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Abstract—We consider the propagation of a shock wave in a mixture of a gas and fine solid particles
with allowance for the difference in their velocities and the availability of the proper pressure of the
phase of particles; here, equations of the Anderson type and others are used. We propose an approxi-
mate mathematical model of the f low; in this model, the dependence of the pressure of the first (gas-
eous) phase from the particles' volume-concentration can be ignored, but the terms that present the
phase volume-concentration multiplied by the pressure gradient of the gas are taken into account. It
turns out that with this representation of the equation of state, the mathematical model has the hyper-
bolic type. For this system of equations of mechanics of heterogeneous media, we carry out the clas-
sification of the types of shock waves implemented in the considered mixture. The presented state-
ments about the types are illustrated by numerical computations in stationary and nonstationary for-
mulations; for this purpose, the numerical method of the TVD type is developed.
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1. INTRODUCTION
The problem of the physicomathematical description of wave processes in mixtures of gases and fine

particles (droplets) is relevant in the description of many industrial technological processes. In the context
of rational mechanics based on the conservation laws of mechanics of heterogeneous media (MHM), it is
possible to study various problems related to drying capillary and porous media, phenomena of the het-
erogeneous detonation, the ignition and the combustion of clouds of micro- and nano-sized particles or
condensed explosives, the transportation of granular media, etc. In order to describe these processes, the
following models are used in the literature and by us: (1) unit particles, (2) interacting continua with and
without allowance made for the volume concentration of incompressible particles, and (3) compressible
gases and particles in a continual approximation with allowance for the difference in the velocities, the
temperatures, and the pressures of the phases (see [1–7], where a fairly complete bibliography on these
issues is presented). Certain models listed in this hierarchy are described by equations of the composite
type. Here, e.g., the Baer−Nunziato equations for describing the motion in MHM are hyperbolic. They
determine two sound velocities that correspond to the propagation of perturbations in the considered
compressible phases.

Then, we focus our attention on the well-known Anderson model of a heterogeneous mixture with
incompressible particles and with allowance for the chaotic pressure of the particles. Using this model, we
have studied the problem of the structure of a stationary combination discontinuity [8] and in the recent
works, we consider the problem of the structure of a shock wave (SW) [9, 10]; we also mention the work
[11], which explores the structure of an SW in the mixture of a gas and solid micro- and nanoparticles.

In the first approximation, for the last problem in [9, 10], we investigate the mathematical model of an
SW; in this model (in the conservation equation of the particles' momentum), we neglect the term asso-
ciated with the inclusion of the volume concentration of theparticles. This makes it possible to obtain a
“hyperbolic approximation” of this model and (based on the formal similarity with the models of two
compressible gases) classify the types of SWs analogously to [6].
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Note that in practice, the problem of the interaction of the layers of a porous material, e.g., the cellu-
lar–porous structure and layers of particles of the poured density with strong discontinuities, is of signif-
icant interest (from the point of view of reducing the impact of dynamic phenomena on the environment).
Therefore, the focus of this work, which is devoted to finding the possible configurations of SWs in the
context of a more advanced model (taking into account the gas pressure gradient in the conservation equa-
tion of the particles' momentum), represents a certain practical interest. In fact, in order to estimate the
impact of an SW on rigid walls in a two-phase medium, researchers need information on the types of
strong discontinuities that can be implemented in a heterogeneous environment and the conditions under
which they exist.

2. PHYSICOMATHEMATICAL FORMULATION
OF THE PROBLEM, AND BASIC EQUATIONS

2.1. Basic Equations

Consider a mixture of a gas and solid particles that fill a one-dimensional channel. A mathematical
model that describes the motion of the mixture represents a model of an interpenetrating f low of two
interacting continua, during which the parameters of each of them (such as velocity, density, and pressure)
are averaged for volume. The first continuum is a carrier gas characterized by its own velocity, pressure,
and volume concentration.

