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Abstract—A method is presented for solving interior boundary-value problems for second-order ellip-
tic equations by transition to ray variables. The domain is divided into cells within which the coeffi-
cients and sources have the smoothness and continuity properties necessary for the existence of a reg-
ular classical solution in the cell. The finite discontinuities of the coefficients (if any) are located on
the cell boundaries. The regular solution in the cell is sought in the form of a superposition of the con-
tributions made by volume and boundary sources placed on the rays arriving at the given point from
the cell boundaries. Next, a finite analytic scheme for the numerical solution of the boundary value
problem in a domain with discontinuous coefficients and sources is constructed by matching the reg-
ular solutions emerging from cells at the cell boundaries. The scheme exhibits no hard dependence of
the accuracy of approximation on the sizes and shape of the cells, which is inherent in finite-difference
schemes.
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1. INTRODUCTION
The paper describes a method for solving an elliptic equation of a fairly general form by reducing the

boundary-value problem to a boundary-value problem for a system of kinetic equations. The kinetic equa-
tions possess characteristics. The solution to the system is sought by the transition to ray (characteristic)
variables.

The introduction contains the formulation of boundary value problems for an elliptic equation in a
region with discontinuous coefficients and a source. We partition the region into homogeneous cells, for-
mulate the conditions for sewing classical solutions emerging from neighboring cells and the boundary
conditions on the outer boundary of the domain.

In the first section, the correspondence is established between the elliptic equation and the system of
kinetic equations describing the propagation of disturbances along the rays. The equations are formulated
with respect to the distribution function of the disturbances. The zero moment of the distribution (the
integral over the angular variables) is equal to the sought function satisfying the elliptic equation and the
boundary conditions.

The kinetic equations have characteristics (hereinafter referred to as rays), which intersect the region
from the entry point to the exit point. On the ray, the equations take the form of ordinary differential equa-
tions of the second order. In the second section, we pass to ray variables, formulate a one-dimensional
boundary-value problem on the ray (instead of the original multidimensional boundary-value problem)
and stitching condition for sewing solutions at the intersection points of the cell boundaries. Formulas are
presented for solving typical problems on a chord: a ray segment between the cell boundaries. It is shown
that imposing the Dirichlet or Neumann conditions at the ends of the chord allows satisfying the stitching
condition.

In the third section, a finite analytic scheme is constructed for numerical solution of a one-dimen-
sional boundary-value problem on the ray, and, therefore, for finding a solution to a multidimensional
boundary-value problem in the domain. If we solve the set of problems on all the rays crossing the domain,
we will be able to find the distribution of perturbations in the domain. Numerical integration of the dis-
tribution over angular variables provides a solution to the original boundary-value problem for the elliptic
equation.
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598 SHILKOV
Analytic schemes that use analytical formulas of the differential equation solutions inside cells and
match these solutions on the cell boundaries have been addressed in relatively few publications (see [1–
15] and references therein). The schemes developed in the first publications [2, 3] were called exact
schemes. The term finite analytic scheme appeared later [8].

Basic Equations
Suppose that a process is described by the following system of linear partial differential equations in a

bounded region V of the three-dimensional Euclidean space:

(1)

Here,  is the coordinate vector,  stands for the sought scalar function (hereinafter,
referred to as density),  designates the sought vector function (f lux),  is the specified function
(distributed source),  denotes a symmetric positive definite tensor, and  is the unit vector. In (1)
and subsequent formulas, repeating coordinate indices  imply summation. Coefficients of equa-
tions  and  the source and tensor are bounded by positive constants . Coefficient

 can have any sign, while coefficient  can only assume positive values. The coefficients, the source,
and the tensor can have finite discontinuities on 2-dimensional surfaces. The domain may be other than
singly connected and can have, for instance, a toroidal shape. We restrict ourselves to considering a space
of dimension . Generalization to spaces of greater dimension can be performed without difficulty.

