitions and summing over the final states. First, we perform the Lebesgue summation
over the points of the resonance carrier  from which the primary neutrons depart; 
( ) is the measure of the sets embedded in it. The dependence of the quantities on  is tem-
porarily omitted:

(32)

In the second stage, we perform the summation over the boundary points of the set  into
which the prompt neutrons arrive:

(33)

The indicatrix of reactions  is determined by the formula

(34)

It describes the transition of neutrons up and down the spectrum variable m within the resonance carrier
 and the transition of neutrons between different carriers ; the indicatrix satisfies the normal-

ization equality (cf. (6))
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(35)

The error in calculating the arrival rates of neutrons (33) is the sum of negligibly small errors in calcu-
lating the departure rates of neutrons (28).

The transport equation. This equation for the Lebesgue neutron f lux  is derived by the
direct integration of Eq. (1) over the system of embedded sets . The integration gives the equa-
tion for the cumulative distribution (24). Taking the derivative with respect to measure m, we obtain the
desired equation

(36)

The Lebesgue cross sections , , and the neutron arrival rate  are given by formulas (29), (33),

and (34). The source  and the neutron speed  are given by the formulas

(37)

The precursor densities  satisfy the transport equations

(38)

The boundary conditions are derived from conditions (3) by the similar summation

(39)

The reaction equations (7) are averaged using (28) and (29). We discuss equations (36)–(39) later,
together with the equations of the Lebesgue moment method.

The structure of Lebesgue cross sections. The Lebesgue macroscopic cross sections of reactions are the
sums of the Lebesgue microscopic cross sections with the weight of the component (nuclide) densities
similar to sums (4), (5)

(40)

The cross sections in (40) are calculated by averaging the neutron cross sections (8) and (13) over the Leb-
esgue sets 
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(41)

Recall that the sets  are constructed based on the mean cross section  (18) calculated for a
certain class of applied problems.

Analytical formulas for Lebesgue sections. Let us discuss the storage of the Lebesgue microscopic cross
sections (41). The cross sections depend on the spectrum variable , and they relatively weakly
depend on the temperature of the substance. Therefore, they can be stored in the files of the cross section
library in the form of analytical formulas as in the method of storing the original neutron cross sections.

Due to the partition of the energy scale into resonance carriers described in Section 1, each carrier con-
tains the resonances of a certain component C and the background cross section of the other components.
Therefore, the Lebesgue cross sections of the other components  can be expanded on the carrier
ωg(C) into rapidly converging Fourier series in trigonometric or power polynomials of variable m. Only the
first few expansion coefficients need to be stored. These coefficients may slightly depend on the tempera-
ture.

Now we derive analytical formulas for the Lebesgue cross sections of the component C on the carrier
of its own resonances ωg(C). Assume that within the resonance carrier and its vicinity, the resonances are

equally spaced at distance d from each other and have the same strength and half-widths  and . In the
theory of photon transfer, the model of identical resonances is known as the Elsasser approximation [44]

Here  is the position of the resonance with the index r,  is the center of the carrier,  is the shift, d is
the period, e is the dimensionless energy, and  is the dimensionless half-width of the resonance in the
vicinity of the carrier .

Let us perform the summation over the resonances in the neutron cross sections (8) using the formulas
(e.g., see [45, p. 652])

Thus, within the resonance carrier , we have
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Here Hg is the resonance strength per unit energy interval,  and  are the symmetric and anti-
symmetric resonance profiles determined on the cross section period, pg and qg are the phase shift coeffi-

cients, and  is the partial coefficient of the reaction x. The other quantities were described in the com-

ments to (8). On period d, the equation  has two roots E1 and E2. The measure μ of the set

 is . Put . In this model, we can derive for the Leb-
esgue sections the analytical formulas

(42)

The same formulas are obtained if the resonance carrier contains only the left or only the right wings
of the resonances (intervals of growth or decrease of the cross section ). Formulas (42) can be
extended to the general case of arbitrary resonances if the parameters , , , and  are
considered as functions of variable m; and the parameters  and , as functions of m and
temperature. The cross sections of nuclide A that appear in the component C can also be represented by
formulas (42). Note that these formulas are valid in the entire resonance region, including the region of
unresolved resonances.

