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Abstract—The impact of the choice of the proximity measure for the numerical and reference solu-
tions is discussed in terms of the verification of the calculations and software. If no reference solution
is available, the deterministic and stochastic options for estimating computational errors are consid-
ered using an ensemble of solutions obtained by different numerical algorithms. The relation between
the norm of the solution error and the error of valuable functionals is studied via the Cauchy–Bunya-
kovsky–Schwarz inequality. The results of numerical tests for the two-dimensional Euler equations,
which demonstrate how the choice of the proximity measure affects the estimation of the approxima-
tion error on the ensemble of solutions and show the efficiency of the considered algorithms, are pre-
sented. The comparison of different proximity measures (norms and metrics) both for estimating the
computational error and for comparing the f low fields that correspond to both small variations in the
flow structure and qualitatively different f low patterns is a new element of the paper. The application
of the errors of valuable functionals for the evaluation of the approximation errors in practical terms is
also novel. The feasibility for computationally cheap (single-grid, in contrast to the Richardson
extrapolation method) quantitative verification of solutions considered and analyzed in the paper
seems useful for the implementation of the Russian standards for numerical solution verification and
CFD code validation.
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1. INTRODUCTION
The State Standards (GOSTs) currently introduced by the Federal Technical Regulation and Metrol-

ogy Agency (e.g., [1]) imply the verification and validation of computational f luid dynamics’ codes using
a comparison with the set of test problems corresponding to either exact (analytical) solutions or reference
numerical solutions. A detailed review of the works in this direction can be found in [2]. These GOSTs are
potentially capable of determining the immediate prospects of computational f luid dynamics in Russia.
However, the approach recommended in the standards has two obvious drawbacks: it does not provide a
method for quantitatively comparing the verified calculation with the test problem and it does not indicate
what to do if there is no reference solution. Here we will discuss possible ways to eliminate these disadvan-
tages with an example of calculating an inviscid supersonic f low.

Let us start by analyzing the possibilities for the quantitative comparison of solutions. The absence of
a specific quantitative method for comparing the verified calculation with the test problem significantly
complicates actions [1] such as checking the ability of a numerical scheme and a code to maintain the state
of rest. It is not clear in which norm and with which accuracy this rest is defined. Strictly speaking, it is
possible to demand the conservation of rest with machine precision; however, this requirement is clearly
excessive from a practical point of view.

It is typical that the correlation of solutions is often made by a visual comparison of two flow fields,
which leaves plenty of room for subjectivity. For example, numerical solutions are quite often compared
in terms of the presence of oscillations in the shock and in the degree of its smearing. The solutions pro-
duced by TVD schemes look best from this perspective. However, oscillating solutions can converge in the

 and  norms in some cases better than monotonic (TVD) solutions [3].
Thus, the question arises of determining a quantitative measure of proximity between the numerical

and reference solutions. If the reference solution is exact (analytical), the traditional measure of proximity
can be any norm of the computational error (the deviation of the numerical solution from the exact one),
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for example, in , , , etc. These norms define the corresponding distances (metrics) in the solution
space, which can also be used to compare numerical solutions with each other. However, the distances
between solutions can be defined without referring to norms but using, for example, a Mahalanobis-type
metric or a Riemannian metric. This expands the capabilities of the analysis. Thus, there are many differ-
ent options for choosing a quantitative measure of proximity between solutions. At the moment, there is
no generally accepted standard (or even an established terminology) for proximity measures when numer-
ical solutions (f low fields) of the aerogasdynamics equations are compared. Below we discuss the advan-
tages and disadvantages of some measures in order to find the optimal variant.

The use of the norm for a quantitative comparison of f lows is complicated by the fact that, in the case
of aerogasdynamics, the norm of the deviation of one solution from another does not have a clear physical
meaning (it contains, for example, the sum of the density and temperature errors) and is not directly
related to the valuable f low functionals used in practice such as for instance lift or drag. Accordingly, there
are no intuitive ideas about what value of the error norm is acceptable and what is not.

