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Abstract—The Galerkin method with discontinuous basis functions has proved to be effect in solving
hyperbolic systems of equations numerically. However, to ensure the solution yielded by this method
is monotonic, a smoothing operator is required to be used, especially if the solution contains strong
discontinuities. In this paper, a well-proven smoothing operator based on a WENO reconstruction and
a smoothing operator of a new type based on averaging the solutions that takes into account the rate of
change of the solution and the rate of change of its derivatives is considered. The effect of these limiters
in solving a series of test problems is compared. The application of the proposed smoothing operator
is shown to be as good as the action of a WENO limiter, in some cases even exceeding it in the accuracy
of the resulting solution, which is confirmed by the numerical studies.
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INTRODUCTION
The Galerkin method with discontinuous basis functions [1], which is characterized by a high order of

accuracy on smooth solutions, is widely applied to solve gas dynamics problems. We know that to ensure
the monotonicity of the solution yielded by this method, the so-called slope limiters or limiters are
required to be introduced, especially if the solution has strong discontinuities. However, limiters may have
a negative effect on the accuracy of the resulting solution [2–4]. Therefore, it is still a topical issue to pre-
serve the order of accuracy of the solution and ensure the solution is monotonic.

The classical Cockburn limiter [1] is the most widely used one. This limiter is easy to implement in a
multidimensional case on grids of an arbitrary structure. However, it reduces the accuracy of the resulting
solution. Various approaches to resolve this issue have been recently developed. One of the approaches to
create a limiter of a high order of accuracy is proposed in the works of Krivodonova [5]. However, this lim-
iter works well only on structured grids. Another approach to creating a high-order limiter is to use a
WENO limiter [6–10].

In this work, we consider the well-proven [6] smoothing operator based on a WENO reconstruction
and the smoothing operator of a new type that takes into account the rate of change of the solution and
the rate of change of its derivatives. The ideas used in constructing these limiters can be easily moved to a
multidimensional case and grids of an arbitrary structure and do not decrease the order of the scheme the-
oretically.

2. DESCRIPTION OF THE DISCONTINUOUS GALERKIN METHOD
FOR EULER EQUATIONS

Consider the Euler equation written in the conservative form

(1)
with the addition of the appropriate initial boundary conditions, whose form depends on the particular
problem and will be made more specific below.

( ) 0t∂ + ∇ ⋅ =U F U
61



62 LADONKINA et al.
The conservative variables U and components of the f low function F(U) are given as

(2)

where ρ is the density of the liquid, u is the speed, p is the pressure,  is specific internal energy, and
 is the total energy per unit volume.

To find the pressure p, we use the state equation of the ideal gas

where γ is the adiabatic index.
To apply the discontinuous Galerkin method, we cover the segment where we search for the solution

by the grid  with the step  .

In each interval , we search for the approximate solution of the system of equations (1) as
the projection of the vector of the conservative variables  onto the space of polynomials P(х)
of power n in the basis  with the time-dependent coefficients. Then, the solutions have the form

(3)

where n is the degree of polynomials and  is the respective basis function.
The discontinuous Galerkin method searches for the approximate solution of system (1) as the solution

to the following system [1]

(4)

where i = 1, …, N, k = 0, 1, 2. In (4),  is the vector of the solution, , 

is the basis function with the number k on the interval Ii calculated at the points , , and
, which are discrete f lows that are monotonic functions of two variables

such that the fitting condition

holds for them.
In this work, we used the Rusanov–Lax–Friedrichs f lows (5) [11, 12] and the Godunov flow [13] as a

numerical f low.

(5)

where  is the speed and  is the speed of sound.

2.1. Constructing the WENO Reconstruction Based Limiter for the Discontinuous Galerkin Method
We know that to ensure the solution yielded by the discontinuous Galerkin method is monotonic, we

need to introduce the so-called slope limiters or limiters, especially if the solution has strong discontinu-
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CONSTRUCTING A LIMITER BASED ON AVERAGING THE SOLUTIONS 63
ities. A limiter is an operator acting on the function of the approximate solution on each interval
. According to [1], we use  to designate the action of this operator on the function u.

In [6], a limiter for the discontinuous Galerkin method (DGM) is proposed based on a WENO recon-
struction, allows preserving the high level of accuracy of the method and does not distort the solution pro-
file. We follow this work to describe the limiting WENO procedure for DGM.

At the first stage, we need to find the faulty cells, i.e., the cells that may require limiting.
At the next stage, the numerical solution is replaced by the reconstructed one in the faulty cells, with

the polynomials yielded during reconstruction preserving the original integral average value in the cell and
the high order of accuracy, while being less subject to oscillations.