To store the indicatrices  and the multiplicities of the reaction products , a
tabulated data representation can be used.

3. THE LEBESGUE MOMENT METHOD

The numerical solution to Eq. (36) is sought on a finite grid in the new spectrum variable ,
, . Let us raise the question of selecting the optimal grid  with a fixed total number

of nodes Ng that would describe the evolution of the neutron field in the object with minimal (in a certain
sense) error. The grid optimization problem and the problem of the neutron f lux reconstruction in the E-
space after finding the Lebesgue neutron f lux is solved using the Lebesgue moment method.

Expansion of the neutron flux. We will seek the solution to the transport equation (36) on sets
,  as the sum of the main function  and the small correction :

(43)

(44)

The main function is a segment of the expansion of the Lebesgue neutron f lux  in series in a system
of orthogonal polynomials  ( ) on the interval ; Ng is the expansion order, 
is the weight function of the polynomial system, and dn are the normalization factors of the polynomials.

The expansion coefficients  will be called Lebesgue moments. The argument of the polynomials
 is a complicated function that monotonically increases in argument , does not

decrease in m, and takes the values  and  on the interval’s endpoints. In the original E-
space, the expansion (43) corresponds to the following expansion of the neutron f lux within the resonance
carrier
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(45)

This can be easily verified by substituting (45) into (25). (cf. (45) and (20), (21)).

If we substitute (44) into (43) and collect similar terms, then the main part of the f lux  (or ) can
be written as a linear combination of the exponential functions , , .
Factor n in the exponent specifies the partial rate of neutron departure from the beam related to this expo-
nential function,  ( ) is the mean cross section (18), and  is the dimensional parameter
adjusted for each specific problem (class of problems), which has the order of the object size. Grouping
the exponential functions into polynomials is a way of orthogonalizing the basis functions. The inclusion
of a new exponential function in the basis is equivalent to adding another higher order harmonic to .
The choice of exponential functions as basis functions is motivated by the form of the solution to the par-
ticle transport equation (21), which is the sum of the exponential functions.

Another set of basis functions that is suitable for describing the effects of inversion of resonances in
neutron spectra is the system of rational functions , n = 0, 1, …, u = E, m. To use this system,
it is sufficient to carry out a rational approximation of the exponential function

. Then the argument of polynomials (44) in expansions (43) ans (45) is
replaced by the argument

(46)

Probably, there are other convenient systems of basis functions for describing the inversion of resonances.
The name Lebesgue moments reflects the dependence of the basis functions of expansions (43), (44) and
(43), (46) on the magnitude of the cross section for the interaction of neutrons with matter.

Assume that the principal part of expansions (43) and (45) converges to the neutron f lux at point
 on the resonance carriers  as Ng increases and the carriers’ width Kg decreases (see (15)),

e.g., in the norm L2:  → 0, . The convergence rate depends on the fortunate choice
of the basis functions (44) and (46) for describing the resonance inversion, on the choice of the scaling
parameter Lg in these functions, and on the problem to be solved—material and geometry of the object.

Then, the small error made in deriving the transport equation (36) for the Lebesgue neutron f lux rap-
idly tends to zero. Indeed, the main expansion function  depends on energy E only through the
mean macroscopic cross section . Therefore, the variance  in the second inequality in (31)
tends to zero. This accelerates the ultimate convergence of Eqs. (36) and (1) in norm  due to the simul-
taneous fulfillment of inequalities (31). The convergence rate is much higher than the convergence rate of
the equation of the multigroup approximation to (1).

Reconstruction of the neutron spectrum. If the Lebesgue moments  ( , )
are known, then the neutron f lux in the object in the approximation εNg ≈ 0 is restored using formulas (43)
and (45) in both (g, m)-space and E-space (if required).

Evaluation of integrals. The Lebesgue moments give additional Lebesgue cross sections that simplify
the calculations of the neutron field functionals, such as the neutron f lux on the resonance carrier g, the
neutron departure rates from the carrier, the arrival rates of prompt neutrons, precursors (see (2)), and
nuclides (see (7)) in the reactions of group x:
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(48)

Here  is the weight of the nth order the Lebesgue moment on the carrier g;  and

 are the nth order macroscopic cross section and the multiplicity in reactions x. The weight of the

zero-order moment is equal to the integral of the weighting spectrum . The macroscopic cross
section of order n = 0 corresponds to the macroscopic cross section of the multigroup approximation. The
differential arrival rates of prompt neutrons  and  (32) into the set  and into
the unit interval of the variable m are

(49)

(50)

Here  ( ) is the nth order Lebesgue moment of the indicatrix of reactions x (not to
be confused with the angular moments of the indicatrix, see (9)).

