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Abstract—The problem of predictive modeling under condition of the nonlinearity of the mass−trans-
fer plant (MTP) based on the experimental data is considered. To analyze the structural identifiability
of the process under study and identify factors that affect the accuracy of the structural identifiability
index with an unknown model structure, a technique based on an alternating conditional expectation
(ACE) algorithm with a threshold value for the structural identifiability index of the MTP model is
proposed. The threshold value of the structural identifiability index is determined based on the rigor-
ous model of the plant, i.e., taking into account the physicochemical characteristics of the MTP. The
proposed approach is illustrated using synthetic data and experimental data.

Keywords: ACE algorithm, index of structural identifiability, mass−transfer plant, predictive modeling
DOI: 10.1134/S2070048220060137

1. INTRODUCTION
Due to increasing demands on the quality of the main types of petroleum products, the oil refining and

petrochemical industries are forced to continuously improve the economic efficiency of production and
the quality of products [1]. Production efficiency can be improved with the help of virtual monitoring sys-
tems and systems to check the quality of the output products and mass transfer processes such as distilla-
tion and absorption [2].

The development of new methods of predictive modeling, which means the use of statistical methods
for model design oriented to estimate the quality indicators of the output variable of a plant taking into
account the current values of the input variables [3], will provide a real-time noticeable increase in pro-
duction efficiency.

The selection of input variables X = (x1, …, xp) affecting the output value Y, and the choice of the struc-
ture of the model can be based on correlational and regression analysis [4]. However, for nonlinear plants,
the use of these methods does not allow us to determine the structure of the model. This leads to the ambi-
guity of obtaining estimates of the unknown parameters of the model B = (β0β1, …, βp), when the same
sample of the experimental data corresponds equally well not to one but to the set of models at once

. This situation indicates the unidentifiable structure of the model. Structural identifiability
occurs when two models  and  with the same structure  are called indistinguishable by
output (we denote this property )  if for any valid input  the models have the
same outputs  for any  [5–7]. Structural identifiability means the identifiability
of the structure not of a single model but of the whole family of models [8].

For the analysis of structural identification, many different methods and algorithms for dynamic sys-
tems are proposed. For linear systems, the analysis of structural identifiability is understood quite well.
There are a number of methods for its analysis, for example, the transfer function method [9], similarity
transformation, and approaches based on the theory of differential algebra and graph theory [10].

However, for nonlinear plants it is much more difficult to analyze structural identifiability. This is due
to the fact that the number of unknown model parameters may be more than the number of equations in
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Fig. 1. Technological scheme of MTP.
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the system [11]. For such plants, structural identifiability analysis is carried out using methods such as the
decomposition of the output function Y into a Taylor series and studying the eigenvalues of the Fisher
information matrix [12].

To analyze the identifiability of large-dimensional models, we apply the probabilistic algorithm
method [13], which calculates the parameters for a system with an unknown structure of the plant model.
The algorithm is based on the algebraic calculation of the rank of a certain power series of output func-
tions. The rank is required to calculate the degree of transcendence (the degree of freedom of the expan-
sion area related to the parameter). Despite the fact that this algorithm is widely used, it does not allow us
to determine the source of nonidentifiability and does not group the parameters according to their func-
tional relationships, nor does it provide transformations or reparameterization to make the model identi-
fiable.

In the case when it is required to build a model for an industrial mass transfer process with an unknown
model structure, the problem of structural identifiability remains relevant [14].

Among the available numerical nonparametric methods for extracting dependences from data for mass
transfer processes and estimating the identifiability of plants, the most effective approach is based on the
alternating conditional expectation (ACE) algorithm [15].

In relation to this, it is proposed to use the ACE algorithm and an additional input variable, which is
not correlated to the response, to analyze the structural identifiability of the studied plant. The character-
istic feature of this study is the analysis of the structural identifiability of the model to estimate the quality
indicator of the output product of a nonlinear mass–transfer plant (MTP) based on the experimental data.
In addition, the analysis of the structural identifiability of models is not limited to clarifying the funda-
mental possibility of an unambiguous estimation of parameters . Considerable attention is paid to
identifying the defined transformations , describing the studied plant and affecting the accuracy
of the structural identifiability index. For this, the concept of the threshold value of the structural identi-
fiability index of the MTP model is introduced. It is based on taking into account the physicochemical
characteristics of the MTP under consideration.

2. DESCRIPTION OF MASS-TRANSFER PLANT AND PROBLEM STATEMENT

The problem of constructing a model for estimating the reagent’s content (%) in the output product
(bottom product) of the MTP in the case when the structure of the model is unknown is considered. The
investigated MTP is shown in Fig. 1 and consists of two distillation columns (C-1 and C-2) and a synthesis
reactor located between them.

