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Abstract—We propose a mathematical model for the heat transfer in ground tubular air coolers to con-
struct the temperature field in it. The aim is to find the least admissible distance between the tubes.
We visually present the results obtained in a program developed according to this model on MATLAB
and in the PDE Toolbox MATLAB environment. Comparing the obtained results, we see that they are
close to each other.
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1. INTRODUCTION
In modern heating and cooling systems for buildings, energy-efficient technologies with ground heat

exchangers are widespread (see [1–5]).
The ground of the Earth’s surface layer is actually a heat accumulator of infinite capacity such that its

temperature varies slightly during the year, is positive, but not high, and substantially differs from the air
temperature. In summer, it is lower than the air temperature. In winter, it is higher than the air tempera-
ture. Therefore, the ground represents considerable interest from the following viewpoints:

(1) it is a low-grade heat source for the operation of thermal pumps in heating systems or heating recu-
peration in ventilation units;

(2) it is a heat absorber in air-conditioning systems.
In such a case, ground heat exchangers are used to exchange heat with the ground.
There are ground heat exchangers of various designs. For example, in airconditioning systems, heat

exchangers frequently consist of a row of horizontal underground tubes at a depth of at least 1.5 m so that
the air from the atmosphere is pumped through these tubes. Passing through the tubes, the air is cooled
by the heat exchange with the ground and enters the building. The tubes are slightly inclined (to sink the
condensate water) and are connected between each other; e.g., the connection is parallel and uses
U-shaped collector systems (see [1, 6, 7]).

An important parameter of ground heat exchangers is the least admissible distance between the tubes,
ensuring guaranteed and sufficiently fast heat scattering (in the air-cooling case) in the ground.

Currently, only general recommendations are used to design and assemble ground heat exchangers;
they do not take into account the specific properties of the designed object, which can lead to a decrease
of the efficiency and an unreasonable increase in investments. The recommended distances between the
tubes do not depend on the operating regime and heat load of the unit (e.g., at least 1 m in [8] or from
0.5 to 0.7 m in [9]). However, if the heat dissipation is intense, then the recommended distance between
the tubes might be insufficient. This causes an overheating (in the air-cooling case) of the ground block
around the heat exchanger tubes, their temperature fields intersect each other, and the heat scattering in
the ground is impeded. This leads to the instability of the operation of the airconditioning system and an
increase of the ground’s accumulating ability in the neighborhood of the tubes. Considerable time is
required to restore the ground block’s accumulating ability in a natural way, while it is not always possible
to apply special measures.

Thus, the distance between the tubes has to be such that their temperature fields are disjoint and,
respectively, the surrounding ground block is not overheated and does not lose its accumulation ability
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during its exploitation. By solving this problem, we can determine the necessary boundaries of the area for
a field and arrange the territory optimally.

The existing methods to solve this problem, based on constructing a heat balance equation (see [5]) is
applicable for the engineering design of a ground heat exchanger, i.e., for the case where the heat load of
the ground heat exchanger and the temperature of the heat carrier at the tube output are given. However,
in the case of the calibrating computation of the heat exchanger, these parameters are unknown. The men-
tioned methods are not applicable in such a case. This problem can be solved based on the numerical
modeling and programming of the conductive heat transfer; in such a case, it is treated as a nonstationary
boundary-value heat problem to construct and analyze the temperature field of the heat exchanger. The
present paper is devoted to resolving this problem.

2. MATHEMATICAL MODEL

The heat transfer in a horizontal tubular ground air cooler is a complex heat exchange consisting of the
heat dissipation under the forced air f low in tubes of the ground’s heat exchanger and the heat conductiv-
ity between the wall of the heat exchanger’s tube and the ground block. Hence, the problem can be con-
ditionally divided into two parts:

• the inner part consists of the processes inside the heat exchanger tube;
• the outer part consists of the processes outside the inner wall of the heat exchanger tube.
Modeling problems related to finding the temperature field is based on resolving the following Fourier-

Kirchhoff differential equation for the nonstationary heat transfer by the heat conductivity and connect-
ing the temporal and spatial changes of the temperature at each point of the body (see [10]):

(1)

where  is the temperature measured in °С, ρ is the density measured in kg/m3, c is the spe-
cific heat measured in J/(kg K),  is the heat conduction coefficient measured in W/(m K),  is the time
measured in s, and  is the power of the internal heat generation sources measured in W/m3.

The given equation, together with the uniqueness conditions, forms the complete mathematical for-
mulation of the heat boundary-value conditions.

A simplification is needed to model the outer problem because there are too many elements affecting
the heat conduction in that problem and those elements are not completely determined from the informa-
tional viewpoint.

