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Abstract—Euler equations for multidimensional inviscid gas f lows with multispecies and multi-reac-
tion are considered. By using the Marchuk–Strang splitting method, an implicit numerical scheme for
this system is constructed. Its convection part is computed using the bicompact scheme SDIRK3B4
of fourth order in space and third order in time, while its chemical part is computed using the L-stable
Runge–Kutta method of second order. The SDIRK3B4 scheme is compared with the WENO5/SR
scheme in the case of one- and two-dimensional f lows with detonation waves. It is shown that the
SDIRK3B4 scheme has the same actual accuracy as the WENO5/SR, but the former needs fewer time
steps by a factor of 20–40 and does not require any special algorithms to suppress the nonphysical
breakdown of detonation waves on relatively coarse meshes.
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1. INTRODUCTION
Numerical modeling of multispecies multi-reaction gas f lows, in particular, the simulation of detona-

tion is of great interest for both physics, i.e., for the study of processes occurring in gases, and for purely
engineering applications.

The dominant approach in such simulations is based on splitting with respect to physical processes [1–4].
In this approach, the original system of equations describing gas dynamics splits into convective, chemi-
cal, and, possibly, diffusion (viscous) parts, which are then integrated using certain numerical methods.
The necessity of splitting is dictated by the fact that the characteristic time scales of convection and chem-
ical reactions often differ substantially (by several orders of magnitude).

The convection part is integrated, as a rule, by applying explicit shock-capturing schemes [5–9]. For
gas f lows involving a detonation wave (DW), the computations based on explicit schemes may lead to this
true DW splitting into two spurious waves: a shock wave (SW) and a DW precursor propagating much
faster than the true DW. The analysis carried out in [10] showed that this nonphysical phenomenon is
caused by the nonzero numerical dissipation of any shock-capturing scheme. Smearing the DW front, dis-
sipation “warms up” the reagents ahead of it. As a result, chemical reactions start prematurely. The rate
of the warming process has the order of the ratio of the spatial cell length to the time step, i.e., . In the
case of explicit schemes, any wave is propagated through less than one cell over a time step, since the Cou-
rant number must be less than unity. As a result, the computed reaction front detaches from the SW and
two above-mentioned spurious waves, rather than one true DW, are observed.

This nonphysical breakdown of DW can be eliminated extensively by reducing the mesh sizes and
increasing the number of cells. At some moment, under mesh refinement, the extremely narrow reaction
zone behind the DW becomes completely resolved and the DW precursor disappears. However, this
approach is suitable only for nearly one-dimensional f lows (ones in long narrow tubes and channels) and
unsuitable for essentially three-dimensional f lows of complex geometry.

Another approach, which avoids mesh refinement, is based on special correction procedures prevent-
ing the premature start of reactions. A rather detailed overview of such procedures and their chronology
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HIGH-ORDER BICOMPACT SCHEMES 107
can be found in [11]. They include the randomization of ignition temperatures [12, 13]; the MinMax
method based on two-value reconstruction within each cell [14]; capturing of DW with the help of sub-
cell-resolution WENO reconstructions with the subsequent correction of the gas temperature and the
reactants mass fractions near DW at the stage of integrating the chemical part [7, 11]; and a threshold val-
ues method [6], which explicitly limits the speed of the numerical DW. The last three approaches and
numerous similar ones are based on the explicit introduction of DW in the solution, which seems irrele-
vant in shock-capturing computations.

An alternative approach for coping with nonphysical DW breakdown was proposed in [15]. It is based
on implicit shock-capturing schemes for computing convection. Implicit schemes make it possible to use
Courant numbers exceeding unity. In this case, the true DW moves over the grid quicker than a potential
precursor, which prevents the latter from emerging and developing. Of course, there is no need to use spe-
cial correction procedures of the type considered in [11]. As a particular implicit scheme, a third-order
bicompact scheme is used in [15] (see [16, 17]).

The goal of this work is twofold: first, we show that the ideas of [15] are valid not only in the case of two species
and a single reaction, but also in the multispecies multi-reaction case, and, second, we demonstrate the capabili-
ties of bicompact schemes and compare them with the explicit WENO5/SR scheme from [7].

This paper is organized as follows. In Section 2, we formulate a gas model and the system of equations
governing the gas dynamics. A bicompact scheme for the numerical solution of this system is briefly
described in Section 3. Numerical results for one- and two-dimensional f lows with DW are analyzed in
Section 4. The conclusions are given in Section 5.

2. SYSTEM OF EQUATIONS
As was indicated in the Introduction, our goal is to demonstrate the capabilities of bicompact schemes

as applied to the problems in [7] and to compare them with the schemes of [7]. For this reason, we use the
same gas model and governing system of equations as in [7].