To find the faulty cells, we use the TVBminmod limiter [6]. We designate the average value of the solu-
tion u in the cell by

We also designate

where  and  are transformed either by the classical minmod limiter

where the minmod function is specified in (6) or via the transformed TVBminmod function (7)

(6)

(7)

where the parameter М is chosen according to the solution of the problem. To find the faulty cells, we
assume that if one of the minmod functions has worked, i.e., it has returned values different from the first
argument, the cell will be marked faulty.

2.2. Constructing New Polynomials on Faulty Cells Using the WENO Limiter
The principal idea of the WENO limiter is that we construct a new polynomial on a faulty cell that is

a convex combination of the original polynomial and the polynomials on the adjacent cells with the nec-
essary corrections to preserve the integral average in the cell.

We assume that we need to limit the solution in the cell . We use  to designate the polynomial
reconstructed on this cell, and we use  and  to designate the polynomials on the cells to the left 
and right  of , respectively.

To preserve the integral average value  at the current cell, we perform the transformations

where

Then, the transformed polynomial will appear as follows,

(8)

and the integral average and the order of accuracy of the new polynomial  coincide with the initial
ones for  if .
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We can calculate the normalized weights by the formulas

where  are nonnormalized nonlinear weight functions of the linear weights  and the so-called smooth-
ness indicators 

where n is the order of the polynomial. In all the calculations, , r = 2.
The linear weights can be chosen to be any positive numbers, with their sum equaling 1. Since the cen-

tral cell is most frequently the best one for the smooth solution, then according to [6], we give the highest
linear weight to it, i.e.,  . In the calculations below, we use the coefficients given in the orig-
inal work—   and .

2.3. Constructing the Limiter Based on Averaging the Solution for the Discontinuous Galerkin Method

In this work, we propose a different approach to construct the limiter. We consider a new polynomial

(9)

We need to choose the criterion for choosing the coefficients .

First, we consider the order of deviation of the neighboring polynomials from the arithmetic average
of their integral average values. As one of the coefficients, we take

(10)

This coefficient does not reduce the order of the obtained polynomial.
Note that

(11)

in the discontinuous Galerkin method, where  is the center of the cell . The constants  depend on
the choice of the basis in the discontinuous Galerkin method.

Note that it follows from equalities (11) that
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Thus, we can specify coefficient  (12) via the rate of change of the solution and its derivatives

(12)

We compose the coefficient

(13)

proportional to the time step but still preserving the dimensionality.
The coefficient includes the multiplier , which can theoretically reduce the accuracy of the solu-

tion; therefore, if we replace it by the multiplier , where  is density (1),  is
the integral average, and  is the first derivative , we can theoretically preserve the order of accuracy
of the scheme

(14)

3. STUDYING THE ORDER OF ACCURACY OF THE METHOD
To study how the limiter influences the order of accuracy of the discontinuous Galerkin method, we

consider the problem described in detail in [2]. As the initial data, we use a simple wave with constant

entropy  and constant Riemann invariant .

We determined the orders of accuracy Od of the method involved in the norm L2

(15)

(16)

as of the instant T = 0.07. Table 1 gives errors (15) and order of accuracy (16) of the solution obtained by
the discontinuous Galerkin method without using the limiting functions (the first series of calculations,
rows 1–4), using the WENO limiter (rows 5–8), using the limiter based on averaging the solution with
coefficient (13) proportional to  (rows 9–12), and using the same limiter with coefficient (13) propor-
tional to  (rows 13–16).

Table 1 shows that none of the limiters studied reduced the accuracy of the scheme. However, the
WENO limiter for quadratic polynomials n = 2 is not monotonic when determining the accuracy of the
solution (rows 5–8). This can also be seen when solving other problems [6]. When we use the limiter based
on averaging the solution, unlike the WENO limiter, we do not observe any deterioration of the accuracy
of the solution on large grids.

4. NUMERICAL EXPERIMENTS
We consider a series of test one-dimensional nonstationary gas dynamics problems [14–21]. Despite

their simple statements, these problems reflect all the peculiarities of gas-dynamic f lows. Table 2 shows
the initial distribution of the density, speed, and pressure.

Problem 1 (Sod’s problem). Breakdown of discontinuity results in a shock wave moving to the low-pressure
area, an expansion fan expanding into the high-pressure area, and a contact discontinuity (Fig. 1). In Figs. 1–5,
the solid thin line corresponds to the exact solution.
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Table 1

T = 0.07

n = 1 n = 2

N error order error order

500 7.81e−04 3.82e−05
1000 1.63e−04 2.25 3.66e−06 3.38
2000 2.93e−05 2.48 4.14e−07 3.14
4000 5.32e−06 2.46 4.97e−08 3.05

WENO

500 7.83e−04 2.77e−04
1000 1.63e−04 2.25 4.74e−05 2.54
2000 2.93e−05 2.48 4.65e−07 6.67
4000 5.34e−06 2.45 4.97e-08 3.22

