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Abstract—The influence of electron-ion collisions on breaking cylindrical nonlinear plasma oscilla-
tions is studied. Numerical calculations by the particle method and an analytic analysis by the pertur-
bation method in the weak nonlinearity regime show that, with an increasing collision frequency, the
time needed to break plasma oscillations increases. The threshold value of the collision frequency is
found exceeding which the density singularity does not arise. In this case, the maximum of the elec-
tron density formed outside the axis of the oscillations, the growth of which in the regime of rare col-
lisions leads to the breaking effect, after some growth begins to decrease due to the damping of the
oscillations.
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1. INTRODUCTION
When studying plasma oscillations and waves, it should be borne in mind that in the absence of dissi-

pation even a relatively small initial collective displacement of particles can lead to the appearance of a sin-
gularity of the electron density [1]. This effect is called breaking the oscillations. It was shown in the
monograph [2] that the singularity, i.e., going to infinity, of the the electron density in the Euler descrip-
tion of the medium’s motion is equivalent to the intersection of the electron trajectories in its Lagrangian
description.

For a one-dimensional plane non-linear plasma wave, the limiting amplitude of the electric field up to
which the wave can exist and when approaching which the electron density perturbations become
infinitely large was determined in [3]. However, it was shown in [4, 5] that oscillations can also be broken
with field amplitudes lower than the limiting value but not long after their excitation. Such oscillations are
conveniently called long-lived and their breaking time is inversely proportional to the third power of the
electric field, which leads to the fast increase in the breaking time on a decrease in the amplitude of the
oscillations. In the case of one-dimensional plane geometry, the breaking of long-lived oscillations con-
sidered in [5] is related to the amplitude dependence of frequency due to relativistic effects. For cylindrical
and spherical oscillations, the breaking is due to the contribution of electron nonlinearities to the fre-
quency shift and explained by the intersection of the electron trajectories [4].

The results given above were significantly refined in [6, 7]. In particular, it was found that breaking
long-lived oscillations is associated with the formation and sharp growth in time of the maximum electron
density localized in space, which is located outside the axis of the symmetry of the problem. In addition,
it was shown that nonlinear cylindrical oscillations are broken almost one-and-a-half times faster than it
was predicted in [4] because of the intersection of the trajectories of the neighboring particles rather than
the trajectories of particles separated from each other by a radius that is twice the amplitude. In this work,
the results obtained in [6] for breaking cylindrical oscillations are summarized taking into account the
electron-ion collisions.

It should be noted that attempts were made earlier to take into account the effect of collisions on elec-
tronic oscillations (see, e.g., [8, 9]). However, the results obtained there relied on the non-relativistic
plasma model in the case of the plane geometry and, moreover, the plasma resistance was taken into
account simultaneously with the viscosity. As a result, the breaking effect was outside the attention of
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researchers. For the first time, it was possible to trace the effect of electron collisions on breaking plane
plasma oscillations in [10], where the origin of the breaking was the allowance for only the relativistic
factor.

The article has the following structure. First, a detailed statement of the problem is given in the Eule-
rian and Lagrangian variables, including the initial and boundary conditions necessary for describing the
time evolution of localized plasma oscillations. Then the results of the analytical consideration of the for-
mulated problem of the perturbation method [11] in the weak nonlinearity regime are set forth. The fol-
lowing is a description of the numerical simulation of the cylindrical oscillations of the plasma, the parti-
cle method, according to the so-called leapfrog scheme [12]. The results of the calculations demonstrate
that the breaking of plasma oscillations is associated with the formation of an electron density maximum
outside the axis of oscillations, which increases in magnitude with time and becomes infinite after several
periods. Accounting for electron-ion collisions leads to the fact that the time of the breaking of plasma
oscillations increases with the increasing frequency of collisions. In addition, it was found that, for each
initial amplitude of the electric field, there is a certain threshold value of the collision frequency, which
when exceeded does not lead to a density singularity. In conclusion, the results of the studies are system-
atized.