The need to solve Eqs. (1) arises in the mathematical modeling of many problems in physics and tech-
nology. Examples are heat transfer in technical installations, neutron transport in nuclear reactors, radi-
ative transfer in gases and plasma, simulation of chemical reactions, the spread of reagents and contami-
nants in natural media, mechanical vibrations of structures, and the propagation of electromagnetic
waves.

If we express the f lux  from the second equation of system (1) and substitute it into the first equa-
tion, then in the areas of smoothness/continuity of the functions of the system, it is reduced to a second-
order equation, i.e.,

(2)

Since the tensor  is positive definite, the operator of Eq. (2) is reduced locally (at a point) to
an elliptic type operator. Indeed, the tensor can be reduced to a diagonal form with positive numbers on
the diagonal by turning the local coordinate system. The further extension along the coordinate axes will
change Eq. (2) (locally) to the stationary Schrödinger equation; in the case of constant coefficients, to the
Helmholtz equation; and in the case , to the Poisson equation.

Partition of the Region into Cells
We restrict ourselves to considering problems in which the region V admits splitting into disjoint sub-

regions ,  (referred to hereinafter as cells) that tightly cover the region. The surfaces of the
discontinuities of the coefficients and the source (if any), as well as the changes in sign of coefficient ,
are located along the boundaries of the cells. The cells can be assigned to one of the following three types:

cells A with a positive coefficient , in which , where  is a small positive number ;

degenerate cells B, in which  and the solution of Eqs. (1) is close to the solution of Eq. (3);
i.e., the Poisson equation at ;
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cells C with a negative coefficient  in which .

For the cells, the conditions required for the existence of a classical solutions in them are satisfied. In
particular, within a cell, the coefficients and the source are continuous functions and the tensor  is
a smooth function. The boundary of the cell  consists of smooth surfaces in which the external normal
vector  changes continuously and the cell is visible at the solid angle  equal to half the full angle .
At the intersection points of the surfaces, the cell is visible at an angle that is greater than the number 
and less than .

Without loss of generality, we further assume that the tensor  is a normalized tensor with the unit
trace

(3)

If this is not so and the trace of the tensor is equal to the function , then the substitution ,
, and  yields the required normalization.

Stitching Conditions

On smooth surfaces of the internal boundaries of the region (the boundaries between the cells), we
define the natural stitching conditions for the solutions emerging from adjacent cells  and :

(4)

The first equation expresses the equality of the f lux components normal to the boundary, and the sec-
ond one expresses the equality of the normal components to the tensor function . (In many applica-
tions,  means the pressure tensor.) In (4), it is taken into account that the vectors of the external nor-
mal of the cells are opposite in direction. The natural stitching conditions are consistent with the equa-
tions of system (1).

Conditions on the External Boundary

On smooth surfaces of the outer boundary of the region , the following conditions are imposed on
the solutions of system (1):

(5)

(6)

Here, , , , and  are the specified bounded piecewise continuous functions and

 is the vector of the external normal. The cell index α is omitted  and  have the meaning of
boundary sources,  denote the positively definite tensor, and  means the coefficient of the boundary
reflection. At , there is no reflection. If  on a part of the boundary, then conditions (5)
change over to the Dirichlet boundary conditions. If  on a part of the boundary, then
conditions (5) correspond to the boundary conditions of the generalized Neumann problem [16, p. 436;
17, p. 158; 18, p. 9]. Here,  is the piecewise continuous function,  is the cotensor (inverse tensor)

of the tensor : . The case  corresponds to the conditions of the classical
Neumann problem. The case  and  is called skew-derivative conditions. The general case
is called mixed boundary conditions. Further, the term Dirichlet boundary conditions denote the situation
when the Dirichlet conditions are set on a section of the boundary. It should be distinguished from the
term Dirichlet boundary-value problem when this type of condition is posed on the entire boundary.
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600 SHILKOV
Existence and Uniqueness of the Solution

The existence of a classical solution of a boundary-value problem in one cell  and generalized solu-
tions in the full domain V with discontinuous coefficients are discussed in [16–22].