Of course, quantitative verification criteria can be obtained using such valuable functionals for which
there is information about the tolerated error and whose physical meaning is clear (drag coefficient, lift,
etc.). However, the proximity of solutions in terms of one functional does not imply the proximity in terms
of another, which significantly limits the generality of the verification results. Therefore, the use of norms
or distances (metrics) as a measure for the proximity of solutions is more expedient. However, it should
be noted that the number of possible metrics and norms potentially suitable for a comparison of solutions
is very large and their properties differ significantly. For example, the convergence of numerical solutions
in norms , , and  depends on the regularity of the considered solution. However, the variation of
the valuable functional  can be related to the error norm of the solution via the Cauchy–Bunyakovsky
inequality , which allows us to combine the approaches to the comparison of solutions
based on the norm and on the error of the valuable functional, respectively. Unfortunately, the Cauchy–
Bunyakovsky inequality can be applied only to those norms that are generated by the inner product.
Therefore, the  norm does not allow the use of the Cauchy-Bunyakovsky inequality, despite the fact that
it seems to be the most natural, since it is in this norm that the main results on the convergence of schemes
for the compressible Euler equations of gas dynamics were obtained. From this point of view, the  norm
is better; however, there may be no convergence in grid spacing in  for solutions containing discontinu-
ities. Accordingly, the analysis should be performed without taking into account the asymptotics that arise
when the mesh is refined.

Another natural (and strong) limitation of the approach to verification of the solution and software
based on comparing the numerical solution with the reference solution (analytical or accurate numerical
solution [1]) is the use (availability) of the reference solution. For software verification [1], the use of the
reference solution makes sense if the solutions in the area of software applicability are close in a certain
sense to the reference ones, at least in structure. Taking into account the fact that the class of aerogasdy-
namics problems having analytical solutions is extremely narrow and the accurate numerical solution itself
needs verification (this applies both to solutions obtained using highly accurate algorithms and to solu-
tions obtained on a fine grid), it seems unrealistic to rely on such closeness for practical problems. In this
regard, methods of software and solution verification that work without reference solutions are of interest.

The American National Standard [4] and the AIAA Guide [5] propose the use of Richardson’s extrap-
olation for verification without reference solutions. However, for aerogasdynamics problems, it is
extremely expensive from the computational point of view [6].

Verification on an ensemble of solutions obtained by independent algorithms on the same grid [7, 8]
can be one of the alternative versions.

2. QUANTITATIVE COMPARISON OF SOLUTIONS
Let us consider the possibilities of a quantitative comparison of the numerical f low fields using differ-

ent measures of proximity.

The numerical solution is denoted by the vector (grid function) ,  is the scheme’s index,
 is the number of discrete variables (the product of the number of grid nodes by the number of

gas-dynamic variables), and the values of the unknown true solution at grid nodes are denoted by the vec-
tor  then the computational error is  As proximity measures, we use the dis-
tances between the solutions generated by the  and  norms and by some metrics .
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The optimal proximity measure must make it possible to reliably distinguish the f low structure and
provide a comparison of the qualitatively close f low fields obtained on different grids or by different meth-
ods. From this point of view, we compare the distances generated by the  and  norms, for example,

(1)

and the Mahalanobis-type metric [9]

(2)
corresponding to a certain smoothing of the f low field. In this paper, the image Euclidean distance
(IMED) metric [10] is used, which is described by the metric tensor

(3)

where  is the distance between the grid nodes  and  and σ is a smoothing parameter (σ ≥ 0.5 in
the computations) that provides some smearing and, accordingly, the stability of the distance estimate to
small variations of the variables in the f low field. This distance corresponds to the spatially averaged error.
Asymptotically, IMED tends to L2 as σ → 0.

Metrics of this type correspond to the Euclidean metric in some transformed space. They are generated
by the scalar product and admit the generalized form of the Cauchy–Bunyakovsky inequality

(4)
Therefore, estimates of the computational error in the Mahalanobis-type metric allow us to estimate the
error of valuable functionals.

The Riemannian metric based on the relative error (REM) is also considered:

(5)

Strictly speaking, this metric is local but, for small deviations of the comparable solutions, it can be
considered as a Mahalanobis-type metric.

