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Abstract—We consider a two-dimensional nonstationary inverse scattering problem in a layered
homogeneous acoustic medium. The data consist of a scattered wavefield from a surface point source
registered on the boundary of the half-plane. We prove the uniqueness of the recovery of an acoustic
impedance and velocity in a medium from the scattering data. An algorithm for solving an inverse two-
dimensional scattering problem as a one-dimensional problem with the parameter based on the τ–p
Radon transformation is constructed. Also, the numerical modeling results for the direct scattering
problem and solutions of a pair of inverse scattering problems in a layered homogeneous acoustic
medium are presented. The proposed algorithm is applicable to data processing in geophysical pros-
pecting both for surface seismics and vertical seismic profiling.
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1. INTRODUCTION
Integral transformations are used in various problems, including inverse geophysics problems, inverse

problems of the mathematical sounding theory, inverse electroprospecting problems (see [1, 2]), transfor-
mations of time-series for processing records of seismic traces (see [3, 4]), problems to continue wavefields
from the original ground downward (see [5–7]), and inverse problems of seismology and seismics (see [8,
9]). Inverse problems related to finding the physical parameters of layered media are especially important
in practice. In such problems, using the Fourier and Fourier-Bessel integral transformations, we can
reduce multidimensional problems to one-dimensional ones (see [1, 2, 8–11]).

Since [12–18], the Radon transformation has been used for the practical processing of seismic data.
However, the Radon transform is not widespread in the surface and blast-hole seismics because there is
no clear connection between the results of its application and the inverse scattering problem (see [19, 20]).
Besides, the class of considered models is mainly reduced to the scalar wave equation with an unknown
velocity (see [15–18]) but it does not match even basic models for acoustic and elastic media.

The purpose of the present paper is to use the τ–p Radon transform to solve the inverse scattering prob-
lem for acoustic waves in a two-dimensional layered-homogeneous medium. Such an inverse problem is
quite topical in the practice of seismics in the case where the inverse dynamical seismic problem is solved
s part of the acoustic model. However, it is obvious that it requires a separate mathematical investigation.
It is important that posing the inverse problem given above allows us both to extend the class of considered
models up to the equations of elasticity theory in porous media and increase the dimension of the space
(see [21, 22]).

The main result of the present paper lies in the correspondence between two inverse scattering prob-
lems found by the Radon transform; one of these problems is to find properties of a layered half-plane by
the field of the scattered waves under the assumption that the source evenly moves along the boundary
line. We use the invariance property of the solution of the direct scattering problem with respect to the
translation with respect to a phase variable; this allows us to reduce the original two-dimensional problem
to a one-dimensional problem with a parameter. The value of this parameter is determined by the motion
velocity of the virtual source and is controllable. In [23, 24], a similarly posed inverse problem is consid-
659



660 BAEV
ered and it is shown that it is possible to find coefficients characterizing the layered half-plane by variation
of the angle of incidence of a plane wave from the homogeneous part of the plane.

In [23, 24], the incident wave and the scattered wave are propagated at kinematic (sonic) speeds deter-
mined by the physical properties of the medium and the type of the wave (acoustic, electromagnetic, or
elastic); however, the wave front moves along the boundary between the homogeneous half-plane and lay-
ered half-plane with the phase wave exceeding the acoustic speed in a neighborhood of the boundary.

In the case of a layered half-plane without a boundary with a material medium (considered in the pres-
ent paper), the corresponding form of the excitation of the medium is a point source moving along the
boundary at a supersonic speed and a wave forming the Mach cone (see [25]), which moves from the
boundary to the layered medium. It is clear that it is impossible to implement such an excitation-observa-
tion scheme on a substantial base; therefore, we have to treat the source as a virtual one.

The most important particular practical result of the present paper (Theorem 1) means that, in posing
the two-dimensional problem with a stationary source, the Radon transform allows us to use the scattering
data to intermediately obtain the scattering data for the excitation scheme with a supersonic source mov-
ing along the boundary. This provides a possibility to reduce the inverse two-dimensional scattering prob-
lem to a one-dimensional problem with a parameter. Moreover, since the parameter p of the τ–p trans-
formation has a visual geometrical interpretation (when posed as a two-dimensional problem, it deter-
mines the ray angle of departure from the source), it follows that the process of the solution based on the
Radon transformation is easily controlled (both for the direct and inverse problem) by the ray-path
method.