The moments of cross sections (48) and (50) are calculated from the Lebesgue microscopic cross sec-
tions of the components by formulas (40) and (41).

Calculation of the Lebesgue moments. The distribution moments can be calculated following their for-
mal definition (43) using nonoptimized quadrature formulas, such as the rectangle, trapezoid, etc., rules.
In addition to the primitive method, two direct methods can be used for the calculation of moments. The
first method is to write a system of equations for the moments and solve it. The second method uses opti-
mized quadrature formulas such as Gaussian formulas. The solution to the particle transport equation is
sought on a finite grid consisting of N + 1 nodes of the quadrature formula. This grid is optimal in the
sense that it provides the ability to accurately calculate M (M ≤ N) power moments if the distribution is
continuous in the given variable and M is the quality parameter of the formula. In the case M = N, both
methods are equivalent and the grid consisting of N + 1 nodes is a necessary but not sufficient condition
for the exact calculation of the moments of particle distribution in the object. To calculate the Lebesgue
moments, we will further follow a version of quadrature formulas.

Remark. In the theory of particle transport, direct methods of calculation of the angular moments of
distributions over the directions of f light of particles Ω are known as the method of spherical harmonics
and as the Vick–Chandrasekhar method of discrete ordinates, and also the optimized Carlson Sn-method
(in multidimensional problems).

The Gauss–Christoffel quadrature formula is the formula for the approximate evaluation of integrals
[46]

(51)

Here  is an integrable function from a certain class of functions,  is a given weight function that
emphasizes the features of the behavior of functions of this class on parts of the interval , and

 are the values of the integrand at the nodes ξi (i = 0, 1, …, N). The nodes are the roots of the equation
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, where  belongs to the system of orthogonal polynomials on the interval  with
the weight  (see (43)). The weights  called the Christoffel coefficients are calculated by

where aN is the leading coefficient of the polynomial PN. The nodes and weights are chosen so that the
approximate equality (51) becomes exact if  is an arbitrary polynomial of a degree not higher than

.
Consider expansion (43). The Lebesgue f lux  and its principal part  have identical

moments , . Since  for  is a polynomial of a degree not higher
than 2N, its substitution into (51) gives an exact formula for the calculation of moments

(52)

If the values of the moments are known (for example, from the previous iteration), then the neutron
arrival rate  can be calculated by formula (49) instead of (33).

To use (52), the solution  to the neutron transport equation (36) is sought on the optimal
grid mi = m(ξi) (i = 0, 1, …, N), on a grid in which the optimal grid is embedded, or on a close grid that
admits high-order interpolation.

To find the nodes  of the optimal grid, we invert (44) and (46):

(53)

Example. Suppose that the Chebyshev polynomials that are orthogonal on the interval  with
the weight  are used to orthogonalize the basis functions of the neutron spectrum (44)
and (46) in expansion (43):

Then, the nodes, the values of polynomials, and the weights in the quadratic formula (51) are

The formula for calculating the Lebesgue moments (52) takes the form

Equations (53) for finding the optimal grid nodes  are
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These equations are solved for  (i = 0, 1, …, N) at the stage of data preparation for the transport calcu-
lation together with the preparation of the Lebesgue macroscopic sections. The macroscopic cross sec-
tions can be calculated directly from the nuclear data library files or from the files of the Lebesgue cross
section library.

DISCUSSION
Comparison with the multigroup approximation. The equations of the multigroup approximation in the

resonance region have only a qualitative correspondence to the original neutron transport equations (1)–
(3), (7). Indeed, consider the exact group constants averaged with the neutron f lux weight using the Rie-
mann scheme. The exact group constants depend on the direction of the neutron f light . Their variations
with respect to  can be as high as tens or even hundreds of percent, especially in the vicinity of material
interfaces, where the neutron f lux (21) varies strongly in both arguments E and  (e.g., see [47]). The
group constants of the multigroup approximation are independent of  [34, 35, 38]. This is because the
true neutron f lux is replaced by the approximate isotropic weighting spectrum due to averaging.