500 7.81e−04 3.83e−05
1000 1.63e−04 2.25 3.66e−06 3.38
2000 2.93e−05 2.48 4.14e−07 3.14
4000 5.32e−06 2.46 4.97e−08 3.05

500 7.81e−04 4.05e−05
1000 1.63e−04 2.25 3.67e−06 3.46
2000 2.93e−05 2.48 4.14e−07 3.14
4000 5.32e−06 2.46 4.97e−08 3.05

2L

1~k ρ ρ

~k xΔ

Table 2

Problem 
number

Values of gas-dynamic parameters on left Values of gas-dynamic parameters on right Calculation 
time

1 1 0 1 0.125 0 0.1 2.0

2 0.445 0.698 3.528 0.5 0 0.571 1.3

3 1 0 1 0.02 0 0.02 0.15

4 3.857 0.920 10.333 1 3.55 1 0.09

5 1 −2 0.4 1 2 0.4 0.15

6 3.857143 2.629369 10.3333 1 + 0.2sin(5x) 0 1 1.8

ρ u p ρ u p
Problem 2 (Lax’s problem). In this problem, we have the same configuration of the solution as in Sod’s
problem, which consists of a shock wave, a contact discontinuity with larger differences in gas-dynamic param-
eters than in the previous problem and, unlike Sod’s problem, a less intensive expansion fan (Fig. 2).

Problem 3 (Supersonic shock tube). The configuration of the solution to this problem is similar to the
two previous ones. There arises a shock wave, an expansion fan, and a contact discontinuity. However, the
solution of this problem allows evaluating the operation of computational schemes in the arising areas of
supersonic f lows (Fig. 3).

Problem 4 (Mach 3 problem). The solution is a contact discontinuity and two expansion waves (Fig. 4).
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Fig. 1. Density profiles in Problem 1 (points) when using (a) averaging solution with coefficient  М = 6;
(b) WENO limiter М = 6.
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Fig. 2. Density profiles in Problem 2 (points) when using (a) averaging solution with coefficient  М = 20;
(b) WENO limiter М = 20.
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Problem 5 (Einfeldt problem). The solving process yields two symmetric expansion fans propagating
into opposite directions and a stationary contact discontinuity (Fig. 5).

Problem 6 (Shock entropy wave interaction) is an interaction of a shock wave with entropy perturba-
tion. The Mach number of the shock wave moving along the axis X is M = 3.5. After the shock wave passes,
a complex f low is formed behind the front, where a series of shock waves of a smaller amplitude is formed
MATHEMATICAL MODELS AND COMPUTER SIMULATIONS  Vol. 11  No. 1  2019

Fig. 3. Density profiles in Problem 3 (points) when using (a) averaging solution with coefficient  М = 300;
(b) WENO limiter М = 1000.
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Fig. 4. Density profiles in Problem 4 (points) when using (a) averaging solution with coefficient  М = 5000;
(b) WENO limiter М = 5000.
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Fig. 5. Internal energy profiles in Problem 5 (points) when using (a) averaging solution with coefficient  М = 30;
(b) WENO limiter М = 30.
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with time (Fig. 6). In Fig. 6, the solid thin line corresponds to the numerical solution obtained on the grid
with the step .

Problem 7 (Woodward-Colella blast waves). This problem is a model of the interaction of two shock
waves and is a common test to check whether numerical methods for solving gas dynamics problems work.
At the initial instant, the density , the speed u = 0, and the pressure is distributed as follows: p = 103

for ,  = 10−2 for , and p = 102 for . The calculation time is t = 0.038
(Fig. 7). In Fig. 7, the solid thin line corresponds to the numerical solution obtained on the grid with the

step .

In problems 1, 2, and 6, the calculation area is , while it is  in problems 3, 4, and 5. The
discontinuity point is  in problems 1 and 2,  in problems 3, 4, and 5, and  in problem
6. We performed calculations for problems 1–5 on a 100-cell grid; for problem 6, on a 200-cell grid; and
for problem 7, on a 400-cell grid. In all the calculations, we assumed the gas to be ideal with the adiabatic
index .

To determine faulty cells, we need to specify the parameter М in the TVB-minmod limiter. We per-
formed the first series of calculations with the parameter М = 0.01. This parameter superfluously deter-
mines the cells that require limiting. Our next step was to determine the critical value of the parameter М

35 10x −Δ = ×

1ρ =
0 0.1x≤ ≤ p 0.1 0.9x≤ ≤ 0.9 1x≤ ≤

56.25 10x −Δ = ×

5 5x− ≤ ≤ 0 1x≤ ≤
0 0x = 0 0.5x = 0 4x = −

1,4γ =
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Fig. 6. Density profiles in Problem 6 (points) when using averaging solution with coefficient  (a) М = 0.01; (b)
М = 100; when using WENO limiter (c) М = 0.01; (d) М = 100.
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so that its further increase did not affect the limiting quality; i.e., the calculation could be performed with-
out the limiter.