Note that the considered inverse problem is overdetermined because the wavefield registered at the
half-plane boundary is a function of two variables (the time and the distance to the source), while two
functions of one variable (the depth) are determined. The Radon transform allows us to use the excessive-
ness of the input data integrally, ensuring the practical stability of the algorithm. Also, it is important that
solutions of real geophysical problems, obtained by means of the τ−p Radon transform (unlike the ones
obtained by the Fourier transformation), do not leave the field of real numbers even when the input data
contain errors.

2. INVERSE PROBLEMS IN TWO-DIMENSIONAL LAYERED-HOMOGENEOUS MEDIA 
WITH NONSTATIONARY SURFACE SOURCES

2.1. In a two-dimensional horizontally homogeneous acoustic medium, consider the propagation of
compression waves  described by the wave equation

(1)

with the following concordance conditions for , , i.e., at discontinuity points of the first
type of the piecewise-constant coefficients  and :

(2)

where  are the density and elastic parameters of the medium and it is assumed that . Such
concordance conditions require the pressure and displacements in the acoustic medium to be continuous.

Introduce the propagation velocity  for the perturbations and the acoustic impedance
 of the medium. The functions  and  are also piecewise-constant and their points of dis-

continuity are the points  introduced above. According to the geophysical tradition,  is the depth, the
axis  coincides with the original ground , and  is the physical time.

Let a known source of oscillations, defined by the condition

where ,  for , and , move along the boundary line . At the
beginning of our consideration, i.e., as , it is assumed that the medium is at rest. It is obvious that
one can look for a solution  of the original problem posed by (1)–(2) in the form
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This yields the following boundary-value problem on the half-line { } (the direct scattering prob-
lem) for the function :

(3)

(4)

(5)

(6)

where  denotes the value of the jump of the function  at the point .
That boundary-value problem without the initial-value conditions is a Fourier problem and the last

condition plays the role of the radiation condition (see [26]). Consider solutions  such that
 for negative τ provided that z is nonnegative. This is possible for nonnegative values of p such

that . Then the Fourier problem becomes an initial-boundary problem with the initial-value
condition

(7)

Posing the initial-value conditions this way, we can consider generalized solutions of problem (3)–(5)
and (7); also see [27, 28]. Therefore, assign , where  is the Dirac delta-function.

2.2. For problem (3)–(5) and (7), pose the following inverse scattering problem: by the given trace of
the solution

find functions  and  provided that  is known, fixed, and the amount of its values is finite and
greater than one.

Transform (3)–(5) and (7) using standard reductions valid in the considered class of piecewise-con-
stant coefficients  and . Introduce the following eikonal  physically interpreted as the propa-
gation time of the signal from the current point  to the boundary { }:

where the function  is inverse to the function . Then  =  and (3)–(5) and (7)
takes the form

(8)

(9)

(10)

(11)

which allows us to treat the inverse scattering problem as a problem to find the coefficients  and 
of (8) and (9) based on the scattering data:

(12)

3. τ−p RADON TRANSFORM AND RELATIONS BETWEEN INVERSE PROBLEMS FOR 
LAYERED HALF-PLANES AND HETEROGENEOUS LINES

3.1. It is easy to see that if the functions  and  are found on a segment , then the problem

to find  and  on the segment , where H = , by the field of scattered waves from a
nonstationary source is completely solved. Let us show that these data can be obtained by mathematical
modeling with respect to the field of a stationary source.
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For the original equation given in (1), consider the following initial-boundary problem with a point
boundary source:

(13)

It is obvious that the solution  of that problem is invariant with respect to translations with respect to
and , i.e.,

where  is the solution of problem (1)–(13) for  and , i.e.,  is the fundamen-
tal solution of the boundary-value problem.

For , for Eq. (1), pose the auxiliary problem determined by the following initial-boundary
conditions:

where  and  provided that , while  to  as . The solu-
tion  of this problem is invariant with respect to translations with respect to and as well, i.e., 
= .

Let . Then, taking into account the substitutions , , and , we
obtain that

and

which imply that , , and  as  in the sense of generalized functions (i.e.,
weakly), where  is the  Radon transform of the wavefield , i.e.,

(14)

Remark 1. Solving the inverse problem numerically, we assume that the wavefield  is known
only for the case where  and . Thus, only τ and p such that , ,
and  are to be considered.