2. STATEMENT OF THE PROBLEM
2.1. Basic equations. We consider the plasma as a cold relativistic electron liquid ignoring the recom-

bination effects and the motion of ions. Then the system of hydrodynamic equations describing it together
with the Maxwell equations in the vector form appears in the form

(1)

where  are the electron charge and mass (an electron charge has a negative sign: );  is the speed
of light;  are the electron concentration, momentum, and velocity;  is the Lorentz factor; and

 and  are electric and magnetic field vectors.
The system of equations (1) is one of the simplest plasma models, which is often called the hydrody-

namic equations of the cold plasma; it is well known and described in sufficient detail in textbooks and
monographs (see, e.g., [13–16]).

We draw attention to the presence in the equation for the momentum of the term  describing elec-
tron-ion collisions. Accounting for this effect can be interpreted as the friction force between particles; in
the non-relativistic case (see, e.g., [13], p. 44), the formula of the following form is used:

where  is the effective frequency of collisions of charged particles of type  with particles of type 
when . A detailed description of the formulas for plasma transfer coefficients is presented in [17].

2.2. Statement in Euler variables. From the basic equations of the plasma model under consideration (1),
we obtain a system whose solutions have the axial (cylindrical) symmetry.

We will denote independent variables in a cylindrical coordinate system in the usual manner by .
Let us assume the following points:

—the solution is determined only by the r-components of the vector functions ;
—the dependence on variables  and  in these functions is absent, i.e., .
Then the non-trivial equations follow from system (1):

(2)

div( ) 0,n n∂ + =
∂

v
t

[ ]
2

2 2( ) , , 1 ,ei
ee
c m m c

∂ + ∇ = + × − ν = γ = +
∂ γ

pp pv p E v Β p v
t

1 4 1rot , rot ,en
c c c

∂ π ∂= − + = −
∂ ∂

E v B B E
t t

,e m 0e < c
, , andn p v γ

E B

eiν p

( ),α αβ α β= −ν −g v v

αβν α β
α ≠ β

( , , )r zϕ

, , andp v E
ϕ z 0z∂ ∂ϕ = ∂ ∂ =

2

2 2

1 ( ) 0, ,

1 , , 4 .

r r
r r r ei r

r r
r r r

p pn rn eE p
t r r t r

p p E en
m tm c

∂ ∂∂ ∂+ = + = − ν
∂ ∂ ∂ ∂

∂γ = + = = − π
γ ∂

v v

v v
MATHEMATICAL MODELS AND COMPUTER SIMULATIONS  Vol. 11  No. 3  2019



440 FROLOV, CHIZHONKOV
We introduce dimensionless quantities

where  is the plasma frequency,  is the unperturbed electron density, and . In
the new variables, system (2) takes the form

(3)

From the first and last equations (3), it follows that

This relation is true both in the absence of the plasma oscillations  and their presence.
Therefore, from here we have a simpler expression for the electron density

(4)

Now, excluding the density  and factor  from system (3), we arrive at the equations describing the
free cylindrical one-dimensional relativistic oscillatory motions of electrons in a cold plasma taking into
account collisions:

(5)

Further, we assume that inequality  meaning that the frequency of electron-ion collisions  signifi-
cantly is less than the plasma frequency .

We consider the electron oscillations in the vicinity of the axis . We assume that the velocity and
momentum of electrons at the initial moment of time  are zero,

(6)

and we assume that the oscillations are excited at the initial time by the following electric field:

(7)

where the parameters  and  characterize the scale of the localization region and the maximum value

 of the electric field (7), respectively. The form of function (7) is chosen
from the considerations that such oscillations can be excited in the rarefied plasma  by a laser
pulse with frequency  when it is focused with a spherical lens, and when the focal spot has the shape of
a circle.

If the electric field of laser radiation has the axial symmetry and the Gaussian distribution over the spa-
tial coordinates and time

(8)

where  and  are dimensionless values of the duration  and the radius of the focal spot
 of the laser pulse, then at some point  remote from the trailing edge of the pulse at a distance larger
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than the length of the plasma wave , the following relation holds true relating quantity  to the
laser pulse parameters [6]

(9)

where  is the normalized amplitude of the laser field. Under the optimal wake wave exci-

tation , when its amplitude is maximum, the relation (9) takes the form .

