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Abstract—Flux Correction method is a family of edge-based schemes for solving hyperbolic systems
on unstructured meshes. The cruical operation there is a nodal gradient calculation of physical vari-
ables with at least second order of accuracy. There are two well-known procedures meeting this con-
dition. One is based on Least Squares method and the other one is based on spectral elements. In this
paper we compare resulting schemes and discuss their problems.
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1. INTRODUCTION
Edge-based schemes represent a special class of finite-volume schemes for solving hyperbolic systems

of equations on unstructured meshes. In these schemes, conservative variables are determined at mesh
nodes, while f lows used to approximate conservation laws are calculated in the middles of mesh edges or
diagonals of elements. These schemes are first proposed in [1, 2]. The current state of them is represented
mainly by schemes with the quasi-one-dimensional reconstruction of variables [3–6] and schemes based
on the f lux correction (FC) method [7–14].

The scheme of T. Barth [2] consists in the linear reconstruction of variables in the middle of an edge
using gradients calculated at mesh nodes. The scheme has the first order of approximation and in practice
demonstrates the order of accuracy from 3/2 to 2. At the same time, it is noted in [7] that if these gradients
are calculated with the second order of approximation, then the entire scheme also has the second order
of approximation. The order of accuracy of the obtained scheme on unsteady tasks remains equal to 2;
however, on steady tasks the convergence order is often 3. Further development of these schemes is to
transfer this superconvergence to unsteady tasks [8–12], but this is achieved at the cost of the significant
complexity of the scheme and the loss of conservatism. Another approach uses the unsteady FC method
[13, 14], which reduces the approximation order to 1, but in practice makes it possible to improve the accu-
racy of the steady method with negligible additional costs of the machine time.

A key place in FC-based schemes is occupied by the procedure for calculating gradients of physical
variables at mesh nodes at least with the second order of approximation. This can be achieved, e.g., by cal-
culating the gradient of an interpolation polynomial obtained by the least squares method (LSM). The
problem is the possibility of degenerating the system of equations for finding coefficients of the polyno-
mial. In addition, when using an anisotropy mesh in near-wall regions, the condition number of the sys-
tem increases with the growth of the anisotropy and the curvature of a surface.

To avoid these problems, it is proposed to determine the gradients by spectral elements (see [8]). In this
case, the calculation mesh should be the result of a single natural refinement (see Fig. 1) of another cal-
culation mesh whose elements are called spectral. On each spectral element, the interpolant is defined
unambiguously; after that, the gradient at a node is defined as the average gradient of such interpolants
defined at this node. Here, on a uniform mesh, the scheme is heterogeneous: some of the mesh nodes are
vertices of spectral elements, while some of the mesh nodes are not such vertices. Therefore, gradients in
them are calculated differently. Currently, the method of calculating gradients by spectral elements seems
to be optimal. However, as is shown below, the heterogeneity of a scheme can lead to a strange behavior
of the solution.

In the three-dimensional case, in near-wall regions for viscid tasks, a calculation mesh has usually the
strand type; i.e., its topology is the Cartesian product of a two-dimensional unstructured mesh and a one-
dimensional mesh. In this case, another way of calculating gradients becomes possible. The gradient com-
12
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Fig. 1. Natural refinement of mesh elements by factor of 2.
ponent along an edge coming into the boundary is calculated using a one-dimensional finite-difference
scheme, and the tangential components, using only the value of the variables at the corresponding layer
by one of two methods described above [10, 11]. We do not consider this type of mesh in the present paper
and restrict the discussion to the inviscid case.

In this work, by the set of test tasks, we compare the FC-based schemes that are obtained using differ-
ent gradient-computation procedures. Moreover, these schemes are related in accuracy to schemes with
the quasi-one-dimensional reconstruction. In addition, a new slope limiter is proposed to deal with dis-
continuous problems using the FC method.

2. EDGE-BASED SCHEMES

In this paper, we consider the hyperbolic systems of equations

(1)

where . The hyperbolicity means that for any vector , the Jacobian of the vector of f lows
in this direction can be presented as

(2)

where  is a diagonal matrix. In particular, such a form has the transfer equation for  and .
Euler’s equations for an ideal gas have form (1) for  and 

where  and  is a unit matrix, and are closed by the state equation of an ideal gas p =
. Everywhere in this work we use the adiabatic index .

The construction of a finite-volume scheme involves dividing the computational domain into cells for
which discrete conservation laws are formulated. For schemes that identify variables at mesh nodes, the
role of cells is played by control volumes (each of which is built around its own mesh node). We describe
their construction by the example of a triangular mesh.

