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Abstract—Toroidal magnetic traps for plasma confinement make up an extended object of controlled
nuclear fusion investigations. Mathematical simulation of equilibrium plasma configurations in the
traps often deals with their analogues straightened into a cylinder. This paper presents a comparative
analysis of their numerical investigations in both geometry variants. Mathematical tool of the models
use two-dimensional boundary problems with the Grad-Shafranov differential equation for the mag-
netic f lux function. As the investigation result, we present some quantitative characteristics of differ-
ences between toroidal and cylindrical configurations by two examples: a plasma torus with longitudi-
nal electrical current and the Galathea-Belt toroidal trap with two ring-shaped current-carrying con-
ductors immersed into the plasma.
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INTRODUCTION
In research papers on various programs of controlled nuclear fusion (CNF), considerable attention has

been drawn to studies of the confinement of a dense and hot plasma by the magnetic field. The aim of the
study is to specify the physical conditions under which plasma configurations, which are not in contact
with the case and elements of its design confining the trap, may exist for the time necessary for a theoret-
ically possible synthesis reaction. This time far exceeds the characteristic times of fast plasma processes;
therefore, the desired configuration of the plasma and magnetic field can be considered to be in equilib-
rium. Our paper refers to a series of works on the mathematical simulation of the equilibrium magneto-
plasma configurations in the approximation of continuum mechanics, i.e., magnetic gas dynamics.

In plasma facilities involved in CNF, the toroidal-shaped traps are widespread in which the ends of the
plasma column are closed on each other and are thus free from the need to contact any details. These
include the well-known tokamak and stellarator, as well as traps in which conductors with the electric cur-
rent producing a magnetic “skeleton” of the configuration are immersed inside the plasma volume but not
in contact with it. These traps were proposed by A.I. Morozov and were called Galatheas [1]. The studies
of plasma and field configurations in the traps, strictly speaking, should take into account their geometry,
i.e., in this case, the toroidal one. However, this significantly complicates the mathematical apparatus
used. Suffice it to say that in axisymmetric problems in a circular torus, the natural coordinates are polar
coordinates in the  plane centered on the magnetic axis of the torus. The corresponding problems are
discussed in some approximations in [2]. The simplified theoretical studies of the toroidal configurations
are based on replacing them with cylindrical analogues, i.e., with tori with an infinite radius, which is
acceptable for solving basic qualitative problems about the properties of equilibrium configurations and
their stability. We can get acquainted with the state of the art in the field with examples of configurations
in Z-pinches, cylinders with a helical field, etc., e.g., with the help of reviews [3–6] with a bibliography of
the works of the corresponding period. Among the recent theoretical and computational works related
mainly to tokamaks, we can name, e.g., the articles [7–9] and the sources cited there. The simplest exam-
ple of a Galathea trap is a Galathea Belt [10]. Numerical models and calculations of equilibrium config-
urations in it are studied in detail in an analog straightened into a cylinder [11]. The mathematical model
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122 BRUSHLINSKII, KONDRATYEV
of the toroidal configuration in the “Belt” and the first results of the calculations and their comparison
with the cylindrical version of the trap are presented in [12, 13].

In this paper, the Belt model is refined toward a more visual interpretation of the results. In addition,
an attempt was made to address the issue of differences in the equilibrium configurations in a cylinder and
torus in a more general form, avoiding specific details of the Belt and even the entire class of Galathea
traps. For this purpose, the simplest and most well-known example of a trap was chosen, a plasma cylinder
with a current (Z-pinch) and its toroidal version, which actually underlies the modern tokamaks. Plasma
configurations in a cylinder of a circular cross section are one-dimensional and differ in the variants of a
given distribution of the electric current density along the radius. The configurations in the torus at any
cross section can have only axial symmetry; i.e., they are two-dimensional. For simplicity, it is more con-
venient to consider them in square sections in order to remain in the system of cylindrical coordinates