Let the general mixed boundary conditions (5) be imposed on the boundary of some cell. We represent
the solution of the boundary-value problem (1) and (5) in a cell as the sum , .
The functions  and  satisfy the inhomogeneous problem (1) and (5) with the source

, and the functions  and  satisfy the homogeneous boundary-value problem

(7)

where  is an eigenvalue. The solutions in a cell of type A, B, or C are subject to the following alter-
natives [16, p. 443; 17, p. 157; 18, p. 9].

(1) In cells A and B, the homogeneous problem (7) has no solutions except for the trivial solution
. The inhomogeneous problem (1) and (5) has a unique solution. The classical Neumann

problem in the degenerate cell B is an exception. The problem is solvable if the total power of the sources
 is equal to the total f lux across the boundary. In this case, the density  is determined with an accuracy

up to a constant.

(2) The cell C, , can have a number of eigenvalues  and nontrivial solutions to the
homogeneous problem (7) corresponding to them and that are interpreted as natural oscillations. The set
of solutions to a homogeneous problem consists of linear combinations of natural oscillations. Let some
combination of natural oscillations be excited in the cell. Then the inhomogeneous boundary-value prob-
lem (1) and (5) has a unique solution if the source Q  is orthogonal to any oscillation of the given combi-
nation. If the source orthogonality condition is not satisfied, then the inhomogeneous problem has only
the trivial solution.

Some analytical solutions of an inhomogeneous boundary-value problem for the cell  of a simple shape
and particular values of the tensor , source, coefficients, and boundary conditions were
obtained in [17, p. 125; 23, p. 140; 24, p. 896] using the method of Green functions or the method of sep-
aration of variables. The coefficients and sources of the equations are assumed to be constant, the cell has
the shape of a parallelepiped or a f lat, cylindrical, or spherical layer.

The aim of this paper is to find the solution to the inhomogeneous boundary-value problem (1)–(5)
in the region  with cells of type A, B, and C on the assumption that the solution exists and it is unique.

2. DISTRIBUTION OF DISTURBANCIES

We introduce the even and odd  distributions of disturbances. The distributions

are functions of coordinates and the unit vector 
( ) determining the direction of disturbance propagation;  ( ) is an azimuthal angle
measured from the axis  in the plane ; and  ( ) stands for the cosine of the angle between
the vector  and the axis . The distributions are defined in the domain , , , of the five-
dimensional Euclidean space.

We normalize the scalar and vector angular moments of the distributions for the desired density and
the desired f lux, respectively:

(8)
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where  is a positive even  function calculated through some symmetric metric ten-
sor . In addition to the lower moments (8), we also need the moments of the second–  and third

–  order distribution

(9)

Here,  are the spherical Legendre tensors ( , ). The tensor of the second order
moment  is expressed in terms of the zero-order moment  and the symmetric normalized tensor Cij,
which is a linear fractional of the even distribution of disturbances

(10)

Kinetic Problem
Let the distributions satisfy the system of even-odd kinetic equations be consistent with Eqs. (1)

(11)

Here,  and  are scalar and vector sources supplementing the main source , and  is
the function introduced in (8). Equations (11) describe the propagation of disturbances along the rays.
Disturbances are generated by the main and complementary sources.

The solution of system (11) is assumed to satisfy the following stitching conditions on the internal
boundaries between the adjacent cells  and :

(12)

where  is the distance measured along the ray  crossing a smooth surface of a common boundary
at the point  in direction  that is different from the tangential direction. The point 
belongs to the cell ; and the point , to the cell .

At the external boundaries of the domain, we impose the following conditions on the solutions of the
system:

(13)

The integration of the stitching conditions (12) over angular variables with weights  and 
gives the stitching conditions for the solutions of the initial problem (4), and integration of the boundary
conditions (13) with the unit weight gives the boundary conditions (5).