Consider a triangle  shown in Fig. 2 at the right. The middles of the edges , , and 
we denote by , and P12, respectively, and the center of the triangle we denote by O. The triangle

 is divided into three quadrangles:  (included in the control volume of the node G),
 (included in the control volume of the node ), and  (included in the control volume

of the node ). The control volume of the node G is an aggregate of such quadrangles, which is shown in
Fig. 2 at the left. If as the center of a triangle is taken its center of mass, the resulting cells are called median or
barycentric cells. The construction of analogous cells in the three-dimensional case is described in [15, 16].

The conservation law of form (1) for the cell G can be presented as

(3)

where  is the control volume of the node G,  is its value,  is its boundary, n is an external
unit normal to it, and  is the integral average of Q on the cell .
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Fig. 2. Two-dimensional median volume of node G (left) and part of triangular mesh element  related to it (right).
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The surface of the cell can be presented as , where  is the set of nodes

neighboring (i.e., connected by a common mesh element) the vertex G, and  is the total surface of
cells G and K. Introduce the notation

For approximating (3), we substitute  (the point value of  at the mesh node G) instead of ; in
(4), we present the integral over  as a sum of integrals over . In each such an integral we replace
the f low  with a certain value related to the middle of the edge. We have

(4)

where  is a numerical f low, which not less than with the first order approximates  in the middle
of the edge. Schemes of form (4) are called edge-based schemes. When using median cells on a simplicial
mesh, edge-based schemes have the first approximation order at the inner nodes of the mesh [15]. This
property follows from the accuracy of calculating the right side of (4) on the linear function if the f lows

 are accurate on the linear function in the middles of edges.
On a hybrid mesh, we can build two types of control volumes: translucent [16] and direct [17, 16].

Translucent control volumes are a generalization of median volumes: they retain accuracy on a linear
function on an arbitrary unstructured mesh (if f lows are accurate on the linear function in the middles of
edges), but the approximation error is proportional to the anisotropy factor. Direct control volumes do not
retain the accuracy on the linear function. On a prismatic mesh in a near-wall region, the first approxi-
mation order usually is found due to the structuredness of the mesh in the normal direction, but is lost
when coming to an unstructured mesh.

In order to ensure a sustainable calculation, f lows are usually determined by some approximate solu-
tion of the Riemann problem; e.g., a scheme of the Courant–Isaacson–Rees type (see, e.g., [18])

where the matrices S and  are determined by (2). A particular case of this scheme is the scheme of P.L.
Roe [19]. In some cases, a more general kind of a f low is used:

(5)

Independently determining  allows gaining a greater order of accuracy on non-linear tasks on uniform
meshes, although in practice this is usually not very noticeable. Determining a specific edge-based
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scheme is reduced to determining values of  and . The simplest edge-based scheme is the Barth
“linear” scheme [1]. It calculates pre-breakup values by the formulas

(6)

as an option for determining  proposes  , and calculates the function gradient at a
mesh node by the Green–Gauss procedure

(7)

When solving problems with smooth solutions, the coefficients  and  are taken equal to 1. For
calculations of discontinuous f lows, they are taken independently for each component of the vector Q in
such a way that the condition  is met [1].

Other examples of edge-based schemes are the scheme of H. Luo et al. [20], the scheme of P. Eliasson
[21], and the FC method [7–14], together with the schemes of H. Nishikawa [22, 23], the mixed element-
volume (MEV) schemes [3, 24, 25], and the edge-based reconstruction (EBR) schemes [3–6], which are
based on the FC method.

3. FLUX CORRECTION METHOD

Consider scheme (6) for the transfer equation . Suppose the gradient is calculated
with the second order of approximation. We show that here the entire scheme (4)–(6) has also the second
order of approximation at the internal nodes on the median cells of an unstructured mesh.

Since the accuracy on the linear function is found due to the properties of median cells, in order to
show the second order of approximation, it is sufficient to consider the function of the form

 for a + b + c = 2. The pre-breakup value from the side of the node G at
the center of the edge GK is calculated by formula (6); here, this value is 0, because .
Consider the pre-breakup value from the side of the node K. We analyze its Taylor expansion in the neigh-
borhood of the point rG. Denote by the stroke and by h the derivative in the direction of the edge and the
length of the edge GK, respectively. We have

Thus, on a quadratic function, the pre-breakup value from the K side is also zero. Consequently, the
numerical f low (5) and the right side of the entire equality (4) are also zeros. For more details, see the
proof in [7].