Consider an ideal (inviscid) gas consisting of ns species with chemical formulas . The gas
equation of state has the form

where ρ, p, ε, T are the density, pressure, internal energy density, and temperature of the gas, respectively;
 is the mass fraction of the species ;  is the specific heat of ; and  is the

ratio of specific heats. The gas species participate in the chemical reactions

The rate  of reaction r is specified using simple Heaviside kinetics:

where  is the Heaviside step function,  and  are constant parameters, and  is the tem-
perature of the reaction.

The dynamics of this gas is described by the system of Euler equations with a source. Specifically, for
two-dimensional f lows in a Cartesian coordinate system, it has the form
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108 BRAGIN, ROGOV
Here,  is the sought vector of conservative variables;  and  are the f lux vectors in
the Ox and  directions, respectively; and  is the source vector. By  and E, we denote the
velocity and the total energy per unit gas volume. The terms responsible for the chemical reactions are
written as

where  is the atomic weight of the species . The equation for the mass fraction  is not solved, since
it can be computed using the obvious formula

The computational domain and the initial and boundary conditions specified for system (1) will be dis-
cussed in detail in describing the problems in Section 4.

3. NUMERICAL SCHEME

To solve system (1) numerically, we apply the second-order Marchuk–Strang splitting scheme with
respect to physical processes [1, 4]. System (1) is split into two parts: convective

(2)

and chemical

(3)

The convection part (2) is computed using a bicompact shock-capturing scheme that has the fourth
order of classical approximation in space [16]. Time stepping in this scheme is based on the singly diago-
nally implicit stiff ly accurate L-stable Runge–Kutta method of the third order [18, Theorem 5]. This
bicompact scheme is referred to as SDIRK3B4. Importantly, two methods are used to implement it:

1. Locally one-dimensional splitting in x and y with symmetrization [1–3] (as applied to bicompact
schemes, see [19]).

2. A conservative limiting (monotonization) method [20]. As a monotone partner scheme A, we use a
bicompact scheme of fourth-order accuracy in space with time discretization based on the implicit Euler
method. SDIRK3B4 is used as scheme  in this method. The formula for weighting factors involves ,
which is the only tuning parameter of the method; additionally, this formula involves normalization by

 (see formula (13) in [20]). The parameter  is responsible for the degree to which the
spatial finite-element approximation is restricted: for , there is no restriction at all, while, in the
limit as С1 → ∞, this approximation at every time level is reduced to an integral average. In all computa-
tions of this work, .

Additionally, SDIRK3B4 involves the global Lax–Friedrichs f lux splitting method (see [21]); its
parameter is specified as δ = 0.2 for all the computations described in Section 4. The mesh parameters and
the Courant number  are indicated separately for each computation.

The level-to-level transition operator of the SDIRK3B4 scheme is denoted by , where  is the time
step.

The chemical part (3) is integrated using a singly diagonally implicit L-stable second-order stiff ly
accurate Runge–Kutta method [18, Theorem 5] with the Butcher tableau
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HIGH-ORDER BICOMPACT SCHEMES 109
With the use of the above notation, the resulting level-to-level transition operator of the Marchuk–
Strang splitting method is written as

(5)

where n is the time level number. Note that, in computing the chemical part, the time step  is additionally
partitioned into  subintervals. The number  is given by the formula

where  is a prescribed parameter of scheme (5) (which is necessary like the Courant number ). The
values of  are presented in Section 4.

Below, the scheme with operator (5) is referred to as SDIRK3B4 to emphasize its use for the compu-
tation of the convection part.

4. NUMERICAL RESULTS FOR TEST PROBLEMS WITH DW
The bicompact scheme SDIRK3B4 described in Section 3 was tested as applied to five problems from

[7]. In each of them, the gas f low contained a DW.
Problem 1. The gas consists of three species:

and there is a single chemical reaction:

The gas parameters are specified as , , , , , and .
In this gas, we consider a one-dimensional Riemann problem:

The computational domain is the interval , and free outflow is set on the boundaries x = 0 and
x = 50. The decay of the discontinuity gives rise to three structures: an SW, a contact discontinuity (CD),
and a DW (listed from left to right in increasing order of x).

The SDIRK3B4 bicompact scheme was used on a rather coarse uniform grid with N = 50 cells (as in
[7]) at the Courant number κ = 2 and the parameter .

Figure 1 shows the profiles of the gas temperature and the reactants mass fractions at the time t = 3.
For comparison, the figure presents the reference solution and the solutions produced by the WENO5/SR
and WENO5 schemes according to the data from [7].