The ground is treated as a solid isotropic medium, where the heat is propagated only by means of the
heat conductivity. Obviously, the ground is a complex multiphase system such that the following three
forms of the heat transfer take place in it simultaneously (see [11]):

(1) the heat conductivity inside the particle elements of the solid phase and at the points of their direct
contact;

(2) the radiation from a particle to another one;
(3) the convection and heat conductivity in the pore space under a damp transfer.
It is a hard problem to find the temperature field in the field, where all these processes take place; how-

ever, taking into account the low values of the ground block temperature in the natural state observed
below the freezing depth (for Saratov city, they are between +1 and +17°С, see [12]), we can ignore the
impact of the convection, radiation, and damp transfer (according to [13]).

In the considered case, we have only one direction of the heat propagation; it is orthogonal to the
tube’s axis. Then this is a one-dimensional nonstationary conductive heat transfer with cylindrical sym-
metry. Taking into account this and the fact that there are no internal sources in the tube wall and the
ground ( ), we can represent Eq. (1) in the following one-dimensional form:

(2)

where  is the radial coordinate.
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Fig. 1. Scheme to compute distance between neighboring tubes of horizontal ground heat exchanger, where R1 is inner
radius of tube, R2 is its outer radius, and R3 is smallest radius of ground cylinder such temperature fields of neighboring
tubes are disjoint.
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A single heat exchanger tube and the surrounding ground block can be geometrically represented as a
two-layer cylinder with different thermophysical properties (Fig. 1). For this case, the mathematical for-
mulation of problem (2) is as follows:

(3)

where  and  are the density of the material of the tube wall and of the ground block, respectively,
measured in kg/m3;  and  are the heat capacity of the material of the tube wall and of the ground
block, respectively, measured in J/(kg K);  and  are the temperature of the tube wall and of the ground,
respectively, measured in °С;  and  are the heat conductivity of the material of the tube wall and of
the ground, respectively, measured in W/(m K);  and  are the inner and outer radii of the tube,
respectively, measured in m; and  is the smallest radius of the ground cylinder such that the temperature
fields of the neighboring tubes are disjoint (measured in m).

System (3) describes many variants of the development of the heat-conductivity process. To select one
of them (together with its complete mathematical description), add uniqueness conditions to relations (3).
Those conditions contain geometric, physical, initial-value and boundary-value conditions. For example,
for the tube on the left (Fig. 1), they take the following form.

• The initial-value conditions are as follows:

(4)

where  is the initial temperature of the tube and ground (at time ), measured in °С.

• The boundary-value conditions are as follows.
At the left-hand boundary, the third-type boundary-value conditions are posed because the heat trans-

fer from the air to the inner wall of the tube takes place:

(5)

where  is the coefficient of the heat transfer from the air to the inner wall of the tube, measured in W/(m2 K),
while  and  are the air temperature and the temperature of the inner wall of the tube, respectively, mea-
sured in °С.
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Fig. 2. Template of implicit four-point difference scheme.
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At the boundary between the tube and the ground, the fourth-type boundary-value conditions are
posed; they characterize the ideal contact between the tube and the ground and guarantee that the tem-
peratures and heat f lows from both sides of the boundary are equal to the each other:

(6)

At the right-hand boundary, the first-type boundary-value conditions are posed such that the ground
temperature is constant and equal to its initial value :

: (7)

The physical uniqueness conditions set the values , , , , , , and α.

The geometric uniqueness conditions set the values , , and . Since the value  refers to the
sought parameter, which is not known before the computation, its value is set by the iteration procedure.

The value of  is found from the criteria equations describing the heat transfer from gases to a wall
under the air movement in a circular horizontal tube. Depending on the motion mode of the air in the
tube determined by the Reynolds criterion

(8)

the coefficient  is found from one of the following expressions (see [14]):
• if  (the laminar motion mode of the air in the tube), then

(9)

• if  (the transitional motion mode of the air), then

(10)

• if  (the turbulent motion mode of the air), then

(11)

tb gr

grtb
tb gr

* *

( , *) ( , *),

,

( * 2).
r r r r

t r t r
tt

r r
r R
= =

τ = τ⎧
⎪ ∂∂⎨−λ = −λ⎪ ∂ ∂⎩

=

0t

3r R= gr 0,t t= 0.τ >

tbλ grλ tbρ grρ tbc grc

1R 2R 3R 3R

α

air in

air

Re ,w d=
υ

α
Re 2300<

0.33 0.43air
air

in

0.17 Re Pr ,
d
λα =

2300 Re 10000≤ ≤

air
air air

air

0.00365 Pr ,wλα =
υ

Re 10000>

0.8 0.4air
air

in

0.023 Re Pr ,
d
λα =
MATHEMATICAL MODELS AND COMPUTER SIMULATIONS  Vol. 10  No. 4  2018



MODELING CONDUCTIVE HEAT TRANSFER IN GROUND AIR COOLERS 523

Fig. 3. Finite-difference grid, where r2,…ri,…rN − 1 are coordinates of inner nodes, while r1,…r*,…rN are coordinates of
outer nodes.