On nonuniform and unstructured meshes, schemes often ensure faster convergence than predicted by
their approximation order (see, e.g., [26]). This phenomenon is sometimes called supra-convergence. For
example, the Barth linear scheme (4)–(7) usually shows the second order of accuracy, although there is
an example in which the solution by this scheme converges with the order of 3/2 [27]. For the FC scheme,
the second order of approximation of the method provides the second order of accuracy (when the scheme
is stable), but here the convergence order is also equal to 2; i.e., the effect of supra-convergence is absent.
However, it is found that the supra-convergence of the FC scheme is observed in problems with steady
solutions (see [7]). Therefore, provided that gradients with the second approximation order are calculated,
scheme (4)–(6) is called the steady FC method.

Research in the field of the approximation of a source term (if the equation contains it) has resulted in
the further development of FC-based schemes: A. Pincock and A. Katz, instead of (4), propose using the
space-staggered approximation of the time derivative [8]:

Here, hGK is a f low of type (5). The coefficients MGK are chosen in such a way that the second order of
accuracy on an arbitrary unstructured mesh is retained and the third approximation order on translation-
invariant meshes is ensured, but conservatism is lost. Translation-invariant meshes are called meshes in
infinite space that pass into themselves during a spatial translation on the vector of any of their edges. Such
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Fig. 3. Triangular translation-invariant mesh (black lines) and median control volumes on it (gray lines).
meshes are uniform meshes of parallelepipeds or their homogeneous partitions into simplexes (see Fig. 3).
The scheme obtained by the methodology described in Nishikawa’s work has the same properties [28].
The different variants of determining matrix M are summarized in [12].

The author in [13] proposes the UFC scheme, which represents another algorithm for improving the
accuracy of solving unsteady tasks. This scheme can be presented as

Coefficients of the matrix UGK are chosen in such a way as to preserve the conservatism of the original
scheme and to ensure the third approximation order on translation-invariant meshes. However, here the
second order of approximation on unstructured meshes is lost. The generalization of the UFC scheme for
a hybrid mesh (which is, however, not applicable to tasks with an anisotropic mesh in a near-wall layer) is
described in [13]. Note that if the FC method obtains a steady solution, then it represents a steady solution
also for the UFC scheme.

In the nonlinear case, the determination  limits the approximation order on uni-
form meshes by the second order. Instead of this, the present work uses the reconstruction of f low vari-
ables, which is analogous to the reconstruction of conservative variables:

where F is a f low in the direction of . It should be noted that in [8] an alternative procedure is pro-
posed,

which does not require the calculation of gradients of f low variables and thereby slightly reduces the com-
putational cost.

4. CALCULATION OF GRADIENTS
A key place in FC-based schemes is occupied by the procedure for calculating gradients of physical

variables at mesh nodes at least with the second order of approximation. Two procedures that meet this
requirement are well known.

The easiest way to calculate a second-order node gradient is to calculate the gradient of an interpola-
tion polynomial obtained by the LSM. Assume that it is necessary to calculate the gradient at node G. The
pattern is chosen, e.g., by the set of nodes connected to node G by not more than two edges. This method
has two critical disadvantages. First, the degeneration of the system of equations to finding coefficients of
the polynomial is possible. It is easy to create such a mesh artificially; in practice, this sometimes happens
at boundary or near-boundary nodes, where the number of neighbors of the second order is smaller than
for internal nodes. Second, an anisotropic mesh is used in near-wall areas to model high-Reynolds f lows.
If the boundary of a region is curvilinear, then the construction of interpolation polynomials by the LSM
is correct if the basic functions are polynomials of variables in a curvilinear coordinate system associated
with the boundary. Using polynomials in the Cartesian coordinates can lead to a very large number of
conditions of the system and, as a result, catastrophic errors.

To avoid these problems, it is suggested to calculate gradients by spectral elements [8]. In this case, the
calculation mesh should be the result of a single natural (see Fig. 1) refinement of some other calculation
mesh whose elements are called spectral. If the refinement is carried out k times on a linear size, then the
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Fig. 4. Calculation meshes for one-dimensional tests. Top down: K = 1, K = 1.2, and K = 2.
spectral elements are called elements of the kth order. A spectral triangular element of the second order
contains 6 nodes, and this allows unambiguously identifying on them a polynomial of the form

 by the values of the variables at the nodes. A quadrangular second-order
spectral element contains 9 nodes, and this allows unambiguously identifying a polynomial of the form

. Analogously, a spectral tetrahedral element of the
second order contains 10 nodes, a pyramidal element contains 14 nodes, a prismatic element contains 18
nodes, and a hexahedral element contains 27 nodes, and this also allows unambiguously identifying a
polynomial with the corresponding set of monomials [14]. After identifying a polynomial, we can also
determine its gradient. Here, the gradient at a node is defined as the average of the gradients at this node
for all spectral elements containing this node, with the weight equal to the volume of a spectral element.
It is shown in [8] that the use of spectral elements of the third order leads to instability near the boundaries
of the computational domain; therefore, it is necessary to use spectral elements just of the second order.