The second continuum (the phase of the particles) also has its own pressure (as a result of the exchange
of the momentum among particles due to their chaotic motion in the gas), velocity, and volume concen-
tration that are different from the parameters of the gas. The isothermal motion of the considered two-
phase medium (with allowance for the proper pressure of the phase of particles) is described by the equa-
tions of conservation of mass and momentum that are presented for each phase, and is supplemented by
the equations of state (the Anderson model):

(1)

In [10], we describe certain forms of equations of state of a discrete phase. Here we present the equations
of state for both phases as follows:

(2)

where  , , , , and  are the average and real densities, the volume concentration, the
velocity, the pressure, and the sound velocity of the th phase . Index 1 denotes the parameters of
a gas; and index 2, the phases of particles;  is the force acting on the particles from the gas and 
is the force acting on the gas from the particles. We close system (1) and (2) by the main equality of MHM

(3)

2.2. Determination of the Interaction Force of the Phases

For the force interaction of the phases, we have the relation

(4)

where  is the resistance coefficient of a spherical particle. Under the Stokes f low conditions, the resis-
tance coefficient is determined as , where  is the relative Reynolds
number, μ is the gas viscosity, and r is the radius of the particle. Expression (4) under the Stokes f low con-
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ditions has the form , where  is the Stokes relaxation time of veloc-
ities. The deviation from the Stokes law of resistance can be taken into account, e.g., as follows:

(5)

2.3. On the Type of the Considered System of Equations of MHM
After determining all the empirical functions that appear in this mathematical model, its type should

be specified. This question is quite widely covered in the literature; a fairly detailed list of works devoted
to this subject is presented in [10]. We study the type of a system for several special cases of the equation
of state. Consider a one-dimensional stationary f low of the mixture. The type of system depends on the
number of real and imaginary eigenvalues of the corresponding matrix of coefficients of Eqs. (1)

Hence, we obtain the polynomial of the fourth degree

(1) Consider this model in the case where the proper pressure of the phase of particles can be neglected.
The equation for determining the characteristics of this limiting case of system (1) and (2) has the form

(6)

Here,

Then polynomial (6) is presented as follows:

The investigations of the roots of this equation are repeatedly described in the literature by different
researchers (note once more that the corresponding bibliography is presented in [9, 10]). This made it
possible to obtain conditions that specify the domains of the hyperbolicity, the ellipticity, and the com-
posite type of this system of equations in the finite volume-concentration of the particles.

(2) The second simplified form of system (1) of equations is also considered in [9, 10]. This form is
obtained if we formally ensure that the volume concentration of the particles tends to zero and the con-
centration of the gas tends to one. In this case, we have the hyperbolic type of equations, during which the
system is close to the equations of two compressible gases with the Mach lines corresponding to the sound
velocities in two compressible phases.

(3) At last, the third variant of the mathematical model is obtained if we assume that the equation of
state of the first phase does not depend on the density of the second phase. Then the type of the considered
mathematical model is defined by the following equation:

Here,  are the sound velocities in the first and second phases of the mixture.
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Hence, the system of equations is hyperbolic, as in the previous point.

2.4. Problem of the Structure of a Traveling Wave: Normal Form of the System
Using the last mathematical model of a mixture with two pressures, consider the problem of the struc-

ture of a traveling SW in the case where the covolume in the equation of state of the gaseous phase can be
neglected. To put it differently, we assume that this equation of state depends only on the average density
of the gaseous phase. Then Eqs. (1) in the coordinate system associated with the front of an SW are pre-
sented as follows:

(7)

A dot over the variables of interest denotes differentiation with respect to a self-simulated variable. Solving
system (7) with respect to derivatives, we can reduce it to the normal form

(8)

We can notice that the considered system has the following singular points.
The first type of such points appears if the velocities of the phases are equal. In this case, the interaction

force is zero. Here, we can otherwise have the state of rest (stable or instable, depending upon the type of
assigned singular point).