Let us select the metric tensor  and complementary sources  and  so that the result of
integrating Eqs. (11) over angular variables exactly reproduces Eqs. (1).
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602 SHILKOV
It is reasonable to set the metric tensor in the form

(14)

where  is a symmetric positive cotensor (inverse tensor) of the tensor  (1),  is a symmet-
ric normalized tensor (10),  is the correction parameter being selected, and  is the trace of the metric
tensor. The metric tensor (14), just as the tensors  and  (see (3), (10)), is a normalized tensor. Just as
the tensor , it is a fractional linear functional of an even distribution . If , then  turns
into the unit metric tensor of the Euclidean space  ( ).

The correction parameter  is introduced in (14) to ensure that the inequality

 is satisfied under strong deviations of the tensor  from the tensor ;
where  is a given small number. This parameter equals zero, , if the inequality

,  holds. Otherwise (large deviations  from ), the parameter is found

from the equation . By solving the equation, we find

(15)

where  is the minimum eigenvalue of the tensor .

Example. Let . Then

The adjusting factor assumes the values. The correction parameter is

 is the minimum eigenvalue of the tensor .

The correspondence to the first equation of system (1): by integrating the even kinetic equation (11)
over the angular variables

we obtain Eq. (1) if we define the complementary source as
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To represent the source in a form convenient for calculations, we expand the logarithmic function in a
series in spherical tensors. Due to the evenness of the function in  only even harmonics will be included
in the expansion, i.e.,

Here,  are the even moments of the function, and  are the spherical Legendre tensors (9).
By substituting the expansion in the integral we obtain

(16)

The source  is expressed in terms of the moments  and  of the odd distribution  and
derivatives of even moments .

Series (16) rapidly converges. We restrict ourselves to solving problems in which for calculating the
complementary source  it suffices to take into account expansion terms containing moments ,

 and , .
Correspondence to the Second Equation of (1): before integration, we multiply the second (odd) equa-

tion (11) by the factor :

By using (8) and (9) the equation is converted to the form

Taking into account the equalities

and the second equation in (1), we obtain the following expression for the complementary source

(17)

Discussion
Equations (1)–(5) follow from Eqs. (11)–(17). Therefore, the solution of the boundary-value problem

(1)–(5) under the conditions of its existence and uniqueness can be obtained from the solution of the
kinetic problem.

The kinetic equations (11) are integrodifferential equations with weak nonlinearity. This nonlinearity
is due to the weak fractional linear dependence of the tensors  and  on the even distribution.

The complementary sources ,  on the right-hand side of Eqs. (16) and (17) are linear com-
binations of moments , , , and , i.e., of the angular integrals (8) and (9) of the sought distri-
butions.
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Fig. 1. Ray  enters the region at point  with the ray coordinate , passes in the direction  through the
observation point  with the ray coordinate  and leaves the region at point  with coordinate .  is the base point.
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Similar linear integrodifferential equations containing moments , , and  but not containing
the metric tensor  arise in the transport of particles—neutrons and photons (see, for example, [1,
12, 13]). The solution of the equations can be found numerically by iteration over the values of the
moments and tensors. From the 75-year practice of solving transport equations (it started with the Atomic
Project), it is known that iterations converge quickly if the complementary sources are relatively small
compared to the main source :

(18)

In this case, to solve the integrodifferential equations, it is sufficient to apply the so-called simple itera-
tions, in which the tensors and moments are calculated from the values of the distributions at the previous
iteration. The convergence rate of simple iterations is higher the smaller constant . (If condition (18) is
not fulfilled, more complicated iterative methods are used in particle transport problems.)

Analysis of the complementary sources (16) and (17) of our kinetic problem (11)–(13) shows that they
are relatively small, and for many applied problems condition (18) is fully satisfied. In fact, the main
moment of the zeroth order  enters with the small coefficient only in the source  (17). The first-order
moment  is included in both complementary sources, albeit, with small coefficients.