Note that at large distances from the axis , due to the initial condition (7), the plasma oscillations
are not excited. Therefore, we assume that the following conditions are met:

(10)

Thus, taking into account the specificity of the cylindrical coordinate system , we will study in the
first quadrant  the solutions of system (5) determined by the initial and boundary
conditions (6), (7), and (10).

2.3. Statement in Lagrangian variables. The quasi-linear system of equations (5) is written in Eulerian
variables; its form in Lagrangian variables will be useful in the future:

(11)

where  is the total time derivative.

We recall that the function  determines the displacement of a particle with a Lagrangian coor-
dinate , so that

(12)

satisfies the equation

(13)

Expressing velocity  in terms of the displacement  in accordance with formula (13), we write the sec-
ond equation (11) in the form

(14)

Equation (14) has the first integral

where the constant  is determined from the condition of equality of the electric field to zero in the
absence of the particle displacement. Then from this relation we find the expression for the electric field
(see also [4, 6])

(15)

and the basic system of equations in Lagrangian variables (11) takes the form
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We note that relation (15) is very useful for determining the Lagrangian coordinate particle  and the ini-
tial condition  by the given distribution (7): . The algorithm is as follows: for
some  from the equation (see relationship (15) at )

the quantity is determined from the explicit formula

(17)

and then from (12) the sought initial displacement at point  is found:

(18)

In summary, the trajectories of all particles, each of which is identified by the Lagrangian coordinate
, can be determined by the independent integration of systems of ordinary differential equations of form

(15) and (16). To this end, two initial conditions are required:  and . From (6), we have
. To determine , first set the position of particle  in the initial time, then the Lagrang-

ian coordinate is determined from formula (17), and the initial displacement is calculated by formula (18).
Knowledge of the Lagrangian coordinate  and the displacement function  unambiguously char-
acterizes the particle trajectory by formula (12).

3. THEORY IN THE WEAK NONLINEARITY REGIME

The presented system of equations (15) and (16) makes it possible to analytically (by the perturbation
method [11]) analyze the trajectories of particles in the case of a weak nonlinearity. The electron density
in the plasma oscillations is determined in terms of the particle displacement function by the following for-
mula:

(19)

as follows from relations (4) and (15).

In the weak nonlinearity regime, i.e., when it is possible to use the expansion , from
the system of equations (16) follows one equation for the small diplacements  from
the initial position

(20)

The solution of Eq. (20) will be sought in the form

(21)

where , are the amplitudes of electron displacements at the zero, first, and second har-

monics, which slowly vary in time over the oscillation period, ,  is the

dimensionless oscillation frequency (the frequency divided by the plasma frequency ), and c.c. denotes
conjugate terms. We apply the procedure for separating terms on time scales in Eq. (20). In this case, based
on representation (21), the amplitudes of the zero and second harmonics of the electron displacements
can be expressed in terms of the amplitude of the first harmonic:
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The equation for the amplitude of the displacement  in the main frequency has the form

(23)

We recall that the equation obtained is applicable when under the conditions  and
.

We assume that the equality

(24)

which determines the nonlinear correction to the frequency of cylindrical plasma oscillations, holds [6].
Then the solution of Eq. (23) can be written in the form

(25)

Taking into account relations (24) and (25), according to (21), the electron displacement at the plasma
frequency is determined by the following formula:

(26)

where  is the particle displacement at the initial time and the phase  has the
form

(27)

From formula (27) in the limit at , we have the well-known result

for the phase of nonlinear cylindrical oscillations of the collisionless plasma [6].
It follows from formula (19) that the density singularity occurs when the following condition holds:

(28)

Using formulas (26) and (27), from Eq. (28) we obtain the equation for determining the time at which the
plasma oscillations are broken:
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where

(33)

and the functions  are determined by the formulas

(34)

In relations (32)−(34), the variable  is indicated as the main argument, because the quantities  and 
here appear as external parameters.