 without introducing the more complex ones mentioned above. For this reason, we considered an
intermediate instance, a straight cylinder of a square cross section with two-dimensional plasma and field
configurations in it. As a result of the calculations, the geometrical forms of the configurations deformed
on bending to the torus were obtained for two series of the current distributions in the Z-pinch that char-
acterize their quantitative parameters. All the studied configuration variants solve the boundary value
problems with a two-dimensional Grad-Shafranov equation [2, 14, 15]. The numerical solutions are
obtained by an iterative relaxation method and, in this sense, are diffusionally stable, which is in a way
associated with the traditionally understood MHD stability according to [16–18]. The Galathea-Belt cal-
culations showed that the cylindrical configurations are more stable than toroidal ones; i.e., at the same
current value in the conductors, the magnetic field in the cylinder is able to hold the plasma with the
higher pressure values.

1. MATHEMATICAL EQUILIBRIUM MODELS
Mathematical models of plasma configurations held by a magnetic field in a state of equilibrium deal with

the distribution of three quantities in the studied region of space: pressure p, magnetic field strength H,
and electric current density j. In general, they should satisfy the three plasma statics equations [2, 17, 18]:

(1.1)

In the two-dimensional models of the configurations with symmetry, they are reduced to a single scalar
equation for the magnetic f lux function. In studies of axisymmetric  configurations, it is called
the Grad-Shafranov equation [2, 6, 7, 14–18]

(1.2)

where , , , .

Its planar variety corresponds to the cylindrical coordinates with planar symmetry 

(1.3)

where , , .

A model of a specific configuration is produced by solving a boundary value problem with one of these
equations in a given region with the given boundary conditions. In addition, two  and  functions
are required, which describe the pressure and poloidal electric current distribution between magnetic sur-
faces Ψ = const, corresponding to the assumed or desired information about the studied configuration.

Together with the toroidal and cylindrical traps, in which the plasma and field equilibrium is described
by two-dimensional Eqs. (1.2) and (1.3), the simplest form of the trap, the Z-pinch, is considered, i.e., a
circular cylinder with the axial current jz and the azimuthal magnetic field Hϕ uniform in coordinates 
[4]. The configurations in it are one-dimensional, and Eqs. (1.1) in polar coordinates have the form

(1.4)
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COMPARATIVE ANALYSIS OF PLASMA EQUILIBRIUM COMPUTATIONS 123
where , . By setting one of the unknown functions, e.g., j = j(r), it is easy to obtain the
remaining two ones by integrating Eqs. (1.4). The need for the Grad-Shafranov equation is eliminated
here, but formally it is valid in the form

(1.5)

since . The magnetic f lux function Ψ and the dependence  are associated with the solution
of Eqs. (1.4) by the obvious relation (see Section 2 for details)

(1.6)

It is easier and more convenient to compare the equilibrium plasma configurations in the Z-pinch and
its toroidal analog by the example of a straight column and torus with a square cross section, since it would
be natural to move from cylindrical coordinates to a circular cross section of a torus (z, r) to polar ones (ρ,
ω) in the plane ϕ = const,

which would complicate the mathematical apparatus of the model [2]. Therefore, the equilibrium prob-
lems mentioned above are considered in square cross sections, respectively, ,  and ,

, where  is the main radius of the torus, and R is the radius of the cross sections of the column
and torus which are initially assumed to be circular. The models in both cases are two-dimensional unlike
the circular column and are built based on the boundary-value problems with equations of the Grad-Sha-
franov type (1.2) or (1.3), in which , and the dependence  is taken from the one-dimen-
sional problem in the circular pinch obtained from the given one-dimensional current density j(r) using
formulas (1.4) and (1.6).

The study of the Galathea Belt with two parallel conductors begun in [12, 13] is continued by the com-
parative analysis of toroidal and cylindrical Galathean traps. Here, the same Eqs. (1.2) and (1.3) are used,
in which I(Ψ) ≡ 0, and the function p(Ψ) is not monotonic with the maximum at a singular point of the
field on the axis of the cylinder or on the magnetic axis of the torus, e.g.,

(1.7)

where  in the cylinder and  in the torus.
The parameter Ψ0 is selected in the process of solving problems such that it is equal to the value of the

solution Ψ at the singular point mentioned above. The parameter q makes it possible to adjust the trans-
verse size of the plasma configuration around this point [6, 17, 18].