The method of calculating gradients using spectral elements has two drawbacks. First, the calculation
mesh must be obtained by refining another, spectral, mesh. In a domain with a curvilinear boundary, the
mesh-refining procedure involves technical difficulties due to the fact that the boundary nodes of the
refined mesh must be displaced from the edges and faces of the spectral mesh to the boundary of the true
computational domain. If an isotropic near-wall layer is available, such a displacement can lead to the
rollout of the elements and therefore require a displacement also of a part of the internal nodes. Second,
on a uniform mesh, the scheme is heterogeneous: some of the mesh nodes are vertices of spectral ele-
ments, while some of the mesh nodes are not such vertices; therefore, the gradients at these nodes are cal-
culated differently.

Despite these drawbacks, the method of calculating gradients on spectral elements (perhaps, using the
strand technology) appears to be optimal. However, as will be shown below, the scheme’s heterogeneity
caused by the heterogeneous way of calculating gradients can lead to the partial disappearance of numer-
ical dissipation and, as a result, the incorrect behavior of the solution.

5. TESTING: LINEAR PROBLEM WITH PERIODIC CONDITIONS

Consider a model task for the transfer equation  with the initial conditions

 for  and the periodic boundary conditions . As a
measure of error, we take the maximum modulus of the difference of the numerical solution at the
moment Tmax = 20 and the accurate solution at this moment.

We use the calculation mesh with the steps , , , etc.
(see Fig. 4). Introduce the notation  and .

To integrate over time, we use the Runge–Kutta method of the fifth order of accuracy with CFL = 0.5
(the Courant–Friedrichs–Lewy condition). We use the following FC-based schemes: (1) the steady FC
scheme (the second order of accuracy), (2) the nonconservative modification of Nishikawa [26], (3) the
nonconservative modification of Pincock [25], and (4) the UFC scheme. For the UFC scheme, two ways
of calculating gradients are considered: first, by differentiating the Lagrange interpolation polynomial of
the second order and, second, using spectral elements. For the rest of the schemes only the first way is
used. The results are compared to the results obtained by the EBR3 and SEBR5 schemes [4].

The results of all calculations on the uniform meshes and the nonuniform meshes for K = 1.2 and K =
2 are presented in Fig. 5. On a uniform mesh, the UFC results are superimposed on the results of the Pin-
cock method. Analyzing the results, we can draw the following conclusions.

1. On all meshes, including uniform meshes, the steady FC scheme shows the second order of accu-
racy. The use of nonconservative schemes with an unsteady term in the form of both Nishikawa [28] and
Pincock [8], improves the accuracy to the third order; here, the use of an unsteady term in the form of
Nishikawa ensures that the numerical errors are smaller by several factors.
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Fig. 5. Accuracy of various FC and EBR schemes on one-dimensional transfer equation. (a) Uniform mesh, (b) nonuni-
form mesh with K = 1.2, and (c) nonuniform mesh with K = 2.
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2. On uniform meshes, as expected, the EBR3 and SEBR5 schemes show the third and fifth orders of
accuracy, respectively. The UFC scheme with the three-point gradient approximation has the third order
of accuracy. Using spectral elements to calculate gradients allows us to get the fourth order of accuracy.
The explanation of this fact is not easy and will be studied in the future. The fourth order of accuracy on
a uniform mesh, on the one hand, provides higher accuracy, but, on the other hand, raise concerns,
because the leading term (the term of the fourth order) of the error accumulated over time is a phase (and
not dissipative) term.

3. On nonuniform one-dimensional meshes, all versions of the UFC scheme, together with the EBR3
and SEBR5 schemes have the first order of approximation and the second order of accuracy. However,
the numerical error here is significantly smaller than that of the steady FC scheme, which has the second
order of approximation.

The results of testing on multidimensional linear tasks with periodic conditions can be found in [13].
On an unstructured mesh, both ways of calculating gradients (using spectral elements and using the
LSM), as in the case of a one-dimensional nonuniform mesh, yield results that are close to each other. On
the translation-invariant mesh, the use of spectral elements gives more accurate results, but, unlike the
one-dimensional case, does not improve the accuracy to the fourth order.