When solving problems 1–5 using the piecewise linear basis functions, we cannot unambiguously see
the advantages of one of the limiters we study. However, when solving more complicated problems 6 and
7, the limiter based on averaging yields better results. When we move to quadratic basis functions, we see
a better solution profile when applying the limiter based on averaging with the coefficient  com-
pared to using the same limiter with the coefficient  or the WENO limiter. In [22], we showed
that in some cases the coefficient  makes the limiter more dissipative when the quadratic func-
tions are used.

The next series of calculations was to determine the critical value of the parameter М. Thus, as the
parameter М increases, although we can naturally see more distinct profiles in the domains of the discon-
tinuities of the solutions in all problems, there are also some oscillations.

Problems 4 and 5 turned out to be the most difficult to solve numerically. Both represent the break-
down of a gas-dynamic discontinuity in the form of a contact discontinuity and two expansion waves.
When solving problem 4, we obtained the best results using the WENO-type limiter on linear basis func-
tions; for the quadratic basis functions, the change in the parameter М did not improve the results signifi-
cantly.

Problem 5 deserves our separate attention. We know that it is frequently used for testing numerical
methods, the accuracy of the representation of the domain of the contact discontinuity being one of the
indicators of a smoothly operating scheme. Almost in all the calculations, we can see a nonphysical spike
of the internal energy. We considered several numerical schemes to solve this problem (Fig. 8). We give
the series of calculations performed by the Godunov first-order scheme and the discontinuous Galerkin
third-order method with the quadratic basis functions and using the “torque” limiter [2–5] (Fig. 9a).

~k xΔ
1~k ρ ρ

1~k ρ ρ
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Fig. 7. Density profiles in Problem 7 (points) when using averaging solution with coefficient  (a) М = 0.01; (b)
М = 200; when using WENO limiter (c) М = 0.01; (d) М = 200.
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Fig. 8. Internal energy profiles in Problem 5 (points), number of cells is 500. (a) DGM, n = 2, Godunov flow, torque lim-
iter (b) Godunov’s scheme, n = 0.
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By adding pseudoheat conductivity to the numerical approximation of f low (5), we have a significant
decrease in the emission of the entropy (Fig. 9).

We pay attention to how initial data are given. In this problem, the discontinuity point  is at
the boundary between the cells. The speed u = −0.2 in the domain to the left of the discontinuity point

, while it is u = 0.2 in the domain to the right of it. We choose the grid so that the point  is
inside the cell and by approximating the speed in this cell, we have u = 0. We can clearly see in Fig. 10 that
there is practically no spike in the entropy.

0 0.5x =

0x x≤ 0 0.5x =
MATHEMATICAL MODELS AND COMPUTER SIMULATIONS  Vol. 11  No. 1  2019



CONSTRUCTING A LIMITER BASED ON AVERAGING THE SOLUTIONS 71

Fig. 9. Internal energy profiles in Problem 5 (points) with pseudoheat conductivity taken into account. (a) Torque limiter;
n = 2; (b) Godunov’s scheme, n = 0.
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Fig. 10. Internal energy profiles in Problem 5 (points), number of cells is 501. (a) Torque limiter n = 2; (b) Godunov’s
scheme, n = 0.
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Doing the same and approximating the speed discontinuity in two cells, we manage to obtain the solu-
tion that corresponds to the physical one (Fig. 11). Note that in this case adding the numerical scheme
with the summand corresponding to the pseudoheat conductivity did not yield any further improvement
in the results. Thus, we found that the defect arising in the numerical solution to problem 5 is due to the
way the initial data are given, as well as to the choice of the numerical scheme.
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Fig. 11. Internal energy profiles in Problem 5 (points), number of cells is 500. (a) Torque limiter n = 2; (b) Godunov’s
scheme, n = 0.
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Fig. 12. Internal energy profiles in Problem 5, number of cells is 50000. (a) Godunov’s scheme, n = 0 (black points on
solid line); Torque limiter, n = 2 (white points on solid line); (b) WENO (solid thick line);  (white points).
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Figure 12 shows the results of the calculations of problem 5 with the corrected profile of the initial
speed. The graphs show that we managed to qualitatively improve the result, with the limiters based on
averaging yielding a smoother solution profile.

5. CONCLUSIONS
The numerical results have shown that when solving problems by the discontinuous Galerkin method,

both the WENO-type limiter and limiter based on averaging allow obtaining a high order of accuracy on
smooth solutions and distinct, nonoscillating profiles on shock waves given the right choice of the respec-
tive constant used to determine the faulty cells. Moreover, both limiters are sufficiently easy to implement
and generalize onto multidimensional unstructured grids.
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