The second type of singular points appears if the velocity of the first phase approaches the speed of sound
in the first phase. However, such a point within a f low of a mixture can be stable (unstable), because here
the gradient of the velocity of the first phase is not necessarily zero.

In addition, at points where the velocity of the first phase is  and the velocity of the second phase
equals the speed of sound in the phase of the particles, the solution turns over. In other words, the accel-
eration of the phases becomes infinite and a f low with sharpening takes place. All this determines the rel-
atively complex behavior of the solution of boundary value problems for such a simple system of equations
such as (8).

2.5. Formulation of the Boundary Value Problem
The system of equations (8) must satisfy the following boundary stationary conditions for the solution

vector :

(9)

This is consistent with the one before the SW front and far beyond it the mixture is in equilibrium when
the velocities of the components are equal. Thus, the problem of the structure of an SW in a gas−particle
mixture with allowance for the proper pressure of the particles is reduced to solving the boundary value
problem (8) and (9) over an infinite interval. Our task is to determine the possible structures of this tran-
sition. We preliminarily determine certain characteristic values of the f low parameters of the mixture.

2.6. Equilibrium and Frozen Sound Velocities in the Mixture
When the velocities of the phases are equal, the sound velocity for an equilibrium mixture is determined

as follows: dP/dρ = , where  is the pressure for the entire mixture,
 is the average density of the mixture, and  is the relative mass con-

centration of the ith phase in an equilibrium flow of the mixture. The frozen sound velocities in the first
and second phases are  and , respectively.
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2.7. Frozen and Equilibrium States of the Mixture

Consider certain inherent types of phase f lows that arise when changing the relaxation times of the
velocities and the concentrations of components of a two-phase mixture. For this purpose, we prelimi-
narily obtain the conservation laws for strong discontinuities.

Conditions on a frozen SW. First of all, we obtain the conditions of conservation on a frozen SW for
 The equations of conservation of mass and momentum for the phases give the following integrals

and one differential equation presented in the nonconservative form:

(10)

The first two equations are the continuity equations of the phases, the third expression represents the
equation of momentum conservation of the entire mixture, and the last expression is the equation of
momentum conservation of phase particles. The last nonconservative equation admits, however, the inte-
gral that describes the condition of momentum conservation of the second phase. In fact, we divide this
equation by the average density of the second phase. We take into account the fact that the true density of
the particles is constant and integrate the obtained equation with respect to the self-similar variable in a
small neighborhood of the strong discontinuity (−ε, +ε). Since the resistance force has no singularities
over this interval, we obtain the equation

We use the expression for the density of the first phase in terms of its velocity to perform further rearrange-
ments. As a result, the last equation (the equation of momentum conservation for particles) takes the form

(11)

The equation of momentum conservation of the entire mixture can be presented as the function

Its form can be simplified to

(12)

Equation (12) was obtained earlier in the work of A.V. Fedorov [6] for a model of the Baer−Nunziato
type; this model describes a f low of a mixture of a gas and solid particles with different velocities and pres-
sures. The solid-phase particles are assumed to be compressible. Besides in [6], the transfer equation of
the solid phase is used for the closure. This predetermines the fact that the concentrations of the phases
on the wave front are frozen. As a result, Eq. (12) is transformed into the equation

(13)

The analogy between Eqs. (12) and (13), which describe the motion in the phase plane , makes it
possible to reveal the properties of function (12). In particular it reveals the following information:

(1) This function is closed.
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which has two branches of solutions under certain conditions relative to the velocity of the second phase.
These conditions depend on the sign-definiteness of the discriminant, analogously to [6]. As a result, it
can be argued that function (12) is a closed curve in the plane . The other properties of the function

 are proved analogously.

The velocities of the phases behind a frozen SW are found from the solution of the system of Eqs. (11)
and (12). In fact, by choosing some interval of the change in the propagation velocity , we can determine
these velocities. Further their values are found numerically.