6. TESTING: A POTENTIAL FLOW AROUND A SPHERE

Consider the problem of a potential f low past a sphere. The calculation is carried out within the Euler
equations for an ideal gas at the Mach number of a background flow of M = 0.01. The calculation is carried
out on the outside of a sphere of radius R = 0.5 with the center at the origin of coordinates; the outer
boundaries of the computational domain should be sufficiently distant so as to not affect the solution. The
no-fluid-loss conditions are imposed on the surface of the sphere. At the initial time, a homogeneous f low
is assigned and it is kept on the external boundaries of the computational domain. The accurate solution
MATHEMATICAL MODELS AND COMPUTER SIMULATIONS  Vol. 12  No. 1  2020
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Table 1. Numerical error in solution of problem of f low past sphere

H Scheme CD (exact 
value is 0)

 at front and back points 
of sphere (exact value is 5 × 10−5)

Maximum 
error on p′

Maximum 
error on u

Maximum 
error on v

0.04

FC-SE 7.49 × 10−4 5.060 × 10−5 4.614 × 10−5 2.08 × 10−2 2.57 × 10−2 3.86 × 10−2

FC-poly 1.63 × 10−3 5.031 × 10−5 4.450 × 10−5 4.05 × 10−2 5.11 × 10−2 5.59 × 10−2

SEBR5 1.87 × 10−3 4.959 × 10−5 4.540 × 10−5 3.37 × 10−2 3.78 × 10−2 4.93 × 10−2

0.02

FC-SE 1.49 × 10−4 5.023 × 10−5 4.930 × 10−5 7.63 × 10−3 1.31 × 10−2 1.99 × 10−2

FC-poly 1.70 × 10−4 5.013 × 10−5 4.861 × 10−5 1.18 × 10−2 1.62 × 10−2 2.03 × 10−2

SEBR5 3.47 × 10−4 4.982 × 10−5 4.845 × 10−5 1.17 × 10−2 1.48 × 10−2 2.47 × 10−2

0.01

FC-SE 3.48 × 10−5 5.019 × 10−5 5.146 × 10−5 1.30 × 10−2 1.99 × 10−2 8.86 × 10−2

FC-poly 1.52 × 10−5 5.019 × 10−5 5.021 × 10−5 6.01 × 10−3 6.42 × 10−3 1.49 × 10−2

SEBR5 3.67 × 10−5 4.997 × 10−5 4.977 × 10−5 5.94 × 10−3 6.48 × 10−3 8.68 × 10−3

'ρ
of the problem when using the hydrodynamic nondimensionalization in neglecting terms of the order
O(M4) has the form

where  and  is the speed of sound in an unperturbed f low. It is well known that
in the f low past a cylinder in the two-dimensional statement not only a noncirculating f low-past but also
a circulating f low-past with any amount of circulation can be installed (see, e.g., [29]). An analogous
effect is found in the f low past a sphere. To avoid this, the calculation mesh with the characteristic step h
is constructed as follows. First, in the quarter of the computational domain (y > 0 and z > 0), we construct
a mesh having the characteristic edge length 2h on the surface of the sphere and a runoff coefficient of 1.5.
The mesh is then reflected against the planes y = 0 and z = 0. After that, the mesh is refined by a factor of
2 to have spectral elements and nodes that must lie on the surface of the sphere shifted on it. It can be con-
sidered that after the refinement, the runoff coefficient of the mesh from the boundary takes the value

. However, the calculations show that, despite the symmetry of the mesh, the arithmetic error accu-
mulates over time and leads to a violation of the symmetry of the f low. Therefore, at every time step the
flow was artificially symmetrized.

In order to improve the choice of the numerical dissipation, instead of solving the problem of breaking
up a discontinuity by formula (5), the Roe scheme with the preconditioner of E. Turkel is used [30]; see
also [6, 31].

The calculation data in the cross-section z = 0 when y > 0 on a mesh with h = 0.04 is presented in
Fig. 6. The thin black and thick grey lines present the isolines of the exact and numerical solutions for p′,
respectively. The f low is directed from left to right. Since the numerical solution is steady, the UFC cal-
culations must produce exactly the same result as the steady FC scheme; therefore, such calculations were
not carried out.