3. TEST PROBLEMS
The test problems deals with f lows governed by the two-dimensional Euler equations in the stationary

limit

(6)

(7)

(8)

Here, ; U 1 = U and U 2 = V are the velocity components; , ,

, and  are enthalpies and energies; P =  is the equation of state; and

.
As test examples, we considered the interaction of shock waves of kind I according to the Edney clas-

sification [11] and the supersonic f low around a thin plate.
It is of particular interest to estimate the error of valuable functionals used in practice such as the lift

and drag. As a rule, the range of reasonable and unreasonable error values is clear for these quantities. This
permits in several cases to infer if the value of the error norm is reasonable or not, which we will apply
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below for some calibration of the error estimates obtained in terms of norms. A comparison of the errors
of the lift coefficients  =  and the drag coefficients  (where

) is performed in a series of computations for the f low around a thin plate at the angle
of attack (with M = 3 and ). The following data from linear theory [12] are taken as the exact values
of the functionals:

(9)
We compare the error of the valuable functionals and the error norm using the Cauchy–Bunyakovsky

inequality. For this, we need estimates for the error norm and for the norm of the valuable functional gra-
dient. The estimation of the norm of the solution error is of special interest here, since we do not use the
reference solution.

4. ERROR ESTIMATION ON AN ENSEMBLE OF SOLUTIONS IN THE ABSENCE 
OF THE REFERENCE SOLUTION

If no reference solution is available, we use an ensemble of numerical solutions obtained by schemes of
different approximation orders on the same grid.

As a measure for the proximity of solutions, we use both the norm of the error 

and the distance between the solutions . To unify the notation, we assume that the norm of the
error defines the distance  from the exact solution to the numerical solution and

denote this distance as .

4.1. Triangle Inequality
The triangle inequality makes it easy to obtain the following relation [7, 8]: for two numerical solutions
 and  for which the relation  between the errors’ magnitudes (the distances between the

exact and numerical solutions) is a priori known, the exact solution is located inside the hypersphere of
radius  centered in the more accurate solution :

(10)
An obvious weakness of (10) is the assumption that we know how the solutions are ranged according

to their error magnitudes; however, the analysis of the distances between the numerical solutions in certain
cases allows us to reveal this solutions’ ordering. Consider the case when the solution u(1) is significantly
less accurate than any of the others (δ0,1@ δ0,i). It is easy to see that the set of distances  splits into

— a cluster of large distances  (from accurate solutions to the rough one) and
— a cluster of small distances  (between more accurate solutions).

Let  denote the maximum error in the subset of more accurate solutions. We take the maximum of
 as the upper bound  of the first cluster (the set of distances between accurate solutions). The

minimum of  is taken as the lower bound  of the second cluster (of the distances between the accurate
solutions and the most inaccurate one).

In this case, instead of , the following heuristic criterion stated in [7, 8] can be used.

If , then the true solution lies in the hypersphere of radius  centered at : , where

 belongs to the cluster of more accurate solutions and  is the most inaccurate solution.

4.2. Measure’s Concentration
As another option for error estimation, the maximum distance between solutions obtained by different

computational algorithms can be used. The grid functions used for discretizing multidimensional partial
differential equations also belong to a high-dimensional space (from N ~ 106 and higher). The so-called
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concentration effect of the measure of the solutions’ proximity [13, 14] depends on the choice of the algo-
rithms compared on the set of solutions. The numerical solutions of the aerogasdynamic equations
obtained by different methods describe a unique solution and, therefore, exhibit a high degree of correla-
tion. Denote the system of equations by ; the numerical solution obtained by the kth algorithm is

determined by the discrete operator . The truncation error  is
obtained by expanding the numerical solution u(k) in a Taylor series and substituting the result into the
main system of equations. The transformation  requires an algorithm of infinite length, which
can be interpreted as the algorithmic independence [15] of δu(k). At first sight, this also pertains to the dis-
cretization error . Consider an ensemble of M numerical solutions produced
on the same grid by independent difference schemes (in the simplest case, schemes of different orders). If
we assume that the algorithmic independence of discretization error  ensures the arbitrariness of the
choice, then the fact that the error belongs to spaces of very large dimensions provides nonstandard pos-
sibilities for determining the error norm and the position of the true solution. It is known that the distance
d1,2 between two arbitrarily chosen vectors  and  in spaces of a sufficiently large dimen-

sion N is greater with probability 1 than the length of these vectors . This is due to the fact that
the chord in these spaces is almost always larger than the radius [14] and two arbitrarily chosen unit vec-
tors are orthogonal with a high probability [13], namely,

