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Abstract⎯An algorithm is presented, which enables us to use the iterative Richardson method for
solving a system of linear algebraic equations with the matrix corresponding to a sign-definite self-
adjoint operator, in the absence of information about the lower boundary of the spectrum of the prob-
lem. The algorithm is based on the simultaneous operation of two competing processes, the effective-
ness of which is constantly analyzed. The elements of linear algebra concerning the spectral estimates,
which are necessary to understand the details of the Richardson method with the Chebyshev set of
parameters, are presented. The method is explained on the example of a one-dimensional equation of
the elliptic type.
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1. INTRODUCTION
During the numerical solution of systems of linear algebraic equations (SLAEs), problems related to

the absence of information on the boundaries of the spectrum of a difference operator, which can signifi-
cantly decrease the effectiveness of the algorithm, are often encountered. Various approaches to solving
this problem are possible. In particular, if the aim of the problem is to solve the corresponding elliptic
equation, then we can use the fact that in discretizing the differential operator, the spectrum of the
obtained matrix operator in SLAEs corresponds to the spectrum of the differential operator only in the
lower part. Thus, an effective approach is to suppress the error arising in the lower boundary of the spec-
trum and restrict the error in its upper part by a milder nonincreasing condition. Local iteration (LI)
schemes using Chebyshev parameters are based on this principle [1].

There exist alternative methods based on estimating the spectral radius boundaries for the matrix, for
example, methods based on the generalized Perron complement and properties of matrix norms [2]. Also
methods with preconditioners are effective [3, 4]. However, finding an easily invertible matrix close to the
initial one is in most cases a nontrivial problem.

Note that the methods of the conjugate gradient type, not requiring a priori information on the spec-
trum boundary, can turn out to be ineffective. This happens when solving nonlinear applied problems of
mathematical physics with coefficients possessing jumps on many orders and when using very large grids
with billions of cells, etc. As a result, methods of this class show slow convergence or even a loss of exact-
ness, i.e., computational instability. Sometimes empirical tricks can correct the situation, starting with the
simplest ones, for instance, an approximation to a solution which has started to diverge is taken as the ini-
tial approximation in a new iteration cycle. In this paper we consider the problem of solving SLAEs under
the assumption of an equivalent matrix spectrum, without distinguishing any of its part parts, and we
apply the Richardson method, which is one of the well-known explicit two-layer iteration methods for
solving SLAEs with a sign-definite self-adjoint operator. An advantage of the method is the simplicity of
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its realization and the possibility of effective parallelizing. Applying the Chebyshev set of iterative param-
eters substantially increases the convergence speed of the method.

Before presenting the substance of our approach, let us note that the proposed algorithm of competing
processes is constructed similarly to the three-layer semi-iterative Chebyshev method [5, 6]. However, the
realization of this method from [6], when compared with our method, is related to increasing the volumes
of machine memory and computations per iteration.

Our method is tested on the model problem for a one-dimensional elliptic equation. In this case the
low boundary of the matrix spectrum is known exactly. This enables us to see how well the algorithm
approximates the value in terms of the convergence of the iterative process.

2. ITERATIVE METHOD OF SOLVING A SYSTEM OF LINEAR ALGEBRAIC EQUATIONS
It is required to solve an algebraic system of equations

(1)
where A is a self-adjoint positive definite matrix, y is the vector of unknowns, f is the right-hand side. We
consider a two-layer iteration method

(2)

where s is the number of iterations with a preconditioner, B is a self-adjoint positive definite operator,
are certain factors, and the chosen operator B is also easily invertible. In (2),  is the unknowns vector

computed at the kth iteration.

Multiplying (2) by  on the left and introducing the variables  and  we
obtain

(3)

where I is the unit matrix. The operators A, B, and  are self-adjoint positive definite. For
 there exists a complete set of orthogonal eigenvectors forming a basis and having positive

eigenvalues.
We assume that the spectrum of the matrix C is unknown, but it lies in a certain range

(4)

where  and  Obviously, the condition  implies 
Taking into account the variability of the parameter  we have [5]

An estimate for norms yields

The norm of the resolving operator polynomial  with a self-adjoint positive definite operator
argument   is estimated through the usual polynomial  as follows [7]:

The parameters  are found from the minimum condition for  i.e.,

The solution of the minimization problem of the norm  is the Chebyshev polynomial normal-
ized at the point  [8]:
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The maximum of the deviation from zero is

(5)

The coincidence of the required polynomial with the extremal Chebyshev one (at the roots )

(6)

yields the Chebyshev parameters for the Richardson method (2)

(7)

In the left-hand side of (6) the argument is t, and in the right hand side, it is x, which is admissible,
since they are connected by the linear relation

The computational stability of the scheme is achieved by a special ordering of the set of these param-
eters [5, 6, 9–11]. For the exposition below, it is important that the blocks of the optimal resulting decrease
of the iterative error (with preincreases) are ordered in powers of four, eight, etc., iterations.