The electric current in the conductors is represented by an additional term  in Eq. (1.2) for the
torus

(1.8)

where ;  are coordinates of the centers of the conductors’ cross sections by the plane
; and  is the conditional radius of conductors. A similar term in Eq. (1.3) for a cylinder is

, where

(1.9)

, and . The coefficient  is chosen such that the integral
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taken around each conductor, was equal to the given  value of the electric current in it.
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124 BRUSHLINSKII, KONDRATYEV
The boundaries of the squares given above are assumed to be nontransparent to the magnetic field
, where n is the direction of the normal to the boundary. Hence the boundary condition Ψ = const

follows, and this constant can be set to zero, i.e.,

(1.11)
The numerical solution of the problems posed is carried out in dimensionless variables ; i.e., all vari-

ables are assigned to units of measurement composed of the dimensional parameters of the problem. In
pinch problems, this is the radius of the circular pinch or half of the side of the square R and the electric
current J f lowing through the cross section of the column. In plane problems with Eq. (1.3), the units of
measurement are

(1.12)

The parameter q in (1.7) should obviously be related to the unit . In toroidal problems, the function 
differs from the azimuthal component of the vector potential H by the factor r; consequently, the unity 
should contain an additional factor of length compared to Eq. (1.12). Comparing Eqs. (1.2) and (1.3), it is
easy to see that the functions  and I in the toroidal problems, they increase as they become more distant
from the symmetry axis together with the radius r, therefore their units should contain an additional factor
of the length dimension. Here there are two obvious possibilities. If , the dimensionless  value
will increase proportionally to the main radius , and this should be borne in mind in the discussion
of the physical meaning of the calculation results [12]. A better choice of this multiplier is the value of the
main torus radius , at which the dimensionless  values do not increase with the radius and at large 
values approach their plane analogs. In this work, it is assumed

(1.13)
and the remaining units coincide with Eq. (1.12).

In the Galathea-Belt problems in a cylinder or square torus, the unit of length is half the distance
between the centers of the conductors

(1.14)

and the other units are composed of  and J according to Eqs. (1.12) and (1.13), where  is the given
current in each of the conductors immersed in the plasma.

In the problems considered in this paper ( ), the Grad-Shafranov equation in dimensionless
variables has the form

(1.15)

The boundary value problem in the torus is set in the region ,  with the boundary condi-
tion .

In the toroidal cord problems, R = 1 and  = 0, while  is determined by solving a one-dimen-
sional Z-pinch problem in a circle (1.6).

In problems on the Galathea-Belt,  and R = 2, and the  and  functions are set by formulas
(1.7) and (1.8). The parameter  is determined by an additional condition: it is equal to the value of the
desired  function on the magnetic axis of the torus, i.e., in the singular point of the axis z = 0, where it
has a local maximum

(1.16)

In the cylindrical analogs of the same problems, the role of Eq. (1.15) is played by

(1.17)

The region of the solution , , the function  is set by the formula (1.9);  and the bound-
ary conditions are the same.
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In the straightened Galathea-Belt ,  is defined in the same way as above, with the difference
that the singular point is in the center of the square, i.e.,

(1.18)

In the plasma cylinder problem, R = 1 and  = 0, while  is taken from the one-dimensional Z-
pinch problem.

We note that the problems in the (x, y) plane are symmetric with respect to the coordinate axes and in
the cross section of the torus by the (z, r) plane—with respect to the r axis—consequently, it suffices to
solve them accordingly in the quarter x > 0, y > 0 and in the half z > 0 of the considered regions, placing
the boundary symmetry conditions on the axes.

The problems are solved numerically by the iterative relaxation method: in difference analogs of equa-
tions of the type

(1.19)

The nonlinear term  is taken from the previous iteration (the “time”-step), and the alternating direc-
tion method is applied to the linear equation on the next layer [18–20]. Convergence to the equilibrium
solution takes place under certain conditions, since the coefficients of the equation and the boundary con-
ditions do not depend on “time” t.