(11)

In our case, we take into account that the difference between the numerical solutions is equal to the
difference between the discretization errors of these solutions  .
We also assume that the error norm is bounded:  (the errors belong to some hypersphere of
radius  centered at zero). In this case, if discretization errors are chosen arbitrarily, the distance

  between the two numerical solutions  and  is greater
with probability 1 than the distance between the exact and numerical solutions

(12)

Despite the different initial prerequisites, expression (12) is quite close to expression (10) despite being
somewhat stronger. However, expression (10) has a deterministic character, while expression (12) is ful-
filled with probability 1.

The calculation data show that, for the ensemble of numerical solutions obtained by independent
methods, the maximum distance between the solutions  can serve as the upper estimate of the dis-
cretization error with the efficiency index [16]  (its acceptable value according
to [16] is ). The left bound of the expression is due to the fact that the discretization error of the
solutions obtained by modern algorithms is determined not only by the truncation error but also by arti-
ficial monotonizers, which limits its degree of independence. As the ensemble expands, the magnitude on
the left bound approaches unity.

In addition to the purely technical goal related to the use of the Cauchy–Bunyakovsky inequality for
calibrating the errors, expressions (10) and (12) can be used for verification in the absence of the reference
solution.

5. NUMERICAL TESTS: ESTIMATES OF THE COMPUTATIONAL ERROR
As the test example, the interaction of shock waves of kind I according to the Edney classification [11]

(the regular intersection of oblique shock waves) is considered. For this problem, it is quite easy to con-
struct analytical solutions, whose projections onto the computational grid are treated as the true solutions.

The numerical solution (grid function) was regarded as the vector  (  is the ordinal scheme
number and  is the number of grid nodes). The values of the exact solution  at the grid nodes
form a vector of the same size. We compare these vectors using the proximity measures generated by the

 and  norms, as well as by the REM metric (5) and the IMED metric (3) from [10].
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Table 1

S1 S2 S3 S4

0.110 0.047 0.057 0.041 0.105 0.19 0.86
0.251 0.156 0.186 0.171 0.256 0.41 1.155

REM– 0.171 0.101 0.114 0.105 0.155 0.24 0.904
IMED 0.172 0.077 0.092 0.087 0.195 0.35 1.18

( )( )id u u−  2 1α + ° 2 2α + ° 2 0α = °

1L

2L

2L

Table 2

S1 S2 S3 S4

0.033 0.0139 0.016 0.0125 0.068 0.138 0.56

0.11 0.077 0.094 0.090 0.223 0.35 0.83

REM– 0.099 0.060 0.071 0.068 0.162 0.258 0.75
IMED 0.081 0.0457 0.058 0.056 0.205 0.342 0.845

( )( )id u u−  2 1α + ° 2 2α + ° 2 0α = °

1L

2L

2L
We considered the deviation of the computed solution from the exact solution as the distance 
from the true to the numerical solution for the set of numerical schemes of different orders, grids of dif-
ferent sizes, and different f low patterns.

The computations were performed on uniform meshes containing 100 × 100 and 400 × 400 spatial
nodes by using schemes of accuracy orders of 1–4:

— the first-order accurate scheme of the Courant–Isaacson–Rees (CIR) type from [17] in the variant
described in [18], denoted as ;

— the second-order accurate scheme based on the MUSCL method [19] (using AUFS [20] at the
boundaries and denoted as S2);

— the third-order accurate modified Chakravarthy–Osher scheme S3 [21];
— the fourth-order accurate scheme [22] denoted as S4.
Table 1 presents the solution error for the f low of Edney-I type (M = 3, f low deflection angles 

and ,  grid).
The results of a comparison with the exact solution of the computed solutions by four different

schemes, the results of f low computations with small changes of  by the second-order scheme, and the
results of a comparison of the f low with another structure (α2 = 0°) are presented. Table 2 shows the same
data for a  grid.

It can be seen from the analysis of these data that the  norm provides the best estimate of the error.
Unfortunately, this norm does not allow the use of the Cauchy–Bunyakovsky inequality; accordingly, it
is not possible to connect its value with the errors of valuable functionals and to give a physical meaning
to the obtained magnitudes. Therefore, further, we analyze only the proximity measures (norms and met-
rics) generated by the scalar product.