3.2. The following assertion is valid.
Theorem 1. The relation  holds, where  is determined by the Radon transformation given

by (14), while  is the solution of problem (3)–(5) and (7).
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and

which imply that  satisfies relations (3)–(4). The fact that the boundary-value and initial-value
conditions posed by (5)–(6) are satisfied follows from the weak convergence properties considered above.

This completes the proof of the theorem.
Using the proved theorem, we can establish a one-to-one correspondence between the scattering prob-

lems for a nonstationary surface source and a stationary one. The latter problem is canonical for the land
seismics; generally, it is treated as a two-dimensional problem. Reducing this problem to a one-dimen-
sional one (by the τ−p Radon transform), we can construct an efficient method to solve the inverse scat-
tering problem, treating it as a one-dimensional problem with a parameter.

4. ACOUSTIC IMPEDANCE AND VELOCITY IN A TWO-DIMENSIONAL LAYERED 
HOMOGENEOUS MEDIUM: UNIQUENESS

4.1. For further investigations of the inverse problem posed by (8)–(12), simplify it as follows. Intro-
duce the following variable  depending on the parameter p:

(15)

This reduces (8)–(11) to the form
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where , the function  is inverse to the function  provided that 
is fixed, , and
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is another unknown piecewise-constant of the inverse problem, implicitly depending on  and .
For the direct scattering problem posed by (16)–(19), the inverse one is posed as follows: to find

 by the scattering data
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Both problems have been studied well. From results of [29–34], it follows that  is uniquely
determined by the additional information provided by (21). From the properties of the solution of the
direct problem posed by (16)–(19), it follows that if the trace of the solution is well defined, then

This relation uniquely determines  and . Then it uniquely determines  and  for
 provided that the function  is known for two different values of p.

However, if p is fixed, then the variable  is determined by an unknown function c(ζ); therefore, the
uniqueness of the recovering of c(ζ) and σ(ζ) is still an open question.

4.2. Further, we prove that  and  are uniquely determined by the scattering data (21) provided
by at least two values of the parameter p. To do this, consider the local posing of problem (16)–(19) and
(21) with respect to τ.
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Let the function  from (21) be given for , , , and, therefore, , ,
. Let there exist a solution  of problem (16)–(19) and (21) for  and  belonging to the cor-

responding segments. The following assertion is valid.
Theorem 2. Let the function σ(Z, p) for ,  and , , respectively. Then c(ζ) and

σ(ζ) are uniquely defined by the scattering data (21) for all , where  and  and
 are implicitly determined by the solution as follows:

Proof. Since

it follows that a function  inverse to  exists for any fixed admissible p. Since  =

, it follows that the following integral relation holds:

(22)

By virtue of the monotonicity of integrals from (22) with respect to the upper limit, the last relation
implies that a one-to-one correspondence between  and  takes place:

where the function  is strictly monotonic, has an inverse function , and the inequality 
holds.

Introduce the function  of an independent variable . The relation
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Fig. 1. Full field  of acoustic waves registered for z = 0. It corresponds to data of Fig. 2 and model in Fig. 3 and
is represented in discrete form.
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Obviously, their inverse functions are also different from each other: . However,
this is impossible because, by virtue of (23), which is valid for any , relation (24) implies the relation

.

The unknown function  is uniquely determined on the segment  by the following relation
deduced from the previous consideration:

This completes the proof of the theorem.
Remark 2. The constructed function  allows us to obtain a solution of the original inverse problem

in terms of the true vertical depth z. Indeed, taking into account that , we consecutively find

where the function  is inverse to .

5. INVERSE SCATTERING PROBLEMS IN A LAYERED-HOMOGENEOUS
TWO-DIMENSIONAL MEDIUM: NUMERICAL SOLUTIONS

Following the geophysical interpretation of the data provided below, we move to the results of numer-
ical simulations. In land seismics, the measuring equipment is rather densely located as a headland of geo-
phones or an optical-fiber cable along a profile. This allows us to use the time records of the seismic traces
to recover a wavefield on the original ground such that it is practically continuous and consists of a direct
surface wave and a field of reflected waves.

Such a full wavefield is simulated in the present paper; in Fig. 1, it is presented in the discrete form (for
better clearness): the wavefield  from a point source, registered for , ,
and , is displayed after its partial deconvolution, i.e., the reduction of the actuating signal to a delta-
shaped impulse by the solution of convolution-type equations. In seismics, such a wavefield is obtained as
a result of the primary conversion of the oscillations of the medium along a profile of the original ground.