3. TRANSITION TO RAY VARIABLES
A distinctive property of Eqs. (11) is the presence of characteristics. This will allow us to progress in

integrating these equations, i.e., in constructing analytical formulas for the implicit representation of the
boundary value problem solution and in designing finite analytic discrete schemes and algorithms for
solving the problem.

Ray Variables

Let us consider the point of the domain  (Fig. 1). Only one ray  passes through the
point in direction , , where  is the distance from point  to the point on ray  (hereinafter referred
to as the dimensional ray variable or alternatively called the characteristic variable).

Also we introduce the dimensionless ray variable  on the ray:

(19)
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Here,  is the positive coefficient equal to geometric mean  and . In the degenerate cell B, we set
. Differentials of ray variables and Cartesian coordinates are connected by the relations

(20)

Boundary-Value Problem on a Ray

It follows from (20) that the rays are characteristics of Eqs. (11). On the ray , the system
takes the form of a system of ordinary differential equations of the second order:

(21)

The ray coordinates  and  ( ) of points , at which the ray crosses the boundaries of
the cells, will be indicated by index α; ,  and ,  are the coordinates of the entry point and the
exit point of the ray from the region. The numbering order of the points is consistent with the growth
direction of the ray variable. On the ray of the opposite direction , the same points are numbered in
reverse order. In these notations, the stitching conditions for the solutions on the internal boundaries (12)
have the form

(22)

The mixed conditions on the external boundaries of the region (13) are written in the form

(23)

where parameters  and  take the values

(24)

When arranging the signs, we took into account the sign of the scalar product, :  at the entry
point of the ray into the region, and  at the exit point.

The segment of the ray  ( ) between the intersection points of the cell bound-
aries will be called a chord. At the cell boundaries, the coefficients and sources of the system of equations
(21) may be subject to discontinuities and/or sign changes. Therefore, the classical solution of the system
in the general case exists only on the chord. A solution composed from classical solutions defined on
chords (if such solutions exist) and satisfying the stitching conditions (22) on the boundaries between cells
(internal boundaries) and conditions (23), (24) on the external boundary of the region will be called the
solution of the boundary value poblem (21)–(24) on the ray , .

Note. With regard to the formal integration of the equations, in the cells  of domain , we can define
smooth Riemannian manifolds with a metric tensor  and connectivity [25, 26, p.359] and substitute
in (11) and (21) the usual differentiation along directions for a covariant differentiation along the geodesic
lines of the manifolds. Then direct rays will turn into segments of geodesic ones. The magnitude of the
complementary sources  and  will decrease as they will lose some combinations of derivatives
of the metric tensor . In this paper, intending to develop simple numerical methods for finding a
solution to a system, we will remain in Euclidean space because calculating geodesic lines in cells by itself
takes up additional computer resources.
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Below in this section, we will deal with the problem of finding a classical solution for the system of
equations (21) on a chord. The problem of finding the solution on the ray is discussed in the next section.

The solution of Eqs. (21) on the chord can easily be written in the degenerate cell B. In cells A and C,
the cases of integration of the system are more diverse and are determined by the dependences of the coef-
ficients  and . We confine ourselves to the case often encountered in practice, when the coeffi-
cients change similarly or almost similarly to each other: . Let the derivatives of the coeffi-
cients in the directions be bounded by a small constant :

(25)

Note. In many practical problems, the condition (25) can be fulfilled by reducing the size of the cells.
If this fails, then the ratio of the coefficients on the chord  can be approximated by the expo-
nential function . This case is reduced to the case  by a simple substitution of
the sought functions.

Basic Solution on the Chord

It will be assumed that at the ends of the chord , mixed boundary conditions are imposed,
similar to the conditions on the outer boundary (23) ( , ) but without specifying param-
eters , , and  by values (24):

(26)

The parameters take values (24) if the endpoits of the chord lie on the outer boundary of the domain. If
one of the points or both points lie on the inner boundary between the cells, then at these points we will
pass onto a special case of conditions (26): the Dirichlet conditions ( ). This will satisfy the stitch-
ing conditions of solutions (22) at the internal boundaries.