Equation (32) is basic for analyzing the effects of electron-ion collisions on the breaking time of oscil-
lations. As quantity  in Eq. (32) tends to zero, we obtain the relation of the form

In particular, it follows from it that the shortest time of the occurrence of a density singularity is imple-
mented under the conditions when  as a function of the variable  reaches the maximum value. We
introduce the notation for the time of the breaking of oscillations disregarding collisions

Then the basic equation (32) can be represented in a convenient form:
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Equation (35) is cubic with respect to the unknown  and has physically meaningful real solu-
tions  under the condition that parameter  satisfies the inequalities
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In this case, the density singularity appears as a result of the increase in the off-axis density maximum.
When the dimensionless frequency of electron collisions  exceeds the threshold value of , and
the inequality inverse to (36) holds
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the density singularity does not arise, which is associated with damping of the plasma oscillations. We note
that at  the time of the breaking is  as follows form the analysis of Eq. (35).

Now we turn to the consideration of important particular cases of the breaking of oscillations. Let the
inequality  meaning that the plasma oscillations localized in a fairly large area of space be fulfilled.
In this case, the correction to the frequency of oscillations is determined primarily by the relativistic effects
and from (32) the equation given below follows:
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From the explicit formula (34) it follows that the maximum of the function  is  and
it is located at the distance  from the axis of symmetry. With allowance for this circum-
stance, Eq. (39) can be written as

(40)

where  is the time of the breaking of weakly nonlinear oscillations of the collisionless  plasma,
which is determined by the following relation:

(41)

Now let the plasma oscillations be excited in a narrow region of the space, when the condition 
is fulfilled. In this case, another equation follows from Eq. (32):

(42)

Here also the smallest time of the appearance of the density singularity is implemented under the condi-
tions when  as a function of variable  reaches the maximum value. We have from the explicit for-
mula (34) that the maximum of the function  is  and it is at the distance 
from the axis of symmetry. With allowance for this circumstance, Eq. (42) can be written in the form anal-
ogous to (40),

(43)

Only in this case is the time of the breaking of weakly nonlinear oscillations of the collisionless 
plasma  determined by the relation [6]
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4. NUMERICAL SIMULATION
We recall that the main feature of the statement of the problem in Eulerian variables is the density sin-

gularity at the time of the oscillations break, i.e., the effect of the formation of unbounded derivatives at
the finiteness of the solution itself (gradient catastrophe, see, e.g., [18, 19]). Therefore, for the calcula-
tions, it is preferable to choose Lagrangian variables, in which the smooth trajectories of the particles are
to be determined. This means that first of all, we should discuss the numerical integration of equations
(15) and (16) with the initial conditions (6) and (7).

However, it should be noted that additionally, in order to control the dynamics of the oscillations, the
calculations were carried out according to a splitting scheme constructed by the finite difference method
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space-time steps had to be reduced by factors of 10−20, which fully corresponds to the increase in the cal-
culation’s labor intensity in Eulerian variables. In addition, the numerical integration of Cauchy problems
in Lagrangian variables was reproduced by the fourth-order classical Runge–Kutta method [20]. Here, in
full accordance with the theory, the complexity of the calculation increased by about four times compared
to the leapfrog scheme traditionally used to integrate the equations of motion of particles (see, e.g., [12]).

For the sake of completeness, we present the calculation formulas of the second-order accuracy
method, the main purpose of which is the numerical analysis of the effect of electron-ion collisions on
their relativistic breaking process.
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which has form (7). However, the deviation of particles at the initial time creates at the point with the
coordinate  the electric field in accordance with formula (15). Comparing expressions
(7) and (15), we can determine the desired  and  values. For this, we set the initial spatial grid

, where h is the radial discretization parameter characterizing the proximity of the neighboring
particles. In the grid nodes by formula (7) we calculate the values of the electric field . This electric
field is formed by the displacement of particles; i.e., based on (15) we have the equations for determining
the initial positions :

and then, recalling that , from the found initial positions of the particles, we find their
initial deviations  from these initial positions (see (17), (18)). Thus, for calculating the trajectory of
each particle, the initial  and  data are obtained, to which the condition of immobility of the
particles at the initial time from (6), i.e., , should be added.