2. EQUILIBRIUM CONFIGURATIONS IN PLASMA TORI AND CYLINDERS
One-dimensional problems of equilibrium magnetoplasma configurations in a straight column of a cir-

cular cross section with the current in the axial direction use the dimensionless varieties of Eqs. (1.4)

(2.1)

in a circle of radius R = 1. The specific configuration is determined by the distribution of the electric cur-
rent j(r). We set it in the form

(2.2)

where the dimensionless parameter  provides the following equality in the dimensional quantities

(2.3)

with the given values of the column radius R and the current value J in it. The magnetic field H(r) and
pressure p(r) are determined by integrating from (2.1):

(2.4)

where the integration constant , the pressure at the column boundary, does not affect the solution of
the problem. Further it is assumed that ; i.e., in fact, the results of calculations should be attributed
to the difference .

Introducing the magnetic f lux function  by , we obtain from Eqs. (2.1) and (2.4) a one-
dimensional version of an equation of the Grad-Shafranov type (1.5):
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Two series of problems are considered. In the first one , i.e.,

(2.7)

is a “parabolic” current with the maximum on the axis of the column. When the parameter k changes from
0 to 1, the current changes from constant to a maximally convex one along the coordinate r. In this series

Hence dependence  follows

(2.8)

which is natural to use in two-dimensional problems of direct and toroidal columns of a square section.
An example of the calculation of the field and plasma configurations in the cylinder and torus and their

comparison with each other are shown in Fig. 1. The parameter k = 0.9 is selected close to the right-hand
end of the considered range, and the main torus radius (dimensionless)  is the minimum possible for
the current nonuniformity and the toroidal trap to be manifested in the most noticeable way. Here, firstly,
it is clear that, as expected, the configurations in the square and circular cylinder are topologically the
same. They differ in the values of the poloidal magnetic f lux , pressure , and electric current

, which are higher in a square than in a circle in accordance with the difference of their areas. Sec-
ondly, the toroidal configurations are deformed in comparison with the cylindrical ones: the magnetic axis
is displaced from the center by  The maximum  and  values in the torus are higher than
in the cylinder, which is consistent with the fact that the configuration became smaller as a result of the
above-mentioned deformation.

The dependence of the characteristics of the equilibrium magnetoplasma configurations on the
parameter  is presented in Table 1 for two values of the parameter k. It follows from them that at the
increase in the main torus radius, their properties approach those of the cylindrical ones. As a result of the
calculations, this qualitatively obvious result acquires quantitative estimates. A comparison of Tables 1a
and 1b shows that only the radius of the torus  mainly affects the displacement of the magnetic axis δr,
and the magnetic f lux  and pressure  also depend on the nonuniformity of the current along the
radius.

The second series of calculations was carried out with the currents maximal at the boundary of the
plasma column, namely, :

(2.9)
As the exponent N increases, the current density is redistributed from constant at N = 0 towards the
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Fig. 1. Magnetic field and pressure in cylindrical (a) and toroidal (b) plasma cords with maximum of electric current in
center: r0 = 1; k = 0.9.
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The calculations of the configurations of this series are illustrated by an example in Fig. 2 with a rela-
tively moderate (N = 2) increase in the current from the center to the boundary and the minimum possible
radius of the torus . Here, the configurations occupy the region surrounding the magnetic axis, with
almost constant values of the magnetic f lux function and pressure and almost no electric current, sur-
rounded by a belt of their intense transition to the given values at the boundary. The configuration in the
torus is deformed and shifted towards the outer boundary. Unlike the previous series, the magnetic f lux

 and the maximum pressure  in both configurations almost coincide with their values in the cir-
cular cylinder; i.e., their characteristic volume coincides. With the growth of the exponent N, this volume
increases. The  and  values in it decrease according to formulas (2.10) and the transition belt near
the boundary is narrowed. The displacement of the magnetic axis δr decreases, obviously, with the
increase in the radius , as well as with the increase in the factor N, which is illustrated in Table 2.