It is seen that on the front side of the sphere, the isolines of the exact and numerical solutions are super-
imposed on one another, while on the back of the sphere, the numerical solution for pressure is somewhat
less than the exact solution. This is the usual result of numerical dissipation. The author’s experience
shows that dissipation in one or two layers of cells near a sphere plays a decisive role in this task. Figure 6
demonstrates that the SEBR5 scheme has less dissipation than the FC scheme with polynomial (FC-poly)
gradients but more dissipation than the FC scheme with spectral-element (FC-SE) gradients. More
detailed results of the calculations on the sequence of meshes are presented in Table 1.

Table 1 shows that the solution by the FC-poly gradients and by the SEBR5 scheme converges to the
exact solution approximately at a rate of O(h). The first order of convergence on the maximums of the
error is associated with the loss of accuracy of the edge schemes at the boundary. The faster convergence
rate of the resistance is an unexpected result. However, when using spectral-element gradients, the solu-
tion near the back point of the sphere is incorrect. Since the underestimated pressure near the back point
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Fig. 6. Isolines of pressure pulsation in cross-section z = 0, y > 0 on mesh with h = 0.04, compared to exact solution. Top
down: FC with polynomial gradients, FC with spectral-element gradients, and EBR5.
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of the sphere is usually the result of excessive numerical viscosity, it can be assumed that the overestimated
density is a consequence of the insufficient numerical viscosity.

7. TESTING: SMOOTH TWO-DIMENSIONAL VORTEX

Consider the problem of a two-dimensional steady vortex within the limits of the Euler equations. The

azimuth speed profile is assigned as . Pressure and density are determined from the

steadiness condition of the vortex  and the constancy of the entropy with allowance for the
boundary conditions at infinity . Since the circulation  =

 is a monotonically increasing function, according to the criterion of Rayleigh [32], this

2 22
( ) r

r
u

a
rφ

Γ
π

=
+

2p r u rφ∂ ∂ = ρ
1, 1p∞ ∞ρ = = γ ( ) 2 ( )r rruφΓ = π

2 2 2(1 ))(ra aΓ − +
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Table 2. Numerical error in solution of problem of steady vortex

Type of error

Number 
of nodes 

per vortex 
radius

Steady FC, 
SE

Steady FC, 
poly UFC, SE UFC, poly EBR3 EBR5

Maximum error 
by pressure

5 6.12 × 10−5 1.51 × 10−4 6.11 × 10−5 1.66 × 10−4 1.84 × 10−4 9.88 × 10−5

10 1.31 × 10−5 2.15 × 10−5 1.32 × 10−5 2.31 × 10−5 4.43 × 10−5 2.21 × 10−5

20 2.48 × 10−6 2.99 × 10−6 2.45 × 10−6 2.47 × 10−6 6.92 × 10−6 6.44 × 10−6

40 4.25 × 10−7 3.81 × 10−7 4.06 × 10−7 3.79 × 10−7 1.82 × 10−6 1.91 × 10−6

80 1.12 × 10−7 1.05 × 10−7 9.85 × 10−8 9.07 × 10−8 5.61 × 10−7 5.62 × 10−7

Maximum error 
by speed u

5 5.37 × 10−4 2.20 × 10−3 5.24 × 10−4 2.48 × 10−3 2.63 × 10−3 7.35 × 10−4

10 1.04 × 10−4 3.39 × 10−4 1.03 × 10−4 3.61 × 10−4 5.71 × 10−4 2.08 × 10−4

20 1.59 × 10−5 4.88 × 10−5 1.59 × 10−5 4.36 × 10−5 8.77 × 10−5 3.81 × 10−5

40 4.08 × 10−6 5.43 × 10−6 3.98 × 10−6 5.39 × 10−6 1.77 × 10−5 1.48 × 10−5

80 8.51 × 10−7 8.50 × 10−7 8.55 × 10−7 8.54 × 10−7 2.87 × 10−6 3.22 × 10−6
vortex is resistant to radial perturbations. Suppose the radius of the vortex is a = 0.001 and the circulation
at infinity is Г = 0.0005; this corresponds to the maximum circular speed of the vortex of

.
The calculations are carried out on a sequence of five calculation meshes. A mesh is built using the

mesh generator (GMSH) [33] as follows. In a circle of radius a, we build a quasi-uniform unstructured
triangular mesh with the characteristic edge length of 2h, where h = a/N and N is the conditional number
of nodes per vortex radius. In a circle of radius 10a, the mesh step increases with a factor of 1.05 and is
limited by the size of 5h. Outside this circle, the step increases with a factor of 1.2 with no limit on the max-
imum step. The resulting mesh is naturally refined (each triangle is divided into four triangles).