The structure of the rigorous model of the plant is rather complicated for practical application. In the
general form, it can be represented as a system of equations for each kth stage of separation for each lth
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PREDICTIVE MODELING OF MASS-TRANSFER OF PLANT 917
component, which includes material balance equations, energy balance equations, and phase equilibrium
equations [16]:

(1)

where  is the concentration of the lth component on the kth stage in the vapor phase;  is the f low
of the f luid entering the kth stage;  is the concentration of the lth component arriving at the kth stage
in the liquid phase;  is the f low of the steam leaving the kth stage;  is the concentration of the lth
component leaving the kth stage in the vapor phase;  is the consumption of raw materials supplied to
the kth stage;  is the amount of the lth component in raw materials supplied to kth stage;  is the f low
of the f luid on the kth stage;  is the concentration of the lth component on the kth stage in the liquid

phase;  is the f low of the steam on the kth stage;  is the activity coefficient of the lth component in

the liquid phase on the kth stage (the UNIQUAC model is used);  is the partial pressure of the lth com-
ponent;  is the total pressure in the system;  is the efficiency of the mass transfer according to Mur-
phree on the kth stage;  is the enthalpy of the f luid entering the kth stage;  is the enthalpy of the
vapor leaving kth stage;  is the enthalpy of the power on the kth stage;  is the enthalpy of the liquid
on the kth stage;  is the enthalpy of the vapor at the kth stage; c is the total number of components in
the system; and N is the total number of stages in the distillation column.

The main problem with using the rigorous model is that  is an unknown quantity. Also, the compo-
sition of feed is not known; therefore, it is impossible to use the analytical model directly to estimate the
concentration of the reagent in the bottom product. Therefore, in practice, linear regression models of the
form

(2)

where  are the input variables available for measurement at each time period;  is the estimated value of
the output variable of plant ; p is the number of input variables;  is a free coefficient of the model; and

 are the coefficients of the model’s parameters.
In the case of using multiple regression, the structure of the model must be determined, which reduces

the problem to estimating the coefficients of the model’s parameters. When the relationship between the
response and the predictors is unknown or inaccurate, linear parametric regression can lead to erroneous
results. The most effective approach for analyzing the structural identifiability of models for assessing
quality indicators in the output of nonlinear MTPs under structural uncertainty is a nonparametric
approach based on the ACE algorithm. This is justified by the fact that the optimal transformations
obtained as a result of using ACEs do not require a priori assumptions about the form of functions that
connect the output and input variables.

Then for p input variables , and output , the model of a plant has the following form:

(3)

where  is the vector of input controlled technological variables;  is the
vector of coefficients; and  is the measurement error of the output variable.
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The task consists of finding the possibility of constructing an adequate mathematical model for assess-
ing the concentration of the reagent in the cubic product of the process under study on a training sample.
An analysis of the structural identifiability of the plant is proposed to be carried out based on the calcula-
tion of the structural identifiability index using the ACE algorithm and the introduction of an additional
input variable that is not correlated to the output. The structural identifiability index HY refers to the
degree of dependence of the output on a different set of input variables. To assess the degree of the struc-
tural identifiability of the plant, the calculated values HY are compared to the threshold structural identi-
fiability index Hlv, which is proposed to be determined based on the analytical model of the MTP under
consideration (1), taking into account the physicochemical characteristics of the process.

3. DESCRIPTION OF ALGORITHM OF ALTERNATING CONDITIONAL
MATHEMATICAL EXPECTATIONS

The ACE regression model has the following general form:

(4)

where  is the function with the response variable ;  are the functions of the input variables (predictors)
.

Thus, the ACE model replaces the problem of estimating a linear function -dimensional variable
 of the assessment  of individual one-dimensional functions  and  using an iterative

method. These transformations are achieved by minimizing the unexplained deviation of the linear rela-
tionship of the transformed response variable from the sum of the transformed variable predictors.

For the given dataset consisting of the response variable  and variable predictors , the ACE
algorithm begins with the definition of arbitrary initial transformations . The error

variance , which remained unexplained by the regression of the transformed dependent variables, is
equal to the sum of the transformed independent variables provided that :

(5)

The minimization of  taking into consideration  and  is calculated through a
series of minimizations of unit functions given by the equations

(6)

(7)

Equations (6) and (7) form the base of the ACE algorithm [15]. The final , and 

after minimization are estimates of the optimal transformation , and . The response
and predictors are related as follows:

(8)

where  is an error that cannot be fixed using ACE transformations under the assumption of a normal
distribution. The minimum regression errors  and maximum multidimensional correlation coefficient
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The optimal ACE transformations are obtained numerically based on the data of the technological
plant and do not require a priori assumptions about the specific functional form that relates the response
to the predictors [17].