The data in Tables 1 and 2 show that all the proximity measures used make it possible to distinguish the
following changes and errors:

(1) the approximation errors of different schemes with a proximity measure of the order of  (only
a few percent for REM– ),

(2) insignificant deviations of the f low parameters  (tens of percent for REM– ), and
(3) strong changes in the f low structure  (hundreds of percent).
The percentage error can be interpreted only for REM– .
The surprising (at first glance) closeness of the results obtained with the REM–  and , as well as

IMED, is explained by the fact that  and IMED are applied to the dimensionless f low parameters
obtained in the calculation.

( )( )id u u− 

1S

1 20α = °
2 15α = ° 100 100×

2α

400 400×

1L
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2L
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Table 3

LCΔ  L LC CΔ  
2L LdC

2LpΔ
2L LC∇

46.4 10−× 35.2 10−× 22.46 10−× 22.77 10−× 18.91 10−×

Table 4

DCΔ  D DC CΔ  
2D LdC

2LpΔ
2D LC∇

58.3 10−× 37.8 10−× 32.15 10−× 22.77 10−× 27.79 10−×
In general, for small deviations of the parameters (concerning the estimation of the approximation
error), the IMED metric operates slightly better than the other tested metrics.

5.1. Numerical Tests. Estimates for the Errors of Valuable Functionals
Let us consider the relationship between the error of valuable functionals and the approximation error

in the  norm via the Cauchy–Bunyakovsky inequality. For this, we use the drag coefficient
 and the lift coefficient  for a thin plate at the angle of attack as valuable

functionals . These valuable functionals are determined by integrating the pressure
over the plate surface. Due to the boundedness of its length, , the expression 
implies that the error norm of the solution  (respectively, ) gives the upper estimate for the error
of the valuable functionals.

The resulting estimates are presented in Tables 3 and 4 for M = 3, , and the grid . Here,
 and .

If there is no analytical solution for the f low field under consideration, the maximum norm of the dif-
ference of numerical solutions on the ensemble of computations performed by independent methods [19,
20] and [19, 23] is taken as the error norm. The expressions  and

 are satisfied. This allows us to impart a practical meaning to the estimates
of , at least for the simplest functional of the integral type.

6. DISCUSSION
The error of the lift and drag coefficients is significantly smaller than the estimate obtained by using

the Cauchy–Bunyakovsky inequality, which is related to the averaging and mutual compensation of the
local errors and is quite natural.

The Cauchy–Bunyakovsky inequality allows us to reliably find the upper bound of the considered
valuable functionals with using  obtained in the way indicated above. For functionals of the consid-
ered form (pressure integrals),  is less than unity.

The relative simplicity of calculating the gradient of the valuable functional over the available f low field
makes it easy to apply these estimates to any set of functionals.

The verification on an ensemble of solutions obtained by independent algorithms [7, 8] can be implemented if
we are a priori sure of the existence of an exact unique solution somewhere in the vicinity of this ensemble.

7. CONCLUSIONS
To compare solutions, it is most promising to use proximity measures (the distances between solutions)

determined by  or IMED [10]. These distances are related to the scalar products and are thus allowed
to be related to the errors of the valuable functionals used in practice.

If the deviation from the reference solution in IMED or  is by a magnitude of the order of  (sev-
eral percent in REM- ), the verification problem can be considered completed.

2L
( )D xC F Sqε = = ( )L yC F Sqε = =

∞ ∞ ∞= ρ +2 2( ( ) 2)q U V
1p∇ ε < ( ) pp pΔε ≤ ∇ ε ⋅ Δ
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ON A COMPARISON OF SOLUTIONS IN VERIFICATION PROBLEMS 161
If no reference solution is available, verification can be performed on the set of solutions obtained by differ-
ent methods [7, 8]. This concerns both software verification with an insufficiently fine grid of test problems and
verification of a separate calculation. The verification can be considered implemented if there are distances
between solutions within the considered set of variants as a magnitude of the order of .

The Cauchy–Bunyakovsky inequality makes it possible to deduce reliable estimates for the errors of
the valuable f low functionals from the known norm of the solution error.
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