A homogeneous plane layer lying on a homogeneous underlying half-plane is taken as the model of the
medium for the wavefield computation in Fig. 1. Recall that all vertical measurements are done in terms
of the eikonal ζ; i.e., their dimension is time. For the selected model, the depth of the horizontal boundary
of the discontinuity of the acoustic impedance is equal to 100.

Figure 2 displays the graphs of the solution σ(Z, p) of the inverse problem (16)–(19) and (21) for p = 0
and p = 0.6. Following the proposed approach, we use the Radon transformation f(τ, p) of the wavefield

 for p = 0 and p = 0.6 as the input data. A random error of 10% is inserted in the solution; in
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Fig. 2. Result of solving inverse scattering problem by data represented by Radon transformation f(τ, p) of wavefield in
Fig. 1 for p = 0 and p = 0.6. Inserted error is 10%.
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Fig. 3. Result of solving inverse problem for wavefield in Fig. 1 by data of Fig. 2: c(ζ) is dashed curve and σ(ζ) is dense
curve. Original model of medium is , where σ(ζ) is dashed-dotted curve shifted lower by 0.5.
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practice, this corresponds to a high-level error of the oblique summing of real wave fields with respect to
the variable X.

In Fig. 3, the results of solving an inverse problem are represented in the form of time sections. If the
velocity section c(ζ) is known, then it is easy to pass to the depth sections, i.e., to the variable z. The dashed
curve corresponds to the obtained values of c(ζ). The dense curve corresponds to the acoustic impedance
σ(ζ). The original model of the medium for σ(ζ) is shown by the dashed-dotted curve translated lower by
0.5, while  corresponds to the original velocity model.

Since the data for solving the inverse problem contains a significant error, we use the variational form
of the regularization method with a stabilizer in the space  (see [35, 36]) to smooth the obtained results.
The regularization parameter is selected a priori and depends on the error level. Resolving such a problem
at the stage of processing the preliminary data is the standard procedure contained in standard data pro-
cessing packages.

The simulation is performed under the assumption of a full deconvolution; i.e., we assume that the
source is a delta function. A specific property of the obtained results is the recovery of the velocity c(ζ) for
the lower values of the eikonal ζ compared with the acoustic impedance σ(ζ). This is an important corol-

ζ = + ς −( ) 1 sgn( 100)c

1
2W
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Fig. 4. Result of solving inverse problem by scattering data, presented by Radon transformation f(τ, p) for model in Fig. 5
for p = 0 and p = 0.6. Inserted error is 5%.
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Fig. 5. Result of solving inverse scattering problem for multilayered medium: c(ζ) is dashed curve and σ(ζ) is dense curve.
Original model is c(ζ) = 0.2 + 0.4σ(ζ), where σ(ζ) is dashed-dotted curve shifted lower by 0.5.
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lary of the fact that the acoustic impedance is recovered under vertical sounding even in the case where
the velocity is not known, while the velocity is recovered only under the oblique sounding provided that
the acoustic impedance is known. Note that the angle of departure of the ray with respect to the vertical
of about 37° corresponds to the value p = 0.6 of the parameter. If p is less than 0.25–0.3, i.e., if the angle
of departure of the ray is less than 14°−17°, then the velocity c(ζ) is recovered unstably.

It is important that if the inverse problem is considered in geometric optics, then the wavefield (see Fig. 1)
determines only the width of the layer and the velocity above the conditional interface (see [37]), i.e., for
ζ < 100 in the considered case. If we apply the dynamical approach to solve the problem by the radon
transform, then this parameter can be recovered significantly below the interface; i.e., the velocity is up to
the eikonal value ζ = 373 and the rigidity is up to the value ζ = 500; actually, this corresponds to the
oblique (p = 0.6) and vertical (p =0) sounding of a layered medium by a plane incident wave.

Figures 4 and 5 provide the results of solving the inverse scattering problem for the model of a multi-
layered medium typical for seismics with variations of the acoustic impedance and an error level of about
5% for the input data. The visible smoothness of the output curves is the result of the regularization related
to the significant error level.
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Concluding the review of the results presented above, we note that the resolving power of the proposed
algorithm is sufficient in the practice of geophysical investigations and this algorithm is stable and can be
used to solve scattering problems for a broad range of models of layered media.
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