The solutions of all variants of the problems of both the mentioned series are obtained in the calcula-
tions by the relaxation method. It follows that the considered equilibrium configurations are stable with
respect to perturbations of the same dimension, i.e., two-dimensional perturbations of the magnetic f lux.
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Table 1. Parameters of toroidal and cylindrical configurations with maximum current in center at (a) k = 0.9
and (b) k = 0.5

(a)

1 1.5 3 6 9
0.48 0.38 0.24 0.12 0.08 0
2.417 1.712 1.328 1.256 1.211 1.192

12.068 6.785 4.428 4.031 3.791 3.692

(b)

1 1.5 3 6 9
0.46 0.38 0.24 0.12 0.08 0
1.173 0.955 0.845 0.777 0.771 0.765

3.083 2.309 1.949 1.738 1.720 1.702

0r ∞
rδ

maxΨ

maxp

0r ∞
rδ

maxΨ

maxp

Table 2. Magnetic axis displacement  in toroidal and cylindrical configurations with maximum current at boundary
at (a) N = 2 and (b) N = 5

(a) (b)

1 1.5 3 6 9 1 1.5 3 6 9
0.54 0.44 0.22 0.10 0.07 0 0.48 0.40 0.26 0.20 0.17 0

rδ

0r ∞ 0r ∞
rδ rδ
This stability, called diffusional, is evident in the problems of the second series, where  and the
differential operator of a linearized problem with an equation of the Grad-Shafranov type (1.19)

(2.11)

is positive definite [6, 17, 18]. In the problems of the first series, the result is not trivial, since  at
all k > 0. Moreover, at k = 1, just as in any other pinch problems in which  at the boundary
r = 1, the solution obtained in the calculations is not unique: along with the solution found, the problem
has a trivial solution Ψ ≡ 0. The nontrivial solution turned out to be diffusion-stable, to which any nonzero
initial distribution  is attracted during the relaxation process.

The result obtained is of interest because it is a necessary condition for the traditional MHD stability
of the considered equilibrium configurations: the latter requires the diffusive stability of a family of two-
dimensional problems, which together cover all the possible three-dimensional perturbations [16–18].

3. EQUILIBRIUM CONFIGURATIONS IN A GALATHEA-BELT
The models of the equilibrium magnetoplasma configurations in the cylindrical and toroidal varieties

of the Galathea-Belt trap use boundary value problems with equations of the Grad-Shafranov type (1.17)
and (1.15) in square regions ,  and , , respectively, with the boundary con-
dition . The currents in conductors with centers   and  are pre-
sented by functions (1.9) and (1.8). The function  has form (1.7), where the parameter  is selected
according to the formulas (1.18) and (1.16) such that the value of the desired function was  at the
singular point of the magnetic field on the magnetic axis of the system.

An example of one of the variants of the calculations with the parameter values R = 2;  
; and  is presented in Fig. 3 by the magnetic lines  and isobars .

The configuration in a straight cylinder is a curvilinear quadrilateral with the sides, which are convex
inward, and thin slips encircling the conductors with the current. The characteristic features of the toroi-
dal configuration are manifested in the most noticeable way in the torus of the minimum possible radius

. Just as in the case mentioned above, the configuration is topologically equivalent to the cylindrical
one but it is deformed: it has lost its symmetry about the center of the square and is shifted towards the

'( ) 0g Ψ <

[ ] '( ) ; 0L u u g u u Γ≡ −Δ − Ψ =

'( ) 0g Ψ >
0j dp d= Ψ =

Ψ

x R< y R< 0r r R− < z R<
Ψ 0Г = ( 1,kx = ± 0)y = 0( , 1)kr r z= = ±

( )p Ψ 0Ψ
0Ψ = Ψ

0.2;cr = 0.2;q =
0 0.75p = 0 2r = 0 constΨ − Ψ = constp =

0 2r =
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Fig. 2. Magnetic field and pressure in cylindrical (a) and toroidal (b) plasma cords with electric current maximum at
boundary: ; N = 2.
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outer boundary. The magnetic axis is displaced from the center of the square by . The parameter
, characterizing the poloidal magnetic f lux between the separatrix of the field and the outer boundary,

is decreased compared with the cylindrical configuration.
The diffusive stability of the configurations under consideration, i.e., convergence of the iterative pro-

cess of the solution of the problems, takes place at the constraint on , the maximum dimensionless pres-
sure in the center of the configuration and on the magnetic field separatrix passing through it

