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Abstract—On the basis of the thermodynamic approach, the constitutive relations for processes of
pressing and sintering of powder composites have been obtained. A kinetic equation is been added to
the system of equations of the usual theory of elastoplasticity to calculate the evolution of porosity
under non-thermomechanical action by a bulk compressive stress of sintering. The modified theory is
included in the computer program for calculating elastoplastic media for adaptation to sintering pro-
cesses. Numerical calculations demonstrate the ability of the modified theory of elastic-plasticity to
simulate the main effects of pressing and sintering, including the calculation of residual porosity,
stresses and deformations in the compact, as well as its residual shape. Also on the basis of the pro-
posed theory, the problem of “hot” sintering under the action of a mobile high-energy pulse (“laser
sintering”) is numerically solved. The influence of the parameters of the laser action on the sintering
of powder material, as well as on the distribution of porosity and temperature, is calculated.
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1. INTRODUCTION
The sintering process (consolidation) is observed in powder materials during heat treatment of porous

compacts of the future product (“green bodies”) obtained by compaction of powders by pressure in molds.
Detailed reviews of theoretical and experimental studies of the processes of pressing and sintering powder
composites can be found in [1, 2].

The original material of the compacts is a mixture of low-melting particles forming the matrix of the
composite, and refractory, more rigid particles of the solid phase. The pore volume between the particles
is filled with gas (air). If the temperature is sufficient to melt the matrix material and the solid phase par-
ticles are wetted by the matrix material, then the pore capillary surface tension forces act as a volumetric
compressive stress of high intensity, comparable in order of magnitude to the elastic moduli of the com-
posite materials. This volumetric load of non-thermo-mechanical nature, is called the sintering stress and
ensures the closure of the pores during sintering.

Pressure, due to the contact of the green body with the movable stamp and with the walls of the mold,
also results in the compaction of the material, but this compaction (cold pressing) is much weaker than
compaction under sintering. The external contact pressure is significantly less than sintering stress.

Thus, compaction the composite is provided by cold pressing and hot sintering. The liquid phase hot
sintering process stops, either when the pores disappear, or because of solidification of the matrix material
under cooling.

To predict the results of sintering real products under conditions of complex geometry and inhomoge-
neous states, numerical modeling is required based on the description of processes within the framework
of continuum mechanics. To formulate corresponding initial boundary value problems of continuum
mechanics the constitutive relations are needed that describe the thermomechanical state of the materials
during pressing and sintering.
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Currently, there are three main approaches for modeling of macro-inhomogeneous sintering processes
in a framework of continuum mechanics.

In the first approach, the residual porosity in compacts is calculated from the temperature distribution
taking into account the thermal volumetric tension-compression [3]. In the second approach, irreversible
viscous deformations of compacts are additionally taken into account [4]. In the third approach the elastic
deformation are taken into account and sintering is considered as a f low of a viscoelastic [5] or elastoplas-
tic porous medium. The third approach allows the use of a single algorithm not only for pressing and sin-
tering, but also for destruction [6].

Initially the green body (compact) is already a solid deformable body, that is, it has a structure and the
ability to hold a shape, although it has extremely weak initial elastic properties. It is the smallness of elastic
deformations that provokes the authors of sintering theories to a simplified formulation that neglects elas-
tic deformations and accounts only with viscous f low. However, the neglect of elastic deformation annuls
the most important property of solid deformable bodies - the memory of the unloaded state. Neglecting
elastic deformation replaces conservative elastic stresses, characteristic of structured media, with dissipa-
tive viscous stresses, which cannot provide a state of static equilibrium of a structured medium. The mag-
nitude of viscous stresses cannot serve as a criterion of fracture that indicates the breakage of elastic bonds.
Viscous stresses cannot be treated as residual stresses since there are no viscous stresses at rest. So, if one
neglects the elastic stresses, then getting the correct answer to a number of the most important practical
questions mentioned above becomes impossible. Therefore, the approach that takes into account the elas-
ticity of the “green bodies” is preferred. In the present work, a modification of the theory of elastoplastic
flow [7] is applied to the calculation of pressing and sintering. The modified theory of elastoplasticity con-
tains kinetic equation for evolution of porosity and bulk plastic deformation under action of pressure and
sintering stress while the elastic properties depend on the porosity. The difference from viscous f low mod-
els is that the stresses in the compact is due to the elastic part of the deformation, limited by the condition
of plasticity and does not depend directly on the strain rate [8, 9].