We introduce the elementary functions of the ray variable on the chord:

(27)

Here,  is the chord length. The upper line refers to cell A ( ); and the lower line,
to the cell C ( ). In the degenerate cell B ( ), functions (27) continuously transform
into functions

(28)

where the ray coordinate  is calculated given the coefficient  (see (19)).
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The general solution of system (21) and (26) on the chord  is

(29)

(30)

(31)

where  and  are the contributions of the boundary and distributed sources from the ray segment
, and ,  stand for the contributions from the ray segments . The validity of

(29) and (30) can be verified by substituting the formulas into Eqs. (21) and (26). The reader is free to ver-
ify this. When differentiating the functions of the ray variable (27), one should use conditions (25) and
neglect the derivatives of the ratio of the coefficients  in comparison with other functions. Formulas (29)
and (30) represent the approximate solution that converges to the exact solution when constant  in (25)
decreases. It can be shown that the error modulus of the formulas uniformly tends to zero on any cell chord
in the limit . At , approximate equalities turn into exact equalities. In the degenerate cell B,
the solution is exact if the parameters  and  do not tend to infinity simultaneously.

Solution of the Dirichlet Problem (Solution in an Inner Cell)
The boundary conditions of the Dirichlet problem are derived from the mixed boundary conditions

(26) by passing in (26) to the limit : , . The solution of
the problem on the chord  is given by formulas (29) and (30) with parameters ,

, . Let both ends of the chord lie on the inner boundaries between adjacent
cells. If the constants ,  are selected equal to the values of the odd distribution emanating
from the adjacent cells  and , we satisfy the stitching conditions (22) for even
distributions. By sewing the odd distributions, we completely satisfy (22).

Solution in a Cell Adjacent to the Outer Boundary of the Domain

Consider the chord  one of the endpoints of which belongs to the outer boundary of the
domain, and the other to the inner border between cells. (The case when both ends of the chord lie on the
outer boundary has been considered earlier.) Let the interior point be point . We impose the Dirichlet
conditions in it, assuming in (26) that , which yields . The solution to the prob-
lem is given by formulas (29) and (30) with parameters  and . If the constant 
is specified as equal to the value of the even distribution emerging from the neighboring cell ,
we satisfy the stitching condition (22) for even distributions . By sewing further odd distributions

 we will completely satisfy (22).

Suppose that the classical Neumann conditions are set at the point : , .
The solution is given by formulas (29) and (30) with the parameters  and . If we
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set the constant  to be equal to the value of the odd distribution emerging from the neighboring
cell, we satisfy the stitching condition (22) for the odd distributions.

Solution of the Neumann-Dirichlet Problem

We render the case considered above more specific by imposing the Neumann conditions at the end-
point  of the chord and the Dirichlet conditions at the endpoint . For this purpose, we let 

and  in (26), which yields , . The solution can easily be
obtained from the formulas of the general solution (29) and (30) using the corresponding limit transition.
Now we present it to the reader.

If point  lies on the inner boundary, then the boundary source  is sewn with an even distri-

bution emerging from the neighboring cell. If the point  lies on the outer boundary, then  is

given by (24). Similarly, we treat the boundary source . It should be noted that to set the Neu-
mann conditions on the external boundary, we pass to the limit  in (24).

Solution of the Classical Neumann Problem

(The solution of the generalized Neumann problem [17, p. 158; 18, p. 9] is given by formulas (29) and
(30) where parameters  and  (24) are calculated with the tensor  and  is the cotensor of

the tensor  (see(5)). We set at the endpoints of the chord  the classical Neumann condi-

tions, passing in (26) to the limits :  and . The corre-
sponding limit transitions in (29) and (30) yield the sought solution

(32)

The solution is valid in cells A and C and does not apply to the degenerate cell B. A solution to the classical
Neumann problem in cell B exists if the sources  and  satisfy the condition of the problem’s solvability.