Equations (16), as noted above, are ordinary differential equations. Therefore, they can be integrated
in a numerically normal way, e.g., according to the second-order accuracy scheme traditional for the
equations of motion (the so-called leapfrog scheme). Let  be the time discretization parameter, i.e.,

 , then the calculation formulas will have the following form:

At any time  the variable Euler grid can be calculated from the formula already given

in the nodes of which, in accordance with Eq. (15), the values of the electric field are determined. This
was used to represent the electron density for illustrative purposes: in the calculations, the formula used
was a second-order accuracy numerical differentiation in the middle of the subsegments

Here it is convenient to assume that at any moment of time a particle with the number , in which the
displacement is always absent, is located on the axis; i.e., its trajectory simply coincides with the axis and
on this trajectory the electric field is always zero.

4.2. The choice of parameters for calculations. At least 8640  particles were used in the calculations;
however, in this case the values of the sampling parameters  (time step) and  (initial distance between
particles) are more important: , since the formulas used have the second order of accuracy with
respect to the indicated values. The correctness of the calculations was regularly monitored by additional cal-
culations with double the number of particles, i.e., at half the steps in time and space. The updated time values
and the coordinates of the breaking of oscillations differed in the 4th–5th significant digit.

In order to illustrate the theoretical results obtained in the previous section, two variants of breaking
were chosen. The first one, we call it relativistic , is determined by the parameters in the initial
condition (7):  and  and the second one (we call it non-relativistic) is determined
from [6] with parameters  and . The fundamental difference between these two sets of
parameters is that a simultaneous multiple decrease in the  and  values in the non-relativistic case
barely changes the time at which the oscillations break, and with allowance for relativism the change of
this value is quite significant. This effect is based on the property of the electron density invariance in the
non-relativistic case described in [7]. For example, for option  and , the coordinates of
the breaking were calculated in three ways (leapfrog scheme, splitting scheme, and fourth-order Runge–
Kutta method):
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Fig. 1. Dynamics of collisionless plasma density : solid line is maximum over region, dotted line is symmetry axis.
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The simultaneous halving of  and  led to the change in the time of the breaking in the fourth significant
digit of  (after rounding the three match)); another decrease by 50% gives . Taking this into consid-
eration, this option may be used as a non-relativistic one, i.e., for illustration of the case .

In turn, for the relativistic version with parameters  and  the coordinates of the
breaking were also calculated in three ways:

This variant was chosen so that in the first periods of the oscillations the extremes of the electron den-
sity amplitudes in both variants (relativistic and non-relativistic) would be close to each other. By formulas
(41) and (44), a similar approach leads to a significant reduction in the time of the breaking for relativistic
oscillations.

4.3. Results of numerical experiments. The fundamentally important theoretical result established in
Section 3 is that the value of the upper boundary of the product ; if this value
is exceeded, the breaking of oscillations should no longer occur. The above limitation is obtained in the
weak nonlinearity regime but it is universal; i.e., it does not depend on whether the effects of relativism
are taken into account.

The systematic numerical calculations showed that in the relativistic case the breaking stops at
, and in the non-relativistic case it stops at . If in the presented numbers

the last digits are reduced by one, then the calculations demonstrate the breaking effect. With allowance
for the choice of two illustrative sets of parameters that can be considered as limiting for the general case,
described by relations (32) and (35), the approximate values obtained should be considered completely
consistent with the theory. This means that the simultaneous numerical and analytical studies of the effect
of electron-ion collisions make it possible to formulate the following hypothesis: the boundary of the
damping of nonlinear cylindrical plasma oscillations with allowance for collisions is determined by the
product  where  is the time of the breaking of oscillations in the collision-
less case. The theoretical value of the boundary  obtained for the weak nonlinearity regime with
a high degree of accuracy coincides with the middle of the segment given above.

To demonstrate the dynamics of the changes in the electron density at the breaking of oscillations, we
turn to the figures.