Conditions on an equilibrium SW. In such a f low of the mixture, the condition  is fulfilled. It is
implemented if the time of the equalization of the velocities is much smaller than the characteristic times
of the wave-processes’ propagation in the phases of the mixture. We find the equilibrium values of the
velocities in the mixture behind the front of the SW. We put  and obtain the quadratic equation

 +  It is clear that there are only two equilibrium states, u0 and uk, during which

the velocity of the phases in the final equilibrium state is . The Zemplen theorem immediately
follows from this representation of the equilibrium flow. Relying on the points above, we determine the
parameters of an SW by increasing the volume concentration of the particles for the following parameters
of the mixture: a1 = 390 m/s, a2 = 450 m/s, ρ11 = 1.2 kg/m, and ρ22 = 2700 kg/m (see Table 1).

3. DISCUSSION OF THE COMPUTATIONAL RESULTS IN THE STATIONARY APPROACH

3.1. Flow in a Dispersed and Frozen SW ( )

A continuous transition in the structure of an SW is performed in both phases. Then when moving in
the phase plane, the destruction of the continuous f low in the first phase takes place. Therefore, it is nec-
essary to introduce an SW in the tail of the SW. In this case, the velocity behind the frozen SW in the tail
must be identical with the equilibrium velocity of the phases at the end of the SW. This is achieved by
determining the free parameter  (we find the parameter  from the numerical solution of the Cau-
chy problem with the corresponding initial conditions) so that . After reaching the final
value of , the computation stops. For the first phase, the velocity behind the front of the head disconti-
nuity is equal to the initial velocity. Then when moving on the curve , we reach the mixture’s
equilibrium point, at which the velocity of the first phase is identical with the velocity of the second phase
and is equal to the value . The corresponding illustrations are shown in Fig. 1. At the left of this
figure, the dependences of the velocities from the self-similar variable are presented. It is seen that in front
of the frozen SW, the compression wave is propagated in both phases, and the gas and the particles in the
relative coordinate system in it slow down. After that, a gradient catastrophe arises in the gas phase, during
which the compression wave is overturned and a tail SW is created. This structure is stationarily propa-
gated in the physical region of the f low. At the right we see the f low pattern (in the phase plane ),
which justifies the numerical results. Here, the slant line , the closed curve, and the straight lines pres-
ent the Rayleigh–Michelson line, the function , and the characteristic parameters of the
mixture (the sound velocities of the phases), respectively. An analogous notation is used in the subsequent
figures; we will not comment on it further.
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Table 1. Types of SWs and their parameters according to particles' volume-concentration

Type of SW m2 ξ10 u0, m/s ae, m/s uk, m/s

1. Dispersion and frozen 5 × 10−5 0.9 430 396 365

2. Dispersion for both phases 3 × 10−4 0.6 430 415 401

3. Frozen two-front 4 × 10−4 0.53 460 420 383

4. Frozen and sound 5 × 10−4 0.46 460 424 390

5. Frozen one-front 7 × 10−4 0.4 460 427 396

0.2 0.002 460 449.9 440
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3.2. Flow in an Entirely Dispersed SW (  m20 = 3 × 10−4)

The flow is supersonic for the first phase but subsonic for the second phase. Figure 2 shows that by
increasing the volume concentration of particles by one order of magnitude, the tail SW disappears,
during which the structure of the f low degenerates into an entirely dispersed structure. Although, in the
previous case, the velocity of the second phase was adjacent to the zone of a constant f low (the equilibrium
state) through a weak discontinuity, now such a junction is realized continuously when the self-similar
variable tends to infinity. Naturally the junction is realized exponentially, as is typical for the structure of
an SW in classical gas dynamics. The velocity of the first phase here also changes continuously.