The modification of the conventional theory of elastoplastic f low was introduced into the program for
calculating elastoplastic media to adapt to sintering processes [10]. Numerical calculations have demon-
strated the ability of the modified theory of elastoplastic f low to reproduce the pressing and sintering of
“green bodies”, including their residual form and the distribution of residual porosity, stresses and strains.

2. CONSTITUTIVE RELATIONS OF SINTERING MODEL

The equations describing the sintering process of a two-component powder medium were derived in
[8]. The set of thermodynamic state parameters of an elastoplastic porous medium contains tempera-
ture , deformation , plastic deformation , porosity , temperature gradient, rates of plastic strain and
porosity. Free energy  and energy dissipation rate  per unit of mass can be written as

where  and  are volumetric and shear elasticity moduli respectively;  and  are densities of actual and
unloaded states respectively;  is a coefficient of thermal volumetric expansion-compression,  is a unity
tensor, colon means double scalar product, ,  is a melting temperature of fusible
component,  is a Heaviside function that equals to unity for nonnegative argument and to zero other-
wise. Following functions of state parameters are used:  is a loading function,

 is a liquid phase sintering condition. The functions of the state parameters are also: function  is
a radius of a yield surface,  is a heat conduction coefficient, coefficient  determines the kinetics of
porosity . The spatial tensors of the stress-strain state were used, which are related to the current config-
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uration,  is spatial differentiation operator. Note that the kinetics of porosity is directly related to the
kinetics of bulk plastic deformation [4]:

Expressions for free energy and dissipation rate are maximally simplified. The first and second terms
in the expression of free energy express the internal energy of bulk and shear elastic deformations while
only volume deformations are considered large, and the deviator of elastic deformations is considered
small. The expression of the energy of the volume deformations is usual, it takes into account the tempera-
ture deformations of the volumetric expansion-compression (with a coefficient ). The multiplier  in the
second term leads to a simplified connection between stress deviators and elastic strains, which is charac-
teristic of small strains. The third term expresses the free energy of the active pores, which depends on the
porosity and temperature, and is included only when the melting point  of the matrix material is reached.
This member is responsible for the expression for the sintering stress. In a simplified formulation, the
terms associated with large deformations of shape change, are omitted, which is acceptable for sintering
problems.

The system of constitutive relations obtained by the method of [7] is as follows [8, 9]:

where σ is the Cauchy stress tensor, σ' is the stress deviator,  is the pressure,  is the strain
deviator,  is the plastic strain deviator,  is the density of the composite in the
unloaded state,  is the sintering stress.

It is also necessary to add the laws of conservation of mass, momentum and energy

and kinematic relations

We write out a set of functions for which the equations are evolutionary:

Initial conditions are

where  denotes the spatial domain of the solution with the boundary .
Boundary conditions have the form

where  is a unit outward normal to the boundary, and the right-hand sides of the boundary conditions
are given functions.

3. SOLUTION METHOD
The pressing and sintering processes are quasistatic. Therefore, at each time step, the terms of the bal-

ance equations, containing stresses and heat f luxes, were approximated by a two-layer implicit scheme.
For the functions sought, the simplest piecewise linear finite element spatial approximation was used. The
coefficients of the equations that depend on the unknown functions were determined using the values at
the previous time layer. To solve a system of algebraic equations, an iterative conjugate gradient method
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Fig. 1. (a) Non-homogeneous pressing and sintering process; (b) the history of external influences and the grid.
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was used [11]. For its implementation at each iteration, it is required to determine the residuals of algebraic
equations. At each iteration, the algorithm of residuals calculating coincides exactly with the algorithm for
calculations at the time step according to an explicit two-layer scheme. Therefore, there are no needs in
calculation and storage of matrix and right-hand part vector of algebraic equations. So no operations with
matrices were carried out. Approaches of nonmatrix computation of solutions using iterations have been
known for a long time. Such approaches have become extremely effective due to the conjugate gradient
method. The savings in computations are achieved not only in computer memory (only 4N of real num-
bers are required, where N is the number of unknowns), but also in performance, because the machine
accuracy of the solution is achieved already after  iterations. Such an algorithms are described in more
detail in [10].

4. NUMERICAL CALCULATION OF PRESSING AND SINTERING
IN A NON-HOMOGENEOUS STATE

Consider an example of calculating two-dimensional pressing and sintering processes for the case of a
non-homogeneous thermomechanical state. The design scheme of “green body” and the initial grid are
shown in Fig. 1. Let at the initial moment of time t = 0 a cylindrical billet of rectangular section consisting
of a composite powder is placed in the furnace. Let the left boundary be the axis of symmetry, the right
and lower boundaries are immovable, and during time  an external pressure  acts on a part of the
upper boundary that realizes the process of cold pressing. Then, over time  the load does not work
and the compact is unloaded.