Figure 1 shows two characteristic plots illustrating, as a function of time, the electron density (concen-
tration) on the axis of symmetry and its maximum value over the entire region. The plots are for the col-
lisionless case, where . The density function has a pronounced periodic character on the axis of
symmetry. However, the maximum density in the region locally coincides with the regular maxima on the
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Fig. 2. Spatial distribution of velocity and electric field at time of breaking of oscillations without collisions .
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axis, and then (in this case, in the sixth period of oscillations), an off-axis maximum is formed (approxi-
mately at ). This maximum increases fast from period-to-period: at time  it almost dou-
bles in value and, finally, in the next period, at —the maximum electron density goes to infin-
ity; i.e., the oscillations break. The spatial distributions of the velocity and electric field functions corre-
sponding to the time of the breaking of the oscillations are shown in Fig. 2.

In accordance with formula (4), the density singularity is determined by the stepped form of the elec-
tric field function in the vicinity of . A more detailed description of the scenario of the
breaking of cylindrical oscillations in the case of the collisionless plasma is given in [6].

Let us turn to illustrations accounting collisions. If the cause of the breaking is relativistic effects then
the effect of geometry, i.e., oscillations, plane or cylindrical, is almost negligible. The illustrations of the
effect of electron-ion collisions on the relativistic breaking in the plane case are given in [10]; therefore,
below we focus on the breaking effect arising from the geometric (cylindrical) nonlinearity of the equa-
tions.

From the theoretical analysis of the weak nonlinearity regime, it follows that when electron collisions
are taken into account, the time of the appearance of the density singularity increases (see formula (37)).
Figure 3 shows the plasma density dynamics with rare collisions , and parameters  and

 correspond to the breaking occurring in the non-relativistic case. In this calculation, the electron den-
sity singularity occurs only at the 11th period  and not in the 8th period, as was the case in

the collisionless case .
In full accordance with the theory discussed in Section 3, the calculations show that the density singu-

larity with the given initial parameters occurs only in the case of relatively rare collisions, when the
inequality  holds. When the equality  holds, the time of the appearance of
the density singularity is  and it is about 2.78 times longer than the time of the breaking in
the collisionless plasma. This result is also in good agreement with the theory, where the factor of the
increase in the time of the breaking is predicted to be approximately 2.85.

When the condition  holds the density singularity no longer occurs. Such a scenario of

the evolution of the electron density is presented in Fig. 4 for the variant . In this case, the
off-axis maximum after its formation initially increases but in the future it decreases due to the strong
damping of oscillations. Also here the exponential decay of the amplitude of the regular maxima of the
electron density located on the axis of symmetry of the problem should be noted.

Note that the qualitative behavior of the electron density when considering collisions of particles does
not depend on the causes of the breaking effect of the oscillations, as follows from the analytical consid-
eration in Section 3.
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Fig. 4. Plasma density dynamics with frequent collisions : solid line is maximum over region, dotted line
is symmetry axis.
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Fig. 3. Plasma density dynamics with rare collisions : solid line is maximum over region, dotted line is sym-
metry axis.
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5. CONCLUSIONS

The effect of electron-ion collisions of electrons on the breaking of cylindrical nonlinear plasma oscil-
lations was studied numerically and analytically in this work. When there are no collisions in the plasma
the plasma oscillations break due to the formation of an electron density maximum outside the axis, which
increases with time and after several periods of oscillations tends to infinity.

An expression for the particle displacement as a function of time and initial coordinate is derived ana-
lytically from the equations of motion of the perturbation method in the weak nonlinearity regime. Based
on the condition that the electron density becomes infinity, the time of breaking is found and it is shown
that with increasing collision frequency this time increases. It is established numerically and analytically
that there is some threshold value for the collision frequency above which the density singularity does not
occur.

The calculations show that at collision frequencies above the threshold value the maximum density
outside the axis of oscillations after its formation increases for some time, reaches an extremum, and then
falls due to the damping of the oscillations. The results of the analytical consideration are in good agree-
ment with the numerical experiments and can be useful when discussing various physical effects associ-
ated with plasma oscillations and waves.
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