Implicit Representation of a Solution to the Boundary-value Problem in a Cell

In the simplest case when domain  consists of one cell, we can formulate a system of integral equa-
tions to find a solution to the original boundary-value problem (1)–(5) under constraints (25). The
domain may be non-simply connected. Let us substitute the general solution (29) and (30) in (8)–(10),
setting , ,
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(33)

When the total solid angle 4π is traversed, the contributions of each distributed and boundary source
are counted twice: once on the ray  and for the second time on the ray of the opposite direction . The

parameters , , and  are given by formulas (24). The sources  and  (11), (16), (17) included in
the ray integrals  and  (31) depend on the distribution moments. The coordinate  (19) depends on
tensor . The solution of the integral equations can be found by simple iterations (see (18)).

Note. Some of the integrals in (33) have the form . If we change from the spherical coordi-

nates to the Cartesian coordinates , then these integrals are transformed into inte-
grals over the cell volume. The change of variables should only be done if it simplifies the calculation. In
the general case, it is advisable to calculate the integrals by applying the quadrature formulas on the unit
sphere and quadrature formulas on the chord.

4. FINITE ANALYTIC SCHEME

A finite-analytic scheme is a discrete approximation of the solution of a problem constructed by stitch-
ing the exact (almost exact) solutions of the differential equations emerging from the cells. The analytic
solutions are stitched on the boundaries of the cells into which the region is divided. The term arose as an
analog of the term finite difference scheme [8]. It should be noted that the latter is a discrete approximation
constructed by stitching finite differences of the solution in the cells.

We will construct a finite analytic scheme for finding a solution to the system of ordinary differential
equations (21)–(24) on the set of rays that cross the region.

Elements of the Scheme

Like other discrete schemes (finite difference schemes, finite element schemes), the finite analytic
scheme has a stencil. A stencil is the set of points located on the smooth surfaces of the cell boundary and
inside the cell. The points inside the cell will be called central points, the points on the outer boundary of
the region (if the cell is adjacent to the boundary) will be referred to as external points. The central and
external points belong to the stencil of only one cell. In addition to these points, there are internal points
in the stencil located on the smooth surfaces of the internal boundary separating two cells. Any internal
point is simultaneously part of two stencils of adjacent cells.

The set of rays passes through the stencil points of all cells. Several rays pass through one point of the
stencil. It is advisable to choose the direction and number of the rays so as to ensure the calculation of the
moments , , , and  at this point with an accuracy that meets the requirements of the problem
being solved. The moments (angular integrals) are calculated using the quadrature formula defined on the
surface of the unit sphere. In order to calculate the moments at all points of all stencils, the set of typical
quadrature formulas is constructed. Methods for constructing quadrature formulas on the unit sphere are
developed in the theory of particle transport.
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One ray crosses the borders of cells at a series of points. It is advisable to choose the shape of the cells
and arrange the stencil points so as to minimize the number of “additional” points that do not belong to
stencils in this series.

In the particle transport theory, long rays that cross the entire region are called long characteristics.
The best spatial-angular grids with long characteristics in the sense of minimizing the number of addi-
tional points and minimizing the number of typical quadrature formulas are regular grids constructed on
cells of a regular symmetrical shape. These are regular tetrahedra, prisms, which are based on regular
hexagons, rectangles, regular triangles, and others. However, using regular grids, it is often impossible to
convey the position of the discontinuities of coefficients and sources in the problem, as well as the position
of the external region boundary. Therefore, along with regular grids, irregular grids are also often used.

The scheme’s elements also include quadrature formulas for calculating integrals from sources along
rays  (31) between the points of the stencil.