3.3. Flow in a Frozen Two-Front SW (  m20 = 4 × 10−4), Fig. 3

The initial state in the medium is supersonic for both phases. As a result, in the head of the wave, an
SW in the second phase is implemented and then (in passing through the zone of the velocity relaxation),
the phases come into equilibrium by means of the tail SW in the gaseous phase.

3.4. Flow in an SW with a Sound Flow for the Tail in the First Phase
(   m20 = 5 × 10−4), Fig. 4

In this f low, the final velocity of the phases in the equilibrium state is equal to the sound velocity in the
gas. With the phase velocities of phases changing continuously and once the sound velocity is achieved,
the flow in question resembles the Chapman−Jouguet flow. This is only merely formal closeness, because
such a motion is not self-sustained. This state is not stable in relation to second-phase rarefaction waves
whose leading front moves with the speed of sound a2. The state in question is destroyed by such a rarefac-

1 0 2,k ea u a u a< < < <

1 2 0,a a u< <

1 2 0,a a u< < 1,ku a=

Fig. 1. Dispersion and frozen SW (dispersion SW in both phases and trailing SW in first phase; u0 = 430 m/s and m20 = 5 × 10−5).
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Fig. 2. Dispersion SW in both phases (u0 = 430 m/s and m20 = 3 × 10−4).
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tion wave. Just like all the previous f lows, this f low is stable if supported by a piston that moves with the
corresponding velocity (i.e., in this case, with the sound velocity in the second phase).

3.5. On the Influence of the Term with a Gradient of a Continuous Phase in an SW

The considered f low is implemented for the initial f low velocity greater than the speed of sound in the
phases, and a further increase of the concentration of the particles, e.g., for  m/s and

. In this case, the final velocity of the mixture becomes greater than . Hence, there is
no need to cross the point at which the solution turns over. Here, when  and m20 = 0.2, a par-
tially frozen SW arises. The latter concentration is very high: of the same order of magnitude as the bulk
concentration. Figure 5 presents the velocity distributions of the phases implemented here in the cases
when the terms of the form  in the conservation equations of the momenta of the phases are taken
into account (curves 1) and when they are not taken into account (curves 2). It is seen that with the
increasing particle concentration, the difference of the gas velocities in the mixture for different models
becomes significant. Obviously, this is caused by the increasing effect of the term  in the momentum
equations. In Fig. 5, the SW in the particles is retained without its configuration being changed. The gas
is filtered through the set of particles; here, the relaxation zone of the velocities for the gas is changed
about two times taking the term  into account. Figure 5 clarifies the effect of this term on the velocity
distribution. It is seen that the velocity of the particles in the leading SW varies very little. The width of the
SW is almost unchanged with the increasing volume concentration. The filtering gas slows in particles in
the relaxation zone at a greater distance.

1 2 0 460a a u< < =
4

20 07 1m −×= 1 1m a

1 2 0a a u< <

1im p∇

1im p∇

1im p∇

Fig. 3. Frozen two-front SW (u0 = 460 m/s and m20 = 4 × 10−4).
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Remark. The questions relative to the existence of solutions of the considered types can be analyzed in
a standard way using the qualitative study of the stationary points of the dynamical system (8) of ordinary
differential equations for the velocities of the phases, or these equations can be reduced to one equation.
In fact, from the integral of the momentum conservation of the mixture, we can find, e.g., the velocity
of the first phase as a function of the velocity of the second phase. Based on this, it is easy to obtain the
equation

We determine the eigenvalue  at the equilibrium points for  by differentiating the
right side of this equation. For this purpose, from the momentum-conservation equation, we find the
derivatives

and then the eigenvalue

(11)

It is noted above that here the velocity takes values equal to the initial or final equilibrium values of the
mixture. Note that the sign of the eigenvalue depends on the correlation of the equilibrium velocity of the
mixture at the initial or final state, with the sound velocities in both phases and the equilibrium sound
velocity. This also depends on the dependence of the final equilibrium velocity of the mixture on its initial
parameters ξ1 and u0. Taking into account that the final velocity of the mixture uk =  =  +

, we impose the corresponding conditions on uk and obtain various inequalities that give
estimates (of the velocities behind the SW) that are analogous to the estimates from [6–10].