In the classical theory of plasticity, when the load is removed, the material is instantaneously unloaded
and retains its stress-strain state unchanged.

In the used here modified theory of elastoplasticity, the compressibility law describes the viscous
behavior of the composite; therefore, the stress relaxation occurs gradually. The material is porous and has
the property of irreversible bulk compressibility; the kinetic equation for porosity is connected directly
with the equation for bulk plastic deformation and describes the bulk creep. Irreversible changes in poros-
ity and at the same time irreversible growth of bulk plastic deformation are due to two main reasons: pres-
sure (cold pressing) and the action of capillary forces on the surface of pores when the matrix material
melts.

In the period of time  the sample is in the furnace and is sintered. The following times are accepted
for calculation: . For the unit of dimensionless time, the travel time of the elastic
longitudinal wave of a unit distance is taken. The length of the side of the square sample was equal . Heat
transfer was not considered in this calculation, and sintering was provided by a predetermined homoge-
neous heating. The following relation is used for sintering stress:

The history of external pressure p and coefficient  is shown in Fig. 1. Material properties were taken as
follows:
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Fig. 2. History of porosity, boundary velocity and pressure.
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Figure 2 shows the calculated history of porosity, boundary velocity, and pressure for a moving
Lagrangian border node . The distinct pattern of compaction of the material during cold
pressing and sintering is clearly visible. Sintering copes with compaction much more efficiently. It is inter-
esting to follow the direction of movement of material at loading and unloading stages (Figs. 3, 4). Velocity
fields are shown for four consecutive time points: .

The evolution of porosity in the sintering process and the change in the shape of the sintered composite
can be seen in Figs. 5 and 6, which shows the isolines of pressure, porosity and plastic work for the two
states of the material after pressing and after sintering.

A comparison of Figs. 5 and 6 gives an idea of the level of compaction of the sample after the comple-
tion of the pressing process and about the sintering process, as well as the corresponding distributions of
residual stresses and porosity. The level of porosity achieved by sintering is an order of magnitude lower
than the level after pressing. However, the residual stresses in the cooled sintered sample are significantly
higher than in the cold pressed one. If this level of residual stresses is not desirable, then the problem arises
of optimizing the temperature regime during sintering in order to reduce residual stresses.

5. SINTERING OF A TWO-COMPONENT POWDER MASS UNDER THE ACTION
OF a ENERGY PULSE

Earlier, in [12, 13], a numerical simulation of the sintering of a two component powder under the
action of a high-power laser ray was carried out. In this case, the hard component forms a skeleton through
which the molten substance of matrix f lows due to the action of gravitational and capillary forces. To
describe the f low of a liquid melt in a powder mixture, the linear Darcy law was used. This section presents
a solution to the problem of the action of a moving high-energy pulse on a two-component powder mate-
rial (“laser sintering”) using the model described above.

0; 10x y= =

= 2; 50; 60; 61t
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Fig. 4. Velocities at t = 60 and t = 61.
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Fig. 5. Isolines of pressure, porosity and plastic work after pressing.
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At the beginning, we formulate a model one-dimensional non-stationary problem for the second phase
of sintering under the assumption that the preliminary compaction has already occurred (the first phase
is completed).

Let an energy impulse runs with speed v along the precompacted rod of length  (see Fig. 7). It heats
the material of the compacted powder rod above the melting point of the low-melting phase and under the
action of capillary forces, the wetted pores collapse (as the pulse passes) and sinter with a decrease in
porosity. The simplified coupled system of equations for temperature and porosity in this case has the fol-
lowing form:

l
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Fig. 6. Isolines of pressure, porosity and plastic work after sintering.
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Fig. 7. Energy impulse running through a layer of compacted powder material.
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In the equation for porosity the first term is responsible for cold pressing under the action of pressure
p, and the second term is responsible for the hot sintering under the action of capillary forces at a tempera-
ture above the melting point of the low-melting phase. We assume that the effect of the sintering stress is
much greater than the effect of the pressure ( ) and we have a simplified equation for porosity:

Farther we use dimensionless parameters: length by dividing onto the characteristic size , velocity
onto v, time onto l/v:

The related dimensionless nonlinear system of equations for these variables is

Initial conditions are: 
Boundary conditions are: , .
For the numerical solution of a coupled nonlinear system in temperature-porosity variables, the fol-

lowing simplest difference scheme was used:

For the stability of the scheme it is necessary

where τ is a time step, h is a spatial step. In the calculations, the initial value of porosity was taken ,
then the stability condition takes the form 

It should be borne in mind that with significant changes in porosity, large deformations of particles
occur during sintering. To account for these effects, we write the mass conservation law for the grid cell

. From relation  it follows:

Thus, when the porosity changes, the Lagrangian grid becomes non-homogeneous, the derivatives in
the difference scheme on such a grid were approximated taking this fact into account.