Equations of the Scheme

Let the ray  cross the internal boundaries between the cells at the points , .
These are the internal stencil points and additional points (if any). We set the Dirichlet conditions at all
these points and stitch the even distributions in accordance with stitching conditions (22):

(34)

Next, we write formula (30) for an odd distribution  at one end and the other end of each chord ,
. Then the odd distributions emanating from neighboring cells are sewn. As a result, we obtain equations

of a finite analytic discrete scheme on the ray:

(35)

where , , and  are the coefficients of the scheme:

(36)

(37)

If we eliminate the f luxes , the equations of scheme (35) are transformed to a closed system of alge-
braic equations for  with a square tridiagonal matrix , where  is the number of
points (34) at which the analytical solutions are stitched. Since the boundary-value problem on the ray is
one-dimensional, the dimensionality of the system is small.

Numerical Solution
Suppose that the system of algebraic equations of the finite analytic scheme is solvable. Due to the

small dimensionality of the system, its solution can be found by direct (non-iterative) algorithms of com-
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putational linear algebra, such as the Gaussian elimination method with the choice of the maximum ele-
ment and the tridiagonal matrix algorithm (economical version of the Gauss method for systems with a
three-diagonal matrix). After finding the even and odd distributions  at the points at which the ray
crosses the boundaries between the cells, the solution is found at the outer and central points, as well as in
the continuum of the points of the ray (if required). The solution on the ray is recovered using formulas
(29)–(32).

Note. The solvability of system (35) and (36) is closely related to the existence of solutions in the cells.
The following statement holds true. If a ray intersects only cells of type A and B (in these cells there always
exists a unique solution to the inhomogeneous boundary-value problem), then the system of equations is
always solvable and the solution can be found by the tridiagonal matrix algorithm. In fact, in cells A and
B, the inequalities ,  are satisfied. At the same time, the same inequalities provide a condi-
tion for the stability of the tridiagonal matrix algorithm.

Similar systems (35) and (36) (boundary-value problems on the ray) are solved on all rays that make
up the spatial-angular grid of the problem.

Next, at the points of the stencils of all cells, using the quadrature formulas, the moments of distribu-
tions , , ,  and tensors ,  are calculated and the values of the sources  and  entering
into the equations of the kinetic problem are specified. This completes the simple iteration step. Iterations
to refine the moments and tensors are carried out until convergence.

DISCUSSION

The finite analytic scheme constructed above has some advantages and disadvantages in comparison
with difference schemes and finite element schemes.

The accuracy of finite difference schemes and finite element schemes substantially depends on the size
and shape of the cells. In a number of problems, the size cell has to be significantly reduced to achieve the
required accuracy of the solution. In the finite analytic scheme, there is no hard dependence of the
approximation accuracy on the cell size. The accuracy of the scheme is determined by condition (25), the
accuracy of the quadrature formulas for calculating the integrals along rays (31) and (37), and the accuracy
of the quadrature formulas on the unit sphere for calculating the angular integrals. The number of rays
passing through the stencil point should not be too small (not less than ~10). Calculations can be per-
formed on coarse (sparse) spatial grids.

The change to ray variables reduces the solution of the multidimensional boundary-value problem to
the solution of a series of one-dimensional problems on the rays. The system of algebraic equations of
scheme (35) has a small dimensionality. Therefore, its solution can be found by direct algorithms (the
Gaussian elimination technique or the tridiagonal matrix algorithm). The dimensionality of the system of
algebraic equations of finite difference and finite element schemes can be large (multidimensionality of
the problem, small cell size). Systems of large dimensionality are to be solved by iterative algorithms of
computational linear algebra [27]. If the region contains many degenerate cells of type B and/or close to
them, then the iterations converge slowly.

The finite analytic scheme has additional elements that are not used in the finite-difference and finite-
element schemes. These are rays that make up the spatial-angular grid, quadrature formulas on the unit
sphere, the metric tensor, and iteration over the values of moments and tensors. Therefore, this scheme
will show its maximum efficiency when solving applied problems in which these additional elements are
minimal, for example, problems with regular spatial-angular grids built on the basis of cells of regular sym-
metric shape.
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