(3.1)
In terms of the mathematical apparatus of the problems, condition (3.1) corresponds to the positive defi-
niteness of the differential operator of the linearized problem (2.11). It ensures the existence, uniqueness,
and diffusive stability of the solutions of problems with semilinear elliptic differential equations, on which
a wide class of mathematical models of the interaction of reaction and diffusion processes [11, 12, 17, 18]
are based. Apparently, the physical meaning of restriction (3.1) is that the magnetic field of the given current 
in the conductors can keep the plasma in the trap of the given size R, which is only of limited pressure.

In toroidal traps, constraint (3.1) holds, but it is reinforced (  decreases) when the torus radius 
becomes smaller, i.e., on the increase in the curvature of the trap in the azimuthal direction. This result is

0.52rδ =
0Ψ

0p

cr
0 0 .p p<

cJ

cr
0p 0r
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Fig. 3. Magnetic field and pressure in cylindrical (a) and toroidal (b) Galathea-Belt: ; .
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0 2r = 0 0.75p =
presented in Table 3. It clarifies a similar situation in [12, 13], where the units of measure  and q are less
successfully chosen (1.12), and the increase in  proportional to the radius  is not correlated with a con-

stant parameter value q, i.e., the decrease in  [12, 13] with the increase in  due to the compression of
the configuration in the direction transverse to the magnetic field.

The dependence of the quantitative characteristics of the configurations, the displacement δr and the
parameter , which is responsible for the magnetic f lux, on the torus radius  is shown in Table 4 for
three different pressure values . The analysis of this dependence and the comparison of the toroidal con-
figurations with the cylindrical one ( ) makes it possible to make the following conclusion. At any
values , the equilibrium plasma and field configurations may exist in the traps at any maximum pres-

sure values not exceeding  given in Table 3. The solutions of the boundary value problems under con-
dition (3.1) are unique and diffusion-stable. It follows from Table 4 that on increasing the plasma pressure

 the displacement δr of the magnetic axis and the magnetic f lux value  between the separatrix of the
field and the outer boundary increase. The differences between the toroidal and cylindrical configurations

uΨ
Ψ 0r
cr
0p 0r

0Ψ 0r

0p

0r = ∞
0 2r ≥

cr
0p

0p 0Ψ
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Table 3. Critical pressure values  in toroidal and cylindrical Galathea-Belt configurations

2 4 6 8 10

1.10 2.05 2.20 2.40 2.90 4.50

cr
0p

0r ∞
cr
0p

Table 4. Parameters of toroidal and cylindrical configurations in Galathea-Belt at (a) , (b) ,
(c) 

(a)

2 4 6 8 10
0.44 0.19 0.12 0.08 0.06 0
1.495 1.638 1.663 1.671 1.675 1.682

(b)

2 4 6 8 10
0.52 0.22 0.16 0.12 0.08 0
1.589 1.729 1.747 1.754 1.758 1.764

(c)

2 4 6 8 10
0.60 0.28 0.16 0.13 0.10 0
1.660 1.818 1.834 1.839 1.842 1.847

0 0.5p = 0 0.75p =
0 1p =

0r ∞
rδ

0Ψ

0r ∞
rδ

0Ψ

0r ∞
rδ

0Ψ
are noticeably blurred as the torus radius  increases: the  values nearly coincide at , and the dis-
placement is measured in percentage units at .

CONCLUSIONS

This work presents the mathematical models of the plasma MHD equilibrium in typical examples of
toroidal magnetic traps and their analogs straightened into a cylinder. A comparative analysis of the quan-
titative characteristics of the plasma configurations in the torus and cylinder is given.
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