The outer boundary of the computational domain (a cube with a side of 2) is far enough away from the
domain of interest. All the physical variables were kept on this boundary according to the exact solution.

The results of the calculations at the time tmax = 0.02 are presented in Table 2; no data means that no
calculation was performed.

Analyzing the results of the calculations, we can draw the following conclusions. First, the results of
the calculations obtained by the UFC scheme barely differ from the results obtained by the steady FC
scheme when using the same gradients. This result is expected, because the exact solution of the problem
is steady. Second, the order of accuracy of the FC scheme lies between 2 and 3. This is also expected, as
the steady FC scheme has the second approximation order; the increased observed convergence rate (up
to the third order) on steady tasks was also observed earlier [7–9]. Third, the FC scheme provides a smaller
error (by factors of 1 to 4) when using spectral-based gradients than with polynomial gradients. This result
is seen above in the one-dimensional transfer equation. Fourth, the EBR5 scheme on rough meshes is
superior in accuracy not only to the EBR3 scheme but also to the FC scheme with polynomial gradients;
however, on detailed meshes the results of the EBR3 and EBR5 schemes are close to each other and sig-
nificantly worse than the results of the FC scheme. This effect is associated with a predominance for EBR
schemes, of an error proportional to the second derivative of the solution; this component chaotically
changes from node-to-node and is limited by a constant that does not grow over time. However, for small
computation times it prevails and on unstructured meshes decreases the slowest when the mesh is refined.
In the one-dimensional case, the analysis of the error’s structure is presented in [34].

Eventually, in this test the FC scheme using spectral elements has the best result. However, the com-
parative characteristics of the schemes change if we increase the calculating time: instead of tmax = 0.02,
we shall calculate up to tmax = 1. Testing in this formulation on a mesh sequence requires significant time;

,max( ) 0.0398u rφ ≈
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therefore, we limit ourselves to a mesh of 20 nodes per vortex radius. The results of calculations on the
EBR and FC schemes with polynomial gradients show the smoothing of the profile of the azimuth veloc-
ity, i.e., the numerical dissipation of the vortex. This result is physically correct; here, if dissipation is
excessive, it can be reduced by refining the mesh and, to some extent, by decreasing parameter δ in (5).

A different picture is obtained when calculating by the FC and UFC schemes with gradients on spectral
elements. First, the radial instability arises: the profile of the azimuth velocity acquires parasitic oscilla-
tions exponentially increasing over time, and by t ~ 0.7 they become visible against the backdrop of the
initial vortex (see Fig. 7). When t ~ 0.9, the violation of the axial symmetry of the f low becomes clearly
visible, and by t ~ 1 the core of the vortex is completely destroyed. By t ~ 4, the solution almost completely
“forgets” its initial state. On the whole, the results on the FC and UFC schemes coincide, only the
moment of the vortex breakup changes slightly.

Thus, the specific nature of the dissipation of the fourth order (this nature is inherent in the UFC-SE
scheme and is observed above on linear tasks), on the task of a vortex leads to the wrong solution, although
it does not “fall apart” in the usual sense when the numerical oscillations grow without a limit. Since the
additional dissipative terms inherent in the steady FC scheme are zeroed out on steady tasks, this scheme
has the same disadvantage. This problem is apparently an irreparable f law in the calculations of gradients
based on second-order spectral elements. Using spectral elements of the third or higher order at internal
nodes, this effect is not observed; however, as noted in [8], the boundary of the computational domain
becomes instable.

8. PROBLEMS WITH DISCONTINUOUS SOLUTIONS

Since the main development of the FC scheme is aimed at creating a non-conservative scheme for
smooth unsteady solutions that shows the third order of accuracy on unstructured meshes [8–12], little
attention is paid to the question of the applicability of the FC scheme for solving problems with discon-
tinuous solutions. Here, we can specify the work [11]; it considers steady tasks in which the FC scheme is
a conservative method.

For solving problems with discontinuous solutions, in the FC scheme, as in other edge-based schemes,
slope limiters are used. Their point is that values of  and  in (6) are taken smaller than 1. The paper
[11] proposes the limiter

(8)

Consider also the other limiter

(9)

where  is a derivative (along the GK edge) multiplied by the length of this edge and calculated
using data at the G node and the value interpolated to the continuation of this edge analogously to the
EBR3 scheme [4]. Although [11] proposes applying a limiter to conservative variables Q, we apply (8) and
(9) to the characteristic variables SQ, where the matrix S is determined by (2). A detailed description of
such a reconstruction of the characteristic variables is presented in [5].