Since the lower bound  for the spectrum can be unknown, let us examine separately the case when it
is increased. In other words, the variable t varies from  to 0 and the variable x decreases from –1 to 

without reaching the end values of the segment. The ratio  increases from  to 1
strictly monotonically. Since for  we have [8]

and the assumption  (the necessary condition for the extremum) takes us out of the interval
 Thus, the transition operator of the Richardson method also acts as a compressing one

for  Hence, we have proved the following theorem:

Theorem 1. For an increased estimate of the lower boundary of the spectrum  the iteration
process (2) converges.

3. FINDING A GRID SOLUTION FOR THE EXAMPLE OF A ONE-DIMENSIONAL 
EQUATION OF THE ELLIPTIC TYPE

For the subsequent analysis, let us use an elliptic type equation of the form

(8)

where  is the space coordinate,  is the unknown quantity,  is the right-hand side, and 
and  are the known values of the unknown quantity at the boundary of the definition domain.

Let us define a uniform difference net over the space with the step  where N is the num-
ber of cells. Approximating (8) in the standard way, we obtain a system of algebraic equations of form (1)
with the positive definite matrix A. For solving the system, let us use the iterative process (2), where for
simplicity, we set 

(9)

As the zero iteration, we can take any vector

ρ γ− ξ − ξ= = ρ = ξ = ρ =
+ ξ γ + ξ+ ρ

1 1
0 12

0 21

2 1 11 , , , .
( ) 1 11

s

ss
s

q
T x

= kx x

( )[ ]
=

= − τ γ + γ − τ γ − γ =∏ 2 1 2 1 0

1

( ) 1 0.5 ( ) 0.5 ( ) ( ) ( )
s

s k k s s

k

P t x T x T x

( )τ −τ = = π = τ =
+ ρ γ + γ

…

0
0

0 1 2

2 1 2, cos , 1,2, , , .
1 2k k

k

kx k s
x s

[ ]= γ − γ + γ + γ2 1 2 10.5 ( ) ( ) .t x

γ1

γ1 − ρ01 ,

0( ) ( )s sT x T x ρ + ρ2
1 12 (1 )s s

∈ − ρ −0( 1 , 1),x

[ ] ( ) ( )⎡ ⎤= + − − − −⎢ ⎥⎣ ⎦−
2 2

2
'( ) 1 1 ,

2 1

s s

s x
sT x x x x x

x

[ ] ='( ) 0s xT x
∈ − ρ −0( 1 , 1).x

< < γ10 .t

γ > λ >1 min 0,n

−∂ ∂ = = =2 2 ( ), ( ) , ( ) ,a by x f x y a y y b y

∈ [ , ]x a b ( )y x ( )f x ay
by

= −( ) ,h b a N

= :B I

+ = + τ −1 ( ).k k k
k Ay y f y

= …

0
1( , , ) ,T

Ny yy



114

MATHEMATICAL MODELS AND COMPUTER SIMULATIONS  Vol. 10  No. 1  2018

POPOV et al.

for example, the zero vector. Applying the iterative process (9) gives a consecutive set of vectors  The
iteration process stops if, for example, the condition  holds, where ε is
the given precision of the solution and k is the number of iterations.

Let us obtain a numerical solution of Eq. (8), using the proposed iterative procedure, on the segment
 with the boundary conditions   and with the zero source  For the

parameters   let us use the Chebyshev set. Note that the number of iterations in our argument
should be a power of two:

(10)

For the stability of the algorithm, we must order the Chebyshev set of parameters for the Richardson
method from 1 to s [5, 6, 9]. Ordering an array of integers  is made by the following
sorting procedure:

Then we compute  where instead of formula (7), we use

For example, let us provide the set of ordered  for s = 8.

These values are grouped in fours of the form

The value

(11)

as a rule, decreases for each subsequent iteration inside the four, but it increases when passing from one
group-of-four to another:

(12)
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The error for the first iteration at the beginning of each group-of-four, as a rule, is smaller than the
error for the first iteration at the beginning of the previous group-of-four, which yields the convergence of
the algorithm

(13)

The behavior of the iterative error in solving Eq. (8) for  iterations is represented in Table 1. Note
that in this example, we have  and  (they are in bold), which contradicts (13) and (12),
respectively. However, this does not influence the general convergence.