Inspection of Fig. 1 shows that SDIRK3B4 adequately reproduces the dynamics of the DW, which is
in the correct place. The standard WENO5 scheme fails in this problem: the DW is propagated far to the
right beyond the computational domain. WENO5/SR is able to produce the correct DW dynamics, but at
the cost of special corrections. In SDIRK3B4, the correct solution is obtained automatically due to the
use of a large Courant number. Note also that the SW and CD are resolved well in SDIRK3B4.

Note that the reaction rate immediately behind the DW is  . This is
much greater than any characteristic scale associated with convection processes, which suggests that sys-
tem (1) is highly stiff. The same is true for the other four problems. It is the stiffness of system (1) that
causes the incorrect work of the standard WENO5 version and other explicit schemes.

Problem 2. The formulation is similar to Problem 1, so we describe in detail only the differences
between them.

The gas consists of four species:
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110 BRAGIN, ROGOV

Fig. 1. Profiles of gas temperature and reactants mass fractions in Problem 1 at t = 3: the reference solution (solid) and
the solutions produced by the bicompact scheme SDIRK3B4 (squares), the WENO5/SR scheme (circles), and the
WENO5 scheme (dashed).
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A single chemical reaction occurs in the gas:

The gas parameters are specified as , , , , , and .
As in the preceding example, we consider a one-dimensional Riemann problem:

The computational domain and the boundary conditions are the same as before. The decay of the discon-
tinuity gives rise to the same structures, SW, CD, and DW, located in the same order. The reaction rate
immediately behind the DW is , i.e., once again system (1) is highly stiff.

The computation based on SDIRK3B4 was performed on the same grid with the same parameters,
except for  (the significant change in this parameter is associated with the fact that the reaction
rate in Problem 1 involves a power-law dependence on the gas temperature, since α1 = 1, rather than 0).

Figure 2 presents the profiles of the gas temperature and the reactants mass fractions at the time t = 3.
It can be seen that the compared schemes WENO5/SR and SDIRK3B4 as applied to Problem 2 are in
nearly the same relation as in the case of Problem 1. Both schemes adequately reproduce the DW dynam-
ics, but SDIRK3B4 does not require special procedures for solution correction. Note that SDIRK3B4 is
slightly less dissipative than WENO5/SR. Note also that in Problem 2, as in Problem 1, the Courant num-
ber in WENO5/SR is equal to 0.1 (see [7]), which is 1/20 times as large as the Courant number in
SDIRK3B4. This means that the computation of the convection part by applying SDIRK3B4 is 20 times
more efficient in terms of the number of time steps.

Problem 3. It is similar to the preceding two problems. The gas consists of five species:

There are two chemical reactions:

The fifth gas species, nitrogen ( ), does not participate in the reactions directly, but plays the role of
a catalyst. The gas parameters are , , , , , , ,

, and .
The initial condition in Problem 3 is specified as a one-dimensional discontinuity:

The computational domain and the boundary conditions are the same as in Problems 1 and 2. The decay
of this discontinuity gives rise to the same three structures: SW, CD, and DW (listed from left to right).
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Fig. 2. Profiles of gas temperature and reactants mass fractions in Problem 2 at t = 3: the reference solution (solid) and
the solutions produced by the bicompact scheme SDIRK3B4 (squares), the WENO5/SR scheme (circles), and the
WENO5 scheme (dashed).
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The computation based on SDIRK3B4 was performed on the same grid consisting of 50 cells with the
same parameters as in Problem 2.

Figure 3 presents the profiles of the gas temperature and the reactants mass fractions at the time t = 3.
SDIRK3B4 slightly overestimates the DW velocity as compared with the reference solution and the solu-
tion produced by WENO5/SR. However, the structure of the DW front in WENO5/SR has a feature (near
x = 38) similar to the initial stage of the nonphysical decay of a strong DW into an SW and a weak DW
precursor, while the DW front in SDIRK3B4 has a usual form without any features. As expected, the DW
produced by the standard WENO5 scheme (without special corrections) is shifted much further to the
right than its correct position, but, in contrast to Problems 1 and 2, part of this false DW precursor lies
within the computational domain and can be seen in Fig. 3 near x = 50. Note that the Courant number in
WENO5/SR is equal to 0.05 against 2 in SDIRK3B4, i.e., in Problem 3, the computation of the convec-
tion part based on SDIRK3B4 requires fewer time steps than in WENO5/SR by a factor of 40.

Problem 4. This test is a two-dimensional version of Problem 2 with cylindrical symmetry. The gas
model is the same as in Problem 2, except for the parameter , which is specified as . The initial
condition is given by

The computational domain is the square . The boundaries x = 0 and y = 0 are solid
impermeable walls with the condition vn = 0; while free outflow is set on the boundaries x = 50 and y =
50. The decay of the initial discontinuity gives rise to a cylindrically symmetric expanding DW and a zone
of continuous f low behind it.