As an example, we present the calculation results for the case of pulse passage with amplitude 
and width  at a distance x = 0.5, at a speed v = 0.02 for the following values of dimensionless

pω ωα ω λ@

( ) ( ).d H H T T
dt ω ω
ω = − ω α ω −

l

0 0 0/( / ), / .k c lωγ = ρ β = αv v

2
( ),

(1 ) (1 )(1 )
x

xx x
r x tdT T T

dt
γωγ −= − +

− ω − ω− ω
v

( ) ( ).d H T T H
dt ω
ω = −βω − ω

0 00 : , .t T T= = ω = ω

00, 0 :t x T T≥ = = 00, :t x l T T≥ = =

1
1 1 1 1 1 1

2 2 2
( ) ( 2 ) ( )( ) ( ),

(1 ) (1 ) 4 (1 )

n n n n n n n n n n
i i i i i i i i i i

n n n
i i i

T T T T T T T r x t
h h

+
+ − + − + −− − + ω − ω − −γ= − γ +

τ − ω − ω − ω
v

1( ) ( ) ( ) .
n n

n n ni i
i i iH T T H

+

ω
ω − ω = −βω − ω

τ

( ) ( )2 2
0min (1 )/ 2 (1 )/ 2 ,h hτ ≤ − ω γ = − ω γ

0 0.5ω =
2/(4 ).hτ ≤ γ

constxρΔ = 0(1 )ρ = ρ − ω

0 0(1 ) (1 ).x xΔ − ω = Δ − ω

0 40r =
0.0125ε =
MATHEMATICAL MODELS AND COMPUTER SIMULATIONS  Vol. 11  No. 5  2019



738 BURAGO, NIKITIN

Fig. 9. (a) Porosity distribution; (b) temperature distribution.
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Fig. 8. (a) The shape of the running pulse; (b) shrinking cells during sintering.
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Fig. 10. (a) Porosity distribution; (b) temperature distribution.
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parameters: , , . The shape of the moving pulse is shown in Fig. 8a, the particle
compression graph for the sintering mode under consideration is presented in Fig. 8b.

Figure 9a,b shows graphs of porosity and temperature at a given point in time. Since the temperature
at the edges of the powder layer is obviously lower than the melting point, there are always zones of non-
sintering on the left and on the right. The pulse amplitude is chosen so that on a substantial part of the
layer the temperature exceeds the melting point and, despite the dissipation of heat, leads to a significant
decrease in porosity, that is, actually to sintering. We also give the calculation results for the porosity and
temperature distributions with a halved decreased pulse velocity v = 0.01 (see Fig. 10a,b).

A comparison of the graphs in Figs. 9 and 10 shows the main features of the sintering process. Slow
pulse speed leads to better and more homogeneous sintering (with lower, close to zero porosity values) and
to higher temperatures achieved during the process. A decrease in the amplitude of a pulse or its too fast
motion leads to regimes in which the melting point is not reached and no sintering occurs.

0.05γ = 0.5β = 03T Tω =
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6. CONCLUSIONS
Based on the thermodynamic approach, the constitutive relations for the pressing and sintering models

of powder composites are obtained. A kinetic equation for porosity and volumetric plastic strain has been
introduced into the conventional theory of elastoplasticity in order to account action of non-thermome-
chanical capillary compressive sintering stress.

The modification of the conventional theory of elastic-plastic f low is implemented in a computer pro-
gram for the calculation of elastoplastic media to adapt to sintering processes.

Numerical calculations show the ability of the modified theory of elastoplastic f low to reproduce the
main effects of the processes of cold pressing and hot sintering, including the determination of residual
porosity, stresses and strains in the compact, as well as its residual form.

The problem of “hot” sintering (the second phase of the process) under the action of a moving energy
pulse was solved numerically. The influence of the problem parameters (pulse amplitude and speed, ther-
mal conductivity and heat capacity, geometric linearity/nonlinearity) on sintering the powder material
and the distribution of porosity and temperature is estimated.
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