After the choice of the number of iterations s and the corresponding set   the remaining
necessary parameters are determined by formulas (7). The bounds for the spectrum of the Laplacian on a
uniform grid are known [5]:

(14)

where 

4. COMPETING PROCESSES ALGORITHM
The Gershgorin theorem on circles does not give a correct estimate for the lower bound for the spec-

trum of a strictly positive operator of a problem. At the same time, the Richardson iterative method
requires the estimate  Hence, in this paper, taking into account the proven convergence of iterations
in the Richardson method with an overestimated spectral boundary  (see Theorem 1), we propose
a tuning algorithm at the a priori unknown positive  based on competing iterative processes with differ-
ent  operating simultaneously:

where the upper bound  is determined from the Gershgorin Circle theorem and is given, for instance,
by estimate (14);  and  are certain factors. We propose to choose  and  For the
case of the Laplace equation considered on segment  on a grid with  cells, this choice of
parameters gives  which is much greater than the analytic estimate  This process will
converge very rapidly at the initial iterations; however, the convergence speed in the considered norm will
rapidly decrease due to the cutoff of the large lower part of the spectrum from the Richardson iterative
optimization process. At some moment the competing process with  which initially converged
more slowly due to the optimization in the more representative scope of the whole width of the spectrum,
will reach the process with  which (as proved at the end of Section 2) although it converges, does not
do so optimally in the sense of the Richardson method in the lower part of the spectrum.

In Fig. 1a we represent relative errors (11) in the two competing processes  and  with the param-
eters  and  for the number of iterations  We see that starting with the iteration

 the process with the lower value of the lower boundary of the spectrum  becomes more rapid.
However, for analysis it is convenient to compare the monotonic graphs of convergence presented in

Fig. 1b. Since the error values are grouped in fours, in order to construct monotonic graphs, we put the
initial points  and  for both processes  and  and then we choose only the points at the end of
each group-of-four, for which the conditions
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(15)

hold for both processes. If at the end of a group-of-four, (15) does not hold, then such a point is missed,
and at the end of the next group-of-four, we check  and  etc. Comparing monotonic
graphs (Fig. 1b) yields the critical iteration number  at which the process  overtakes  If we
assume that at the beginning the spectral boundary  is more appropriate for the unknown actual bound-
ary  (in the sense of the error estimated over all the spectral components), then further this value 
is thrown away as an unnecessary one. Its role starts to be played by the value  The algorithm of chang-
ing processes is realized in this way. However, if the positive value  is already smaller than the true
unknown value  then the Richardson -process of the error’s spectral cutoff is more advantageous
than the process with  smaller than  In order to bar the competing processes to change in the last
situation, it is necessary that, at the critical number of iterations described above (if it arises) the discon-
tinuity of the monotonic graphs after their intersection would be on some strictly positive threshold quan-
tity. Let us also allow the competing iterative processes to change only after the end of the -cycle of Rich-
ardson iterations.

Taking the points made above into account, the algorithm for tuning the competing processes on an
unknown positive lower bound of the operator spectrum consists of checking the following conditions:

(1) If at all the points of the s-cycle, over which we construct monotonic graphs (Fig. 1b) in the spec-
tral-integral norm, the condition  holds, i.e., the graphs do not intersect, then the processes
restart with the same values  and  but with twice as many s iterations (see (10), where we put

). Each time when restarting the processes after an s-cycle, as the initial approximation, we take
the solution obtained at the previous step in the maximally exact process  or 

(2) If at some point k of an s-cycle the graphs intersect, i.e.,

(16)

(see the point  in Fig. 1b), then from this moment, we start checking the proximity of the errors
given by both processes with respect to the relative criterion

(17)

− −Δ < Δ Δ < Δ4 4
* * ** **,k k k k

−Δ < Δ 8
* *
k k −Δ < Δ 8

** ** ,k k

= 32,k γ1
** γ1

*.
γ1

*

γ >1 0 γ1
*

γ1
**.

γ1
*

γ >1 0, γ1
*

γ1
** γ1

*.

s

Δ > Δ** *
k k

γ1
* γ1

**,
→ + 1n n

γ1
* γ1

**.

Δ < Δ** *
k k

= 32k

ΔΔ − Δ > ε Δ* *** ,k k k

Fig. 1. Convergence of competing processes  and  with parameters  and  for  iterations.
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where  Criterion (17) means that the graphs differed significantly in the value determined by
the parameter 

(3) If (17) does not hold for all points of the graph (Fig. 1b) corresponding to the s-cycle, then the pro-
cesses restart with  iterations. This time the value of  is preserved, and  declines by a factor of
four ( ). The choice of these coefficients is explained in the Appendix.