R1 R2 R3tube wall ground

r1 rNrN – 1rir *r2 Δr
where  is the air velocity in the tube measured in m/s,  is the inner diameter of the tube mea-
sured in m,  is the kinematic viscosity coefficient of the air measured in m2/s,  is the heat-conduc-
tivity coefficient of the air measured in W/(m K), and  is the Prandtl number for the air.

To solve the posed boundary-value problem, we use the method of finite differences (see [15, 16])
based on an implicit four-point scheme and uniform grids (both with respect to time and the spatial vari-
able), representing a solid body by a set of nodes (see [10]) and assuming that the thermophysical proper-
ties of the tube material and ground block do not depend on the temperature.

Introduce the uniform spatial grid (see Fig. 2)

where  is the number of the step with respect to the spatial coordinate, while  are the integration
step and the number of nodes with respect to the radial coordinate, respectively.

In the same way, introduce the temporal grid (see Fig. 2)

where  is the number of the step with respect to time, while  are the integration step and the
number of nodes with respect to the temporal coordinate, respectively.

Decompose the width of the tube wall and the ground block into  equal intervals; this yields a
finite-difference grid with step  with respect to the radial coordinate (see Fig. 3).

Define the value of the temperature at the th node at time  as . Further, change
the differential operators in (2) for their finite-difference analogs; the scheme displayed in Fig. 2:

and

where  and .

As a result of the approximation of the partial derivatives by the corresponding finite differences, we
get the following system of linear algebraic equations:
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Fig. 4. The geometry of the problem.

Ground Tube

R1 R3 r
r *

α t0

Fig. 5. Template of difference grid.
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For the two-layer cylinder, system (12) is expressed as follows:

 (13)

Since a nonstationary problem is considered, it follows that system (12) has to be solved at each time
step. To do this, we reduce the specified system to a two-point first-order equation (see [10]), assuming
that there exist number sets  and  ( ) such that

(14)

where

and

To construct the temperature field according to (14), we use the sweep method; at the first stage, the
sweep coefficients  and  are found.

For the left-hand boundary-value condition, digitize the third-type boundary-value conditions with
error О(h). The initial sweep coefficients m1 and n1 are found from the relation
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Introduce the notation . Then

(16)

Grouping the terms of (16), we obtain the relations

 

{ }

{ }

1
1

1 1 1tb
tb tb (1 2) 1 (1 2) (1 2) (1 2) 12

1
1 1 1gr

gr gr (1 2) 1 (1 2) (1 2) (1 2) 12

for 1 * 2

,

for * 2 3

.

i
k k

k k ki i
i i i i i i i

i

i N
k k

k k ki i
i i i i i i i

i

r R r r R

t tc r t r r t r t
r h

r R r r R

t tc r t r r t r t
r h

+
+ + +

+ + − + − −

+
+ + +

+ + − + − −

= < < =⎧
⎪ − λ⎪ρ = − + +⎡ ⎤⎣ ⎦θ⎪
⎨ = < < =⎪
⎪ λ−ρ = − + +⎡ ⎤⎣ ⎦θ⎩
⎪

in im 1, 1i N= −
1 1

1 ,k k
i i i it n t m+ +

+= +

1

,i
i

i i i

An
B C n −

=
−

1

1

,i i i
i

i i i

C m Fm
B C n

−

−

−=
−

(1 2)
2 ,i

i
i

r
A

rh
+λ=

(1 2) (1 2)
2 ,i i

i
i

r r cB
rh

− ++ ρλ= +
θ

(1 2)
2 ,i

i
i

r
C

rh
−λ= .k

i i
cF tρ= −

θ

in im

1 1 2 1.t n t m= +

( ) ( )
1

1

tb 2 1
tb air tb air 12 2 .r r

r r

t t tr t t r t t
r h=

=

∂ −−λ = π α − ⇒ −λ = π α −
∂

tb

h Biα ≡
λ

( )1 2 air 1 air 12 2 2 .t t rBi t t rBit rBit− = π − = π − π

1 1 2 air2 2t rBit t rBit+ π = + π
MATHEMATICAL MODELS AND COMPUTER SIMULATIONS  Vol. 10  No. 4  2018



MODELING CONDUCTIVE HEAT TRANSFER IN GROUND AIR COOLERS 525

Fig. 6. Block diagram for computation of temperature field in ground air cooler.
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which means that

Thus, according to (15), the sweep coefficients for the first node are expressed as follows:
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Fig. 7. Predicted temperature field in ground air cooler after various time intervals.
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The sweep coefficients for the boundary between the tube and ground are found by the fourth-type
boundary-value conditions (6) at the contact point of two media with different thermophysical properties,
located at the th node with coordinate  (see Fig. 4).