The equations of the Lebesgue averaging method and the Lebesgue moment method (36)–(39), (49),
and (52) accurately approximate the original neutron transport equations (1)–(3) and (7). The Lebesgue
neutron cross sections lose little information on the neutron cross sections and have an accuracy compa-
rable to the accuracy of the data in the nuclear data libraries. Like the original neutron cross sections, they
are independent of the direction of the neutrons’ f light .

The averaged equations describe effects in neutron spectra such as the interference of potential and res-
onance scattering, increased fission of neutrons’ multiplicity ν f(E) in the core of resonances, the inversion
of narrow and wide resonances, the block-effect (decrease in the resonance self-shielding of the neutron
field near the interfaces of different materials), and the spatial heterogeneity of the fuel burnup and
nuclide formation in nuclear reactors. The ability to approximately reconstruct the neutron spectra makes
the Lebesgue method a good tool for the numerical support of research in the field of neutron diagnostics
of objects.

Numerical solution. The cross sections of equations and the neutron f lux are highly monotonic in the
spectrum variable . The equations have a structure similar to the structure of the original equations
in the E-space. Therefore, they can be solved numerically on a coarse grid using the known methods for
calculating the spatial-angular distribution of neutrons, direct methods for solving the transport equation
(Sn-method, method of characteristics), the method of spherical harmonics, and the Monte Carlo
method.

The zero-order moment method is a multigroup approximation in which groups are resonance carri-
ers. This ensures a smooth transition from the moment method  to the multigroup approximation
when passing through the boundary of the resonance region into the region of slow cross section variation.

The transitions of neutron down and up in the measure m within the resonance carrier ( ) and
transitions downward and upward in the carrier index ( ) require iterations. These iterations are sim-
ilar to the iterations that are performed in the thermalization region of neutrons when the multigroup
approximation is used. In the Lebesgue moment method, these iterations are reduced to calculating the
Lebesgue moments.

The implementation of the proposed method requires writing a computer code for preparing the Leb-
esgue neutron cross sections. The cross sections are calculated by averaging the microscopic cross sections
using a slightly more complicated algorithm than the group averaging algorithm.

Testing the method. At the time of writing, the effectiveness of the Lebesgue moment method in a
numerical simulation of neutron transport problems has not yet been tested. The results of test computa-
tions on the benchmark problems of thermal radiation transfer in a hot gas can be found in [12].

The effect of resonance inversion is inherent not only in neutron spectra but also in wide spectral dis-
tributions of photons, including the intrinsic thermal radiation photons emitted by an inhomogeneously
heated gas or plasma. The radiation spectrum in the line cores is formed by local heat sources, and in the
lines’ wings, it is formed by the hottest sources of the object due to the strong dependence of the intensity
of the sources on temperature ~T4. Even small temperature variations, for example by a factor of three,
result in a strong inversion of the lines.

The solution of test problems, including those for heterogeneous objects consisting of different mate-
rials, showed the following points. In the case of grouping the basis functions in the Chebyshev polyno-
mials, expansion (43) rapidly converges to the exact solution; it is sufficient to use the terms of order N =

im
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4–6. In the case of grouping in the Legendre polynomials, this expansion converges somewhat slower—
with N = 6–86. To analyze the convergence rate, we analyzed, in addition to the error, the distribution of
the energy over the expansion harmonics

A good property of the method is that the convergence rate weakly depends on changes of the scale param-
eter of the basis functions  (the characteristic size of the object) in a wide range. This parameter was
decreased and increased relative to the optimal value by a factor of up to ten. The error and energy of the
tail of the expansion began to grow only when approaching the boundaries of this range.

The number of nodes for calculations. Assume that, in order to separate the resonance structure of neu-
tron cross sections, it is sufficient to divide the resonance region into 30–200 resonance carriers, depend-
ing on the type of the problem and the accuracy requirements. The use of 4–6 Lebesgue moments in each
carrier gives 100–1000 grid points of the spectrum . As a result of solving the averaged transport
equations, the accuracy of the description of the neutron spectrum can be comparable to the accuracy of
the detailed Monte Carlo calculations and the accuracy of the nuclear data.
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