4. ALGORITHM FOR ANALYZING THE STRUCTURAL IDENTIFIABILITY
OF A NONLINEAR PROCESS

For the analysis of structural identifiability, the base matrix (the data matrix formed from the sample
containing the values of the input and output variables) and the number of perturbed data matrices M
obtained from the base matrix by adding small random numbers to its elements are used as the initial
information.

Step 1. Transform the base matrix into an extended data matrix with the dimension K(p + 2), where K
is the number of observations,  is the number of predictors, p + 1 is an additional normally distributed
input not correlated to output ξ with mathematical expectation  and dispersion 

, and p + 2 is the response variable Y.
Step 2. Obtain the base set of vectors of optimal transformations for each input of the studied plant

 by applying the ACE algorithm to an extended data matrix,

(9)

and the vector of differences (base matrix of the optimal transformations)

(10)
where

(11)

Step 3. From the base matrix we form the set of size matrices K(p + 2) to obtain the vectors of the opti-
mal transformations using the disturbing influences. To achieve this, we add the small random numbers

 to variables  and reduce the resulting numbers by

0.02% of the average for y , ,  (the transformed

matrix with the addition of small random numbers ).
Step 4. We find the set of vectors of the optimal transformations and differences:

(12)

(13)

where , , , and  is the sign of the transposition.

Step 5. Normalize vectors  and  and transform the resulting difference vectors (10) and (13) to
the following form:

(14)
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Table 1. Coefficients of correlation

Correlational relationships
Variables

Pair Correlation Coefficients 0.5178 0.1161 0.1339 0.0207 0.0536 1.0000
Correlation 0.5586 0.4111 0.4314 0.3991 0.0780 1.0000

1x 2x 3x 4x 5x Y
Step 6. Find the deviations of the differences (14) of the base optimal transformations from differences
(15) for each :

(16)
from which we form the sequence of vectors

(17)

Step 7. Obtain a quantitative estimate of the deviations  from (17):

(18)

Step 8. Determine the structural identifiability index by the ith variable:

(19)

where ,  is calculated by (18), and .

Step 9. Compare the resulting structural identifiability indices  from (19) with the corresponding
threshold value . If , then the plant is identifiable, otherwise it is not identifiable based on the
data provided.

5. ANALYSIS OF THE STRUCTURAL IDENTIFIABILITY USING A SYNTHETIC EXAMPLE
In order to demonstrate the operation of the ACE algorithm, a synthetic example was used to deter-

mine the functional dependence between dependent and independent variables, in which functional
dependences are known.

Let the plant be defined by a functional dependence of the following form:

(20)

According to Eq. (20) and input variables , on which the restrictions 
are placed, a sample of volume  1000, representing a  matrix, is formed. An extended sample is
obtained by including in the original sample an additional—uncorrelated to output Y—input ,

and , where  is an additional input, uncorrelated with the output,
.

The analysis of the pair correlation coefficients and correlational relations obtained on the initial sam-
ple (Table 1) does not allow us to draw a conclusion on the possible structure of the model.

Applying the ACE algorithm to the extended sample, we form the base set of vectors of the optimal
transformations , graphically presented in Fig. 2 and indicating a fairly accurately found model
structure.

For the analysis of structural identifiability at M = 25 (where M is the number of iterations of cycle rep-
etition), 25 vectors of the optimal transformations were obtained; and they were compared with the base
estimates of the model.
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Fig. 2. The result of applying the ACE algorithm to the elements of the base matrix.
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Fig. 3. Dependence  and R2 on noisiness of synthetic data.
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Table 2 shows the results of applying the proposed approach.

The value  means that the parameter at input  is unidentifiable. The other values
 (the average sum of the distances between the points of the model’s base estimate from the model’s

current estimate for the output and each input) fully confirm the existence of a nonlinear model for the
studied plant and can serve as a sign of its identifiability. Quantities  ref lect the contribution of each
variable with respect to an unidentifiable auxiliary input. The results obtained correspond to description
(20). Thus, the plant is identifiable, since the value of the identifiability indicator for output ,

Δ =,5 0.0394mE 5x
Δ ,m iE

iH

= 224.58YH
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Table 2. Parameters of structural identifiability for 

Parameter

0.0009 0.0007 0.0023 0.0037 0.0394 0.0002

45.67 76.69 20.92 16.39 1.00 224.58
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Table 3. Coefficients of correlation

Correlational relationships
Variables

Pair Correlation Coefficients −0.7822 −0.0800 −0.0330 1.0000
Correlation 0.8496 0.2076 0.0969 1.0000

1x 2x 3x Y

Table 4. Parameters of structural identifiability for a real plant

Parameter

0.0012 0.0029 0.0236 0.0004

9.3378 11.4167 1.0000 68.1348

1x 2x 3x Y

Δ ,m iE

iH
which is significantly more than the specified threshold value  with an error of 15% when

.