Deduce the sweep coefficients at the contact point for two media, considering the first-order approx-
imation with respect to the step of the radial coordinate:

Taking into account that  for  and аt  for , eliminate the indices characterizing
the medium. According to Fig. 5, we obtain the relations
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Fig. 8. Predicted temperature field in ground air cooler, constructed in PDE Toolbox MATLAB environment.

400

–100

–200

300

400
400

300

200

100

0

300100–100 2000–200–300–400

t = 5.7°C

t = 6.5°C

t = 7.3°C
t = 8.1°C
t = 8.9°C
Figure 6 presents the block diagram for the computation of the temperature field in the considered
ground heat exchanger.

In block 1, the input data are given: the preliminary values of parameters , , and , , , , ,
, , , , , , and ; the open flow area  of the tube; the airf low  through the

tube; the air velocity ; and the final time  for the computation. Also,
we set the initial temperature distribution  over all the grid nodes, the radius 
with respect to the grid, and the number  of the node corresponding to the boundary between the tube
and the ground.

In block 2, the following thermophysical parameters of the air are computed as functions of the air
temperature: the heat-conductivity coefficient, the kinematic viscosity, and the Prandtl number. Also, the
Reynolds coefficient  is computed according to (8).

Depending on the value of  (see blocks 3 and 4), we use relations (9), (10), or (11) to compute the
heat-transfer coefficient  (see blocks 5, 6, or 7).

In block 8, the value of  and the sweep coefficients  and  are computed for the first node.
In block 9, the initial time is given: .
For the spatial grid, for the nodes from the second one to the one preceding the boundary between the

tube and the ground (see block 10), we use the direct sweep method to compute the parameters , , ,
and  and the sweep coefficients  and  (see block 11).

In block 12, the sweep coefficients  and  are computed for the boundary between the tube and the
ground.

For the spatial grid, for the nodes from the first node after the boundary between the tube and the
ground to the next-to-last node of the grid (see block 13), we use the direct sweep method to compute the
parameters , , , and  and the sweep coefficients  and  (see block 14).

For the spatial grid, for the nodes from the next-to-last one to the first one (see block 15), we use the
inverse sweep method to compute the temperature field (see block 16).

In block 17, the time is counted. Once the given time is passed ( ), the obtained results
are printed out (see block 19) and the computation is complete. Otherwise, the current time ( ) is
increased by one integration step  with respect to the temporal grid (see block 18) and the computation
is repeated, beginning from the 10th block.
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3. TEST COMPUTATIONS
Figure 7 presents the temperature field in the ground heat exchanger after 1, 3, 5, and 7 working hours,

respectively, computed with respect to the above algorithm in the MATLAB environment. The following
parameters are treated as the input data:  (the air temperature),  (the initial ground
temperature); the tube’s material is ethylene homopolymer,   (the tube’s heat-con-
ductivity coefficient),  kg/m3 (the tube’s density),   (the tube’s heat capac-
ity); the ground’s heat-conductivity coefficient  ,  kg/m3 (the ground’s
density),   (the ground’s heat capacity),  m (the integration step with
respect to the radial coordinate),  0.6 s (the integration step with respect to time),  0.029 m (the
inner radius of the tube),  0.0315 m (the outer radius of the tube), and  0.3 m (the radius of the
ground cylinder). It is assumed that the temperature field from the tube is propagated for seven hours:
from 12:00 a.m. to 7:00 p.m. (in daylight), i.e., during the period of the highest diurnal temperature and
the strongest heat f low in the heat exchanger.

From Fig. 7 we see that the depth of the ground heat penetration is about 0.26 m (  0.26 m) during this
seven-hour period and under the assumed input data. No further propagation of the temperature field is observed
because the outer air temperature falls in the evening and the heat flow in the heat exchanger decreases.

Thus, according to Fig. 1, the shortest distance between the axes of the neighboring tubes of the
exchanger such that their temperature fields are disjoint is  m.

To compare, we compute the temperature field in a ground air cooler, using the finite-element tech-
nology in the PDE Toolbox MATLAB environment; the result is presented in Fig. 8. The input data is the
same as for the computation given above according to the proposed model.

Comparing the graphs in Figs. 7 and 8, we see that the proposed finite-difference model and the stan-
dard finite-element model yield identical results to each other. In both cases, the propagation of the tem-
perature field from the tube ends at a distance of about 0.25 m from the tube’s center, which confirms that
the proposed model is correct and justified.
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Translated by A. Muravnik

air 32.5 Сt = ° 0 5.7 Сt = °
tb 0.29λ = W (m С)°

tb 1315ρ = tb 990с = J (kg С)°
gr 0.658λ = W (m С)° gr 1700ρ =

gr 2010с = J (kg С)° 0.0005h =
θ = 1R =

2R = 3R =

min3R =

min2 3 2 0.26 0.52R = × =
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