(4) If (17) holds at some point of the s-cycle, then from this moment, we stop the process  and we
continue only the process  until the end of the s-cycle. After this both processes are restarted with the

 iterations. This time the value  is made equal to the value  from the previous step, and 
as in p. 3, decreases by a factor of four ( ).

If in (17) we put  then p. 3 of the algorithm will be ignored. While the algorithm is running, at
each iteration, we check the absolute (applied) convergence ε-criterion of the problem. If in some process,
the inequality  (or ) holds, where ε is the given precision of the solution, then the problem
is considered solved.

5. A COMPUTATION EXAMPLE BY THE ALGORITHM OF COMPETING PROCESSES
Below we present the result of the work done by the algorithm. It consists of six iterative steps. Three

of them are illustrated in Fig. 2, where we show monotonic graphs of the errors in the spectral-integral
norm. The computation parameters are:   and the initial number of iterations

 The initial values of the parameters determining the assumed lower boundary of the matrix spec-
trum are  and 

(1) The number of iterations is  Fig. 2a. For the initial values of q and p, we have computed
 and  The graphs intersected (condition (16) holds) but the relative criterion (17)

did not hold. For the next step, the maximal number of iterations increased to  and the quantity
 decreased by a factor of four according to p. 3 of the algorithm.
(2) The number of iterations is  Fig. 2b. We use  and  corresponding to

 and  The graphs intersected at the iteration  Criterion (17) holds for 

  We pass to p. 4 of the
algorithm. The process  is stopped. Since the solution with the given precision is not found, the maxi-
mal number of iterations for the next step is increased to 

(3) The number of iterations is  According to p. 4 of the algorithm, we use the values 

and  and the corresponding numbers  and  Condition (16) holds for
the very first point for which we check it, i.e., at the iteration  In this case the graph of  is every-
where higher than  Criterion (17) holds for  

 We pass to p. 4 of the algorithm. The process  is stopped. Since
the solution with the given precision is not found, the maximal number of iterations for the next step is
increased to 

(4) The number of iterations  According to p. 4 of the algorithm, we use the values  and

 and the corresponding numbers  and  Condition (16) holds at the iter-

ation  Criterion (17) holds for  

 We pass to p. 4 of the algorithm. The process  is stopped. Since
the solution with the given precision is not found, the maximal number of iterations for the next step is
increased to 

(5) The number of iterations  According to p. 4 of the algorithm, we use the values
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tion (16) holds at the iteration  Criterion (17) holds for   =

  We pass to p. 4 of the algorithm. The
process  is stopped. Since the solution with the given precision is not found, the maximal number of
iterations for the next step is increased to 

(6) The number of iterations  Fig. 2c. According to p. 4 of the algorithm, we use the values
 and  and the corresponding numbers  and 

The solution is found for  in the process  

The total number of iterations made in process  is 558; and in process  886. Let us emphasize
that from the moment of the intersection of graphs at the step  Fig. 2b, at the subsequent steps, after

 and  approach the actual lower spectral boundary (see (14)), the graph  continues to be higher
than the graph  This continues until the quantity  is closer to the actual lower spectral value. At the
step  (Fig. 2c), the quantity  gets closer, and the graphs exchange places.
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Fig. 2. Example of computing by competing processes algorithm up to moment when solution with given precision is
obtained. We show monotonic graphs of errors in spectral-integral norm in three out of six iteration steps.
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When  and  approach the actual lower spectral value, the iterations start to converge very rapidly:
at the step with  the norm of the error is 

Note that when computing with a large initial number of iterations, the iterative process can be less
effective due to the the value of the spectrum’s lower boundary being extremely overestimated.

6. CONCLUSIONS
It has been shown that the transition operator of the Richardson method also acts as a compressing

operator in the spectrum’s domain from 0 to  Therefore, for an overestimation of the lower bound-
ary  of the spectrum, the Richardson method’s iterative process converges. The latter substantiates the
possibility of developing a class of converging iterative algorithms and tuning the a priori unknown lower
spectral bound of the problem.

APPENDIX

For the classical Richardson method (see (2)–(7)) with  we have

so that

And as  we see that  Hence, in order to have the agreed error
decreasing by a factor of  it is necessary, after doubling the number of iterations of the s-cycle, to decrease the
estimate for  by a factor of four. Hence in p. 3 and p. 4 of the algorithm of competing processes, we propose
to decrease the value  by a factor of four, while doubling the corresponding number of iterations.
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