The threshold value  is determined experimentally by varying  in the error range (%)  from
the average of each input variable. The results are shown in Fig. 3.

If , then the model is not identifiable. When , the higher  the more accurate
the model.

6. ANALYSIS OF STRUCTURAL IDENTIFIABILITY ON THE EXAMPLE OF THE MTP

When building a model for evaluating the concentration of the reagent in the still of the distillation col-
umn C−1 the data from a real technological plant were used. The temperature (x1 is TIC, °C) and pressure
(x2 is PI, MPa) bottom of the distillation column C−1 were selected as the input data parameters of the
model.

The analysis of the pair correlation coefficients and correlational relations obtained on the initial sam-
ple (Table 3) does not allow us to make a conclusion about the possible structure of the model.

=35.16lvH

<2 0.7R

lvH YH [ ]0; 35

< 35.16YH > 35.16YH YH
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Fig. 4. The result of applying the ACE algorithm to the elements of the base matrix of industrial data.
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Fig. 5. Dependence  and R2 on the noisiness of data of rigorous model.
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To assess the identifiability of M =125, 125 vectors of the optimal transformations were obtained and
they were compared with the base estimates of the model (Fig. 4).

Table 4 presents the results of applying the proposed approach.

Value  for input  allows us to conclude that its corresponding transformation φ3(x3)
(4) is not identifiable. The other values of  confirm the existence of a nonlinear model for the studied
plant. According to the values of index  presented in Table 4, we can conclude that the plant is struc-
turally identifiable since the value of the identifiability index indicator for the output of the test sample

, which is significantly more than the specified threshold value .

The threshold value  was determined on the generated data sample of a calibrated rigorous model
in the error interval (%)  from the average value of each input variable (Fig. 5).

In this case  when the data noise is 10%, which corresponds to the threshold value
.

Based on the experimental data of the technological process using various approximation methods
(linear, logarithmic, exponential, quadratic) of the variables transformed by the ACE algorithm for the
output variable Y and inputs x1 and x2 [17], a model of the following form was obtained:

(21)

Table 5 presents the coefficients of determination (R2) and the root-mean-square error (RMSE) of the
parametric models obtained by the least squares method (LSM), robust regression (RR), model (21), and
a nonparametric model based on the ACE algorithm [18] for the training (training) and test (test) samples.

According to the results presented in Table 5, it can be seen that the nonparametric model constructed
based on the ACE algorithm describes the studied MTP more accurately than the other methods. The
results of the operation of a nonparametric model based on the ACE algorithm and experimental data are
shown in Fig. 6.

Δ =,3 0.0236mE 3x
Δ ,m iE

iH

= 68.1348YH = 22.65lvH

lvH
[ ]0; 25

<2 0.7R
ν = 22.65lH

= − + + + −2 2
1 1 2 2 1 2

ˆ 551.78 9.95 0.05 369.01 77.24 3.51 .Y x x x x x x
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Table 5. Values R2 and RMSE for the presented models

Model RMSEtraining RMSEtest

Parametric
LSM 0.7988 0.0508 0.1728 0.2820
RR 0.7949 0.2286 0.1745 0.2542
Approximation 0.8309 0.4111 0.1584 0.2221

Nonparametric model based on ACE algorithm 0.9967 0.9482 0.0129 0.0659

2
trainingR 2

testR
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Fig. 6. The results of the operation of a nonparametric model constructed on the ACE algorithm to evaluate the quality
indicator of the output product in the test sample.
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7. CONCLUSIONS
The article presents a method for the analysis of the structural identifiability based on the ACE algo-

rithm with the addition of an additional input variable that is not correlated with the output under the con-
ditions of the unknown structure of the MTP model. The calculated value of the structural identifiability
index HY in the experimental data should not be less than its threshold value Hlν, which can be found in
advance using the rigorous (taking into account the physicochemical laws) MTP model. Carrying out an
analysis of the structural identifiability using the proposed ACE-based approach avoids the endless enu-
meration of model structures and allows us to determine the limit on the maximum accuracy of the model,
as demonstrated by a synthetic example and real experimental data of the technological process.

By the example of constructing models for estimating the concentration of a reagent in the bottom product
under the conditions of nonlinearity of the MTP, it is shown that the use of a nonparametric model based on
the ACE algorithm improves the accuracy of the model to  of
the RMSE compared to the nonlinear parametric model (21) on the test sample.
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