The computation based on SDIRK3B4 was performed on a coarse uniform grid consisting of N =
25 × 25 cells (as in [7]). The other parameters of the scheme were the same as in Problem 2.

Figure 4 presents the gas temperature and the reactants mass fractions at the time t = 2 produced by
SDIRK3B4. The function values are shown by shades of gray. The right panel additionally depicts the
approximate DW front position for WENO5/SR and WENO5.

Inspection of Fig. 4 suggests that SDIRK3B4 and WENO5/SR identically correctly reproduce the DW
dynamics: the DW radius is in good agreement, and, in both schemes, the DW does not split into an SW
and a weak DW precursor. WENO5 without special modifications fails on such a grid, generating a false
precursor with a radius of about 40. The relation between the Courant numbers in SDIRK3B4 and
WENO5/SR is the same as in Problem 2, i.e., the Courant number in the bicompact scheme is 20 times
larger.

Problem 5. The gas model in this two-dimensional test is the same as in Problem 3. The initial condi-
tion is specified as a discontinuity in the  plane in the form of a straight line with a corner (see also
Fig. 5):
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Fig. 3. Profiles of gas temperature and reactants mass fractions in Problem 3 at t = 3: the reference solution (solid) and
the solutions produced by the bicompact scheme SDIRK3B4 (squares), the WENO5/SR scheme (circles), and the
WENO5 scheme (dashed).
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Fig. 4. Plots of gas temperature and reactants mass fractions in Problem 4 at t = 2 produced by SDIRK3B4. The right
panel also depicts the DW front position for WENO5/SR (circles) and WENO5 (triangles).
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Fig. 5. Plots of gas temperature in Problem 5 at the times t = 0, 1, 2 (from top to bottom) produced by SDIRK3B4 and
the approximate DW front position for WENO5/SR (circles).
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Fig. 6. Continuation of Fig. 5, the time moments t = 3, 4, 5.
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set the incoming f low with the same parameters as at t = 0 to the left of the discontinuity; and the free
outflow condition is specified on the right boundary (x = 150). The decay of the initial discontinuity gives
rise to a DW of varying shape propagating to the right along this channel.

The computation based on SDIRK3B4 was performed on a uniform grid consisting of N = 300 × 50
cells (as in [7]). The other parameters of the scheme were the same as in Problem 3.

Figures 5–7 present the plots of the gas temperature produced by SDIRK3B4 at the times
 and the approximate DW front position for WENO5/SR shown by circles.0,1,2,...,8t =
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Fig. 7. Continuation of Fig. 6, the time moments t = 6, 7, 8.
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A comparison with the results of [7] and the general form of the computed f low pattern suggest that the
bicompact scheme SDIRK3B4 ensures physically correct propagation of DW. As in Problem 3, the Cou-
rant number in SDIRK3B4 is 40 times as large as in WENO5/SR.

5. CONCLUSIONS

In this work, we developed the idea proposed in [15] about the suppression of a nonphysical DW pre-
cursor manifested on relatively coarse grids by computing convection at large Courant numbers. This idea
was generalized to a more complicated gas model with an arbitrary number of species and chemical reac-
tions.

The idea is numerically implemented by applying, in fact, the same implicit scheme as in [15]. It is con-
structed using the second-order Marchuk–Strang splitting with respect to physical processes. The con-
vection part of the Euler system is computed by applying the shock-capturing bicompact scheme
SDIRK3B4 of fourth-order accuracy in space. The time discretization in this scheme is based on a singly
diagonally implicit stiff ly accurate L-stable Runge–Kutta method of the third order. The chemical part is
integrated using the second-order Runge–Kutta method with the same properties. The SDIRK3B4
scheme involves a conservative limiting method and efficient locally one-dimensional splitting in space
with symmetrization.

Five problems concerning DW propagation were solved: three one-dimensional and two two-dimen-
sional. The number of gas species varied from three to five, and the number of reactions, from one to two.
These problems were used to demonstrate the capabilities of bicompact schemes and to compare
SDIRK3B4 with the WENO5/SR scheme from [7].

The numerical results suggest three conclusions. First, the idea of [15] can be extended to more com-
plicated chemical models. Second, at the same actual accuracy, the Courant number in SDIRK3B4 is
20–40 times larger than in WENO5/SR. Third, SDIRK3B4 automatically reproduces the physically cor-
rect DW dynamics without resorting to special correcting procedures necessary in WENO5/SR.
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