In this section, we limit ourselves to two tests. As the first test, we take the task of a supersonic f low
past a front step in a channel. The source data is the homogeneous f low with parameters ρ = 1.4, p = 1,
u = 3, and v = 0. The calculations are conducted up to tmax = 4. We conduct the calculations of this task
on a very detailed unstructured mesh, namely, with the characteristic step h = 1/320 in order that we can
most clearly see the advantage of schemes with a greater degree of precision. The mesh is built by the
GMSH generator [33].

Figure 8 shows the results of calculations on the EBR-minmod and FC schemes with limiters (8) and
(9), as well as the EBR-WENO scheme. In all the calculations, to stabilize them, switching to Rusanov’s
flow on the edges (when at least one edge node lies on the boundary) is used. For the EBR-WENO
scheme, artificial viscosity with artificial thermal conductivity is included [36]. The figure shows that lim-
iter (9) allows us to achieve less artificial dissipation on the contact discontinuity on the upper part of the
computational domain than limiter (8).
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Fig. 7. Vortex breakup in calculation by FC scheme with spectral-element gradients. Top down and from left to right: t =
0.5, t = 0.7, t = 0.9, t = 0.95, t = 1.0, and t = 3.0. Color corresponds to velocity modulus.
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Fig. 8. Solution of problem of f low over step in channel on unstructured mesh. Top down: EBR-minmod, FC with limiter
(8), FC with limiter (9), and EBR-WENO5.
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Now consider a problem with an infinitely smooth solution to estimate the impact of the limiters.
Choose a background field  and place pulsations on it; at the initial instant, these
pulsations are determined as follows:

where ex, ey, and ez are unit vectors in the corresponding directions, while pijk = 1 if (i + j + k) is even, and
0 otherwise.
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Table 3. Numerical error in solution of acoustic problem on Cartesian mesh

Type of error Mesh step Steady FC, 
limiter (8)

Steady FC, 
limiter (9)

UFC,
limiter (8)

UFC, 
limiter (9) EBR-WENO5

Maximum error 
on pressure

1 5.59 × 10−6 4.01 × 10−6 6.92 × 10−6 4.76 × 10−6 3.08 × 10−7

0.5 1.50 × 10−6 1.05 × 10−6 1.44 × 10−6 1.06 × 10−6 1.86 × 10−8

0.25 6.38 × 10−7 8.37 × 10−7 9.71 × 10−7 3.72 × 10−7 4.34 × 10−9
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We conduct the calculation in a cube with the edge of 25 and periodic conditions in all directions up
to tmax = 20. We limit ourselves to the case of the Cartesian mesh. The results are presented in Table 3. On
average, the proposed limiter allows us to make an error that is 30–40% smaller than the error of limiter
(8); however, the result remains significantly worse than the result obtained by the EBR-WENO5 scheme.

CONCLUSIONS
This paper considers various modifications of the FC method. Particular attention is paid to the way

gradients are calculated at mesh nodes with the second order of approximation.
In linear tasks, we note that the unsteady FC scheme when using gradients calculated with the use of

spectral elements gives a smaller numerical error compared to other modifications and other edge-based
schemes. However, the apparent increase in accuracy is due to the loss of dissipation and, as a result, the
error of the solution. In particular, on a vortex that should be resistant to radial perturbations, these per-
turbations increase and ultimately lead to the vortex breaking up.

If we use gradients from interpolation polynomials built by the LSM, then numerous experiments show
that the unsteady FC method gives results very close to the results calculated by the EBR5 scheme. The
computational cost of these schemes is also comparable: the time spent for one step in the FC method is
from 0.85 to 1.5 times longer than that of EBR5. This value varies depending on modifications; measure-
ments were taken when solving two-dimensional Euler equations.

The calculations presented above of the task of a f low over a forward step show that the FC method is
fully compatible with the slopes’ limiters and through their use successfully copes with the tasks having
discontinuous solutions. However, on smooth solutions, the use of these limiters affects the accuracy
more than in schemes with a quasi-one-dimensional reconstruction. The numerical error of the FC
method with different limiters is only slightly better than such an error of the MinMod limiter scheme.
The EBR-WENO scheme is even more accurate. Thus, on tasks with discontinuous solutions, schemes
with a quasi-one-dimensional reconstruction are preferable.

The main task of this work is to choose the main edge-based scheme used for calculations in the NOI-
SEtte software code [37]. The calculations of the test tasks suggest that at present a scheme of the EBR
family should be considered for such a scheme. Perhaps, the FC method has the potential for developing
in the direction of nonconservative schemes. This issue is a topic of further investigations.
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