4. DISCUSSION OF THE COMPUTATIONAL RESULTS IN A STATIONARY FLOW
In order to study the stability of the obtained solutions in the mathematical model (1), the mathemat-

ical technology for solving problems of MHM with two pressures and velocities based on the total varia-
tion diminishing (TVD) approach was designed and implemented.

4.1. Numerical Method
Note that the boundary value problem for the system of ordinary differential equations of the mathe-

matical model was solved by the RADAU5 solver of stiff systems of equations, which uses the implicit
fifth-order Runge–Kutta method with step selection. Previously we had turned our attention to the issue
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Fig. 5. Frozen one-front SW for m2 = 0.2 (u0 > ai; head SW in second phase and continuous f low in first phase). Dashed
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of constructing difference schemes for the equations of MHM without considering the terms  in [12,
13] both for the model with one pressure and for the model with two pressures [10]. Besides, for the mix-
ture of gases with widely different molecular weights, we propose in [14] the computational scheme in the
two-velocity two-temperature approximation (with allowance for the differences of the pressures of the
components) and solve several problems of the interaction of an SW with contact discontinuities [15]. In
the present paper, we take these terms (i.e., ) into account.

As an approximation in time for the system of Eqs. (1), we use a fifth-order scheme of the Runge–
Kutta type [16]. The scheme of the mth order of approximation can be presented as follows. Assume that
y is one of the unknown functions, ρi or (ρu)i, and Qy(t) are the corresponding components of the vector

 in Eqs. (1). Using these designations, we can present Eqs. (1) as . Then the m-stage
scheme has the form

(12)

The values of the parameters γ1, γ2, …, γm are chosen from the conditions of approximation and maxi-
mum stability. Because of the significant difficulties that emerged in analyzing these conditions for a sys-
tem of nonlinear differential equations, the values of the parameters γ1, γ2, …, γm are computed based on
the analysis of the linear transport equation. For a five-stage scheme, these parameters have the following
values: γ1 = 1, γ2 = 1/2, γ3 = 3/8, γ4 = 1/6, and γ5 = 1/4. It is found that for this problem, the use of such
a scheme allows us to significantly extend the interval of stability and computing with large values of the
Courant number. Here, the increase of the interval of stability is nonlinear in character. The use of a
scheme of the fifth order of accuracy made it possible to increase the Courant number 40 times as com-
pared with the scheme of the first order.

In order to construct a spatial approximation of system (1) by using the TVD approach [17], it is nec-
essary to split the f low vector  for each component. There are many ways of doing this. We use the fol-
lowing designations:  and . In the subsequent discussion, index i for f lows is
omitted. Here, in order to obtain a stable upwind approximation of the right sides of the differential

schemes, we divide the f low vector  into positive and negative components: . For this pur-
pose, we use the method of splitting a f low vector by physical processes [18]. In accordance with this
method, we divide the f low vector  into the components  and , depending on the sign of the veloc-
ity, in such a way that the pressure is approximated for the f low; and all other variables, against the f low:

(13)

A higher order approximation is obtained if we use the formulas

(14)

where

(15)
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The expressions for  and  are obtained by shifting the index by one unit.
Formulas (14) and (15) approximate the spatial derivatives with the third (κ = 1/3) or second (κ = −1,

0, 1) order. For κ = −1, κ = 0, and κ = 1/3, 1, the approximation is reduced to completely one-sided dif-
ferences, central differences, and differences shifted against the f low, respectively.

To retain the monotonicity of the solution in the domains of large gradients, the order of the approxi-
mation is reduced by the application of the minmod limiter to the operators Δ+ and Δ− [17]:

(16)

where the parameter Θ varies over the following range:

(17)

With allowance for introducing a