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Abstract—The principle of pressure maximum is proved for a stationary three-dimensional vortex
ideal gas f low (without the assumption of barotropicity). Based on the fact that in regions where the
solution is modeled with a high degree of accuracy within the boundary value problem for the Euler
equations, the consequences of the Euler equations must also hold, and the obtained subsonic princi-
ple is proposed to be used for verification of the numerical solutions of the boundary value problems
for Euler equations for an ideal gas and for the Navier-Stokes equations for viscous gas. The conditions
of the maximum principle include the value of the Q-parameter, whose surface level image is currently
widely used to visualize the f low pattern. The proposed principle of the maximum pressure reveals the
meaning of the surface Q = 0. It divides the f low region into the subdomain Q > 0 in which there can
be no local pressure maximum and subdomain Q < 0 in which there can be no local pressure mini-
mum. A similar meaning of parameter Q was known for incompressible f luid (H. Rowland, 1880; G.
Hamel, 1936). The expression for the Q-parameter contains only the first derivatives of the velocity
components, which allows determining the sign (+/–) of Q even for numerical solutions obtained by
the low-order methods. An example of the numerical solution’s verification using the subsonic prin-
ciple of the pressure maximum is presented. Analysis of the results of the numerical calculation of the
flow around a moving aircraft carrier in the presence of atmospheric winds showed that if the calcu-
lation results are used for the simulation of complex f light modes and analyze the state of the atmo-
sphere from the point of view of safe air traffic, visualizing the f low pattern by Q = const surfaces is
not informative. In particular, these surfaces do not reflect the true picture of the wind shear perceived
by the aircraft directly entering it. To verify the numerical method, it is sufficient to provide only a sur-
face Q = 0 which has a clear physical meaning.
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INTRODUCTION
When solving atmospheric problems, it is necessary to take into account the mass forces . The

corresponding system of Euler equations can be written as

(1)

where ρ is the density, p is the pressure, V is the velocity, and ρE is the total energy of a unit of volume (the
dot between the vectors stands for the scalar product). The first equation expresses the condition of mass
conservation; the following three, the conservation of momentum; and the energy equation completes the
system.

Equations (1) adequately describe the transfer of vorticity and have three physical mechanisms for its
generation: entropy, energy (in accordance with the Crocco theorem for a steady f low  =

, where T is the temperature, S is the enthropy, and  is the total enthalpy), and density
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98 VYSHINSKY, SIZYKH
( in accordance with the Bjerknes theorem, the pressure field can create circulation in the case where ρ ≠
const on the p = const surface).

In any numerical scheme, instead of the original system (1), the following system of equations is solved

where  is the unit tensor and  is the tensor of circuit and/or artificial viscosity. In other words, both
diffusion and dissipative terms are present in the numerical scheme, although the processes they model
do not reflect reality, since the system of equations (1) does not have viscous terms. In the absence of real
viscous diffusion on the difference grid, it is impossible to describe waves whose length is shorter than the
grid step. In a numerical experiment, the problems of the adequacy of the grid density and the sufficiency
of the order of approximation of the numerical scheme, the computational domain size, and/or the pos-
sibility of applying nonreflecting boundary conditions are solved. At the same time, the question of the
accuracy of the solutions obtained for nonlinear systems remains open, since the convergence of the
numerical solution to the solution of the original boundary value problem is proved only for the linear case
(the Lax theorem). Therefore, despite the existence of the well-known verification methods, any addi-
tional way of checking the adequacy of numerical simulation results is of value.

In the most complex f lows, there are zones in which a simpler boundary value problem can be solved,
for example, laminar sections in a turbulent f low, zones of stationarity and potentiality of the f low, and
flow regions where viscosity and compressibility can be neglected.

If there are zones in the f low field that are modeled with a high degree of accuracy within the boundary
value problem for the Euler equations, then the consequences of the Euler equations must also hold in
them. In this paper we suggest checking the fulfillment of one of these consequences for the additional
verification of the numerical calculations in the boundary value problems for the Euler and Navier-Stokes
equations. This is about the subsonic principle of the pressure maximum, previously unknown and first
proposed in this article.

The first theorems on the extremal values of the pressure following from the f luid motion equations
include the following three theorems. The Rowland theorem [1] is for an ideal incompressible f luid, the
Poincaré theorem [2] is for an incompressible f luid in a gravitational field created by the f luid itself, and
the Hamel theorem [3] is for a viscous incompressible f luid (it can be found in the monograph [4, §28] by
Serrin). These theorems state that the pressure cannot reach a minimum or a maximum at an internal
point of the f low. In the process of proving these theorems, harmonic and subharmonic equations for the
pressure were obtained and then the versions of the principle of maximum valid for such equations were
used. Statements were obtained about the minimum or maximum, depending on the sign of parameter Q,
the expression for which only includes the first spatial derivatives of the velocity component (this expres-
sion will be presented later). The expression does not contain second derivatives, which is convenient for
verifying numerical solutions, because that reduces the requirements for the order of accuracy and for the
grid’s fineness when determining the sign of parameter Q.

In [5] the principles of the pressure maximum were obtained for the  value in the barotropic gas
flows. However, their conditions depend on the values calculated from the second derivatives of the veloc-
ity components. In comparison with the conditions of the Hamel theorem [3] (for an incompressible
fluid), these values contain an additional term,  , where . The presence of this term
complicates the verification of numerical solutions for checking the fulfillment of the theorem [5], since
even in the stationary case the expression  contains second spatial derivatives of the velocity
components. Moreover, in [5] the theorems are proven only for barotropic gas, which substantially nar-
rows the f low types under consideration.

In this paper the principle of the pressure maximum is obtained for subsonic stationary ideal gas vortex
flows. The conditions of this maximum principle include only the parameter Q (or more precisely, only
its sign). The f low can be nonbarotropic. This means that the entropy function, while remaining constant
along the streamline, can be different on different streamlines. The resulting maximum principle differs
from the subsonic maximum principle obtained by Schiffman in [6] (the formulation and proof can be
found in [7, ch. II]). The difference is that the Schiffman principle refers not to pressure but to velocity,
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THE VERIFICATION OF THE CALCULATION 99
and it is proved only for barotropic and vortex-free f lows, while the principle of the pressure maximum
obtained in this article can also be used to verify the calculations for vortex gas f lows.

THE PRINCIPLE OF THE PRESSURE MAXIMUM FOR SUBSONIC
STATIONARY IDEAL GAS FLOWS

We consider a stationary subsonic ideal gas f low in a certain closed region . Using the notation of the
previous section, the f luid’s motion is described by Euler equations written in the form [2, 8]

(2)

(3)

The pressure p and the density ρ are related by the expression , where k is the adiabatic index and
σ is the enthropy function. It can be different on different streamlines but remains constant along each
specific streamline:

(4)

The flow is assumed to be subsonic; i.e., the velocity value V at each point of the closed region  is
assumed to be lower than the local sound velocity :

(5)

In the studied closed region  all the hydrodynamic parameters are assumed to be twice continuously dif-
ferentiable functions of the coordinates.

If we take the divergence of both sides of Eq. (2) and use the known identity for the divergence of the
vector product  , we get the equation

(6)

where  is the Laplace operator. If we denote the velocity V components in an arbitrary rectangular Car-
tesian coordinate system Oxyz by u, v, and w, then direct verification shows the validity of the equality

(7)

where, for example,  means the squared gradient of u, the velocity component. Because of another
known vector identity , the first term of the left part of (6) is written as

(8)

Equations (7) and (8) allow us to eliminate the velocity Laplacian  from Eq. (6). After permutation of
the terms, we obtain the equation

(9)

where

(10)

Note. Parameter Q can be written as , where  is the

antisymmetric vorticity tensor and  is the symmetric strain rate tensor.
Then the expression for the second term of the left part of (9) is transformed. For this Eqs. (3) and (4)

are presented in an equivalent form:  and . From these equations
it follows that
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100 VYSHINSKY, SIZYKH
The gradient of the scalar product included in the right part of (11) can be rewritten using two identities
of the vector analysis:    and

, where γ is the scalar function. As a result, taking into account the
identity , we get the equality

Therefore (9) takes the form

(12)

If we write Eq. (12) in the coordinate form and group the factors for the first and second derivatives of
pressure, we obtain the equation

(13)

where coefficients , , , , , , , , and  depend on hydrodynamic parameters 
and on their first derivatives. The expression inside curly brackets in (12) corresponds to the last three
terms of the left part of (13).

If Eq. (13) is used to find the solution of the Euler equations from which it follows, the coefficients of
the pressure derivatives cannot be regarded as known functions of the coordinates. However, if Eq. (13) is
used to determine the properties of its solution under the assumption that such a solution exists, then these
coefficients can be regarded as certain known functions of the coordinates. This approach was repeatedly
used in the proofs, for example, in [6, 7, 9–12]. Equation (13) is considered from this point of view; i.e.,
the coefficients of the p derivatives in the left part of (13) and the right part of Q are assumed to be specified
functions of the coordinates x, y, z. As mentioned above, when Eq. (12) is written in the coordinate form
(13), the coefficients of the left part of Eq. (13) are expressed through the hydrodynamic parameters and
their first derivatives. Taking into account the assumption that the second derivatives of the hydrodynamic
parameters are continuous in , and also the fact that the density and pressure in the stationary subsonic
flow cannot become zero, then a direct verification can confirm the following properties of the coeffi-
cients of Eq. (13).

А1. All the , , , , , , , , and  coefficients and Q are continuous (and bounded) in .
А2. Using the Sylvester criterion and taking into account (5) shows that the coefficients of the second

derivatives of p in Eq. (13), that is, , , , , , and  are coefficients of a positive definite qua-
dratic form.

А3. The determinant of the matrix A, composed of the coefficients , , , , , and , is equal
to . By condition (5) and the continuity of the gas-dynamical parameters in the closed
flow region , there exists a number δ > 0 such that at each point of  the condition det A  holds.

Note that for these three properties to be valid, it would be sufficient to assume that the first derivatives
of the hydrodynamic parameters are continuous. A stronger condition, the continuity of the second deriv-
atives, is required in this study to validate the vector analysis formulas used in deriving Eq. (13).

The A1–A3 properties of the coefficients of Eq. (13) make it possible to apply to this equation two ver-
sions of the Hopf theorem [13, 14], depending on the sign of Q. These variants are formulated in [15] spe-
cifically for the three-dimensional case, when the coefficients of the equation are functions of three vari-
ables x, y, and z and are defined in some three-dimensional region G.

First, in [15] the following general assumption is formulated for the coefficients of the equation (in [15]
this assumption is under number 3.1).

Assumption 1. Suppose that at all points of G the coefficients , , , , , and  in the equation
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THE VERIFICATION OF THE CALCULATION 101
are coefficients of the positive definite quadratic form A. Suppose that for each point  such
ω  and  exist that a closed ball  lies entirely within G and in it all
the coefficients of Eq. (14) are bounded and inequality  is fulfilled.

Then in [15] a series of statements is given depending on the properties of the coefficients of Eq. (14).
In particular, in [15] these statements are under numbers 3.6 and 3.7.

Statement 1. Suppose that c = 0,  in a bounded region G and Assumption 1 holds. If the solution
 of Eq. (14) is continuous in the closed region , then  in the entire G region. In this

case, if  in G, the equality  only holds in ∂G.
Statement 2. Suppose that c = 0,  in a bounded region G and Assumption 1 holds. If the solution

 of Eq. (14) is continuous in the closed region , then  in the entire G region. In
this case, if  in G, the equality  only holds in ∂G.

Comparing Eqs. (13) and (14) and the А1–А3 properties of the coefficients of Eq. (13) allows us to
apply the variants given above of the Hopf theorem to Eq. (13) for the cases  and . Since ,
the case of  is not possible and extremes are reached only at the boundary. Eventually we obtain
the following main result.

Subsonic principle of the pressure maximum. Suppose that all hydrodynamic parameters are twice con-
tinuously differentiable functions of coordinates in a certain bounded closed region  of a stationary ideal
gas f low. Suppose also that in  Eqs. (2)–(4) and inequality (5) are fulfilled and Q is defined by formula
(10). Then, if at all points of  inequality (1)  holds, then the pressure cannot have a local minimum
at an internal point ; and if at all points of  inequality (2)  holds, then the pressure cannot have
a local maximum at an internal point of .

Note that in both cases it is impossible to reach not only strict extrema but also nonstrict extrema at
the interior point of .

USING THE PRINCIPLE OF THE PRESSURE MAXIMUM FOR VERIFICATION
OF THE NUMERICAL METHODS

As is the case when using the Rowland, Poincaré, and Hamel theorems, Eq. (10), containing only the
first derivatives of the velocity components, makes it possible to determine the sign of Q even for numer-
ical solutions obtained by low-order methods. In this case, the existence of a local pressure minimum or
maximum in a certain f low region is determined by a simple iteration over the values at the computational
grid nodes. Therefore, the verification of the fulfillment of the maximum principle formulated above can
be used as a verification method for a wide class of numerical calculations of f luid f lows (both viscous and
ideal).

If we arbitrarily divide the gas f low region into small zones, then in many of these zones (namely, in
those far from the sources of vorticity), the f low can be vortical; however, the gas can be considered invis-
cid and its motion can be described by the Euler equations. Therefore, in such zones the maximum prin-
ciple can be used to verify calculations even if these calculations were made for a viscous gas.

As an example, we consider the results of the numerical simulation in the boundary value problem for
Reynolds-averaged Navier–Stokes equations (RANS) of a f low around a moving tactical aircraft carrier
(TACC) in the presence of atmospheric wind [16].

The part of the ship that is above the waterline, from the aerodynamics point of view, is an elongated
blunt body with vortical separation zones fixed on the sharp edges of the hull and superstructures. This
ensures the Reynolds self-similarity of the f low and makes it possible to use the wind tunnel model tests
for validation of the calculated f low parameters over the f light decks and in the vortex wake behind the
part of the ship that is above the water.

An anisotropic model of turbulence in the surface layer was used as the atmosphere background. In the
coordinate system associated with the ship the free-stream velocity profile has a potential component
caused by the movement of the ship and the atmospheric wind component related to the no-slip condition
on the sea surface. A random impulse is imposed on the averaged field [17]. A boundary value problem is
solved for stationary Reynolds-averaged Navier-Stokes equations in the case of an incompressible f luid
flow (the bar denotes Reynolds averaging):
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102 VYSHINSKY, SIZYKH

Fig. 1. Problem setup. Vortex structures are visualized by Q = 0 surfaces.

–6.35
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where  is the change of the gas momentum;  characterizes the action of external forces;  are

the pressure forces;  is the action of forces related to viscosity; and  are the turbulent

stresses. The SST turbulence model, which is the synthesis of the k–ω model (used in the wall-adjacent
areas) and k–ε model (for the free f low region far from solid surfaces), was chosen to close the system of
equations.

A mathematical model of a TACC was constructed in which all fairly large structural elements are real-
ized; the ship had a length of 285 m, a width of 55 m, and a height of 50 m. The model was implemented
in the calculation domain with the following dimensions: 1200 × 300 × 150 m. The computational grid
contained 46 million nodes. The calculation was performed for the angle of the apparent wind β (the angle
between the velocity vector of the free stream and the longitudinal axis of the ship in the ship’s system in
the horizontal plane) of 6 degrees at deck level (Fig. 1). The ship’s velocity was about 20 knots and the
atmospheric side wind determined the indicated β value.

To verify the numerical method using the maximum principle proposed in this paper, we consider the
trailing vortex region of 100 m (width) × 60 m (height) × 20 m (length in the longitudinal direction). Fig-
ure 1 presents the extreme sections (x = –10 m and x = –30 m) of the considered area. The grid spacing
is 1 m in all directions. The initial section of the trail is located 10 m behind the edge of the ship’s stern.

The simulation results are shown in Figs. 2–7. Isobars (Fig. 2a) and the wind shear field  are pre-
sented in the first section of the solution’s verification area x = –10 m (the wind shear restrictions are
available in the f light manual for most aircraft) (Fig. 2b). The cross marks the local pressure minimum in
this section (the 2-D minimum point). It makes sense to look for a local 3-D minimum, which is men-
tioned in the subsonic principle of the pressure maximum obtained above, only at such points. By numer-
ical differentiation, the gradients of the velocity and pressure components were found, and the tensors of
the vorticity and deformation rates, as well as their contraction Q (formula (10)), were formed. For the
numerical differentiation, a second-order difference scheme was used everywhere, including the bound-
ary nodes of the computational grid.

Figures 3 and 7 present components of the vorticity tensors and strain rates. The pressure gradient
components for section x = –30 m are shown in Figs. 4 and 5. Figure 5 also shows the Q = const level field
in the same section. The dark crosses mark the position of the (two-dimensional) pressure maximum in
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Fig. 2. Section x = –10 m: (а) isobars; (b) ∂u/∂y.
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Fig. 3. Section x = –10 m: (а) ; (b) .
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Fig. 4. Section x = –30 m: pressure gradient components (а) ∂p/∂x; (b) ∂p/∂y.
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Fig. 5. Section x = –30 m: (а) pressure gradient components ∂p/∂z; (b) Q = const levels.
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this section. Figure 6 presents the longitudinal component of vorticity  and the  levels for section
x = –30 m.

The analysis of the calculation results using the subsonic principle of the pressure maximum obtained
above did not reveal any contradictions. In particular, the studied section of the computational domain
contains neither local 3-D pressure minima nor local 3-D maxima, which can serve as confirmation of
the correctness of the implemented numerical scheme, the sufficiency of the numerical simulation
domain size, fineness of the grid, order of approximation, the number of completed iterations and, indi-
rectly, as confirmation of the boundary value problem correctness.

VISUALIZATION OF THE CALCULATION RESULTS

As stated in the introduction, Truesdell could not find such a condition for the principle of the pressure
maximum (or rather, for the  value), which depends only on the first derivatives of the velocity com-
ponents, even for a barotropic gas. (As shown in this paper, the sign of parameter Q turned out to be this
condition for pressure.) However, it can be assumed that, possessing a highly scientific intuition, Truesdell
sensed the importance of parameter Q for (compressible) gas f lows. This is probably why in [5] he

xΩ u y∂ ∂

dp ρ∫
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Fig. 7. Section x = –30 m: (а) ); (b) .
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attempted to find the physical meaning of parameter Q and gave a number of convincing examples show-
ing that in some cases Q represents the intuitive perception of vorticity by physicists and mechanics as the
quantity characterizing that complexity of the f luid’s motion that distinguishes it from the motion of a
solid body better than the squared rotor . In other cases, he considered  to be the most adequate
characteristic. As a result, he proposed a dimensionless quantity  as a “second measure of vorticity.”
This proposal is still controversial and therefore is not included in textbooks on hydrodynamics.

However, one intermediate result of [5] turned out to have wide practical application. Some experi-
mental physicists have found the physical meaning of parameter Q, discovered by Truesdell, to be most
adequate for their concept of the f low’s complexity [18, 19]. In [19] it was suggested to consider f low zones
in which parameter Q is greater than a certain nonnegative threshold value as zones of rotating vortices of
a turbulent f low (eddy-zones). Although there is no strict definition of the eddy- or E-zone, since then
the image of Q-level parameter surfaces is used as one of the ways of visualizing E-zones of turbulent f lows
[19]. In many software systems, it is possible to represent the surfaces of the Q-parameter level and using
such a representation of the calculation results is now considered the norm [20–23].

This paper clarifies the meaning of the Q = 0 surface. It divides the zones in which the pressure cannot
reach either a minimum or a maximum (depending on the sign of Q). In order to clarify the meaning of

 surfaces, the calculation results for the atmospheric wind flow around the aircraft-carrying
cruiser were used once again. The  surfaces with different constant values were compared to the
velocity and pressure fields (these parameters are of key importance for aircraft). No connection was
observed. These surfaces do not represent the true picture of the wind shear perceived by the aircraft
directly entering it. In particular, the presence of a wake behind the “island” (ship superstructures) is

reflected in the  fields (Figs. 2b, 6c) and  and  fields (Fig. 3). The Q field (Fig. 5b), however,
does not represent the wake.

Therefore, it is proposed to apply a different visualization of the calculation results depending on their
purpose. If the calculation is intended for comparison with the experimental data, which, as a rule [23],
contain information about the surfaces of the level of parameter Q , then the representation of such sur-
faces will be useful for comparing the calculation with the experiment. If, however, the calculation results
are to be used to simulate different f light modes, then the data on the surfaces of the level of the Q param-
eter are not very informative.

CONCLUSIONS
The popular [20–23] surfaces, which do not have a clear physical meaning of the surface

, do not reflect the true picture of the wind shear perceived by the aircraft directly entering it.
In accordance with the principle of the pressure maximum proposed in the article, only the  lev-

els separating the  f low regions, in which there can be no local pressure maximum, from the 
regions, in which there can be no local pressure minimum, are meaningful. Therefore, to analyze a f low

2Ω 2Ω
2 QΩ

0const= ≠Q
constQ =

u y∂ ∂ xyΩ xyS

0constQ = ≠
0Q =

0Q > 0Q <
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in a wake, it is sufficient to construct only the  surface. Moreover, the freed information space
should be filled with the field images of other parameters important for aircraft. For example, to indicate
the locations of the cores of the vortex which are quite clearly determined using the  criterion [19].

Along with the existing verification methods, it is proposed to use the subsonic principle of the pressure
maximum proposed in this article as an additional accuracy criterion for stationary viscous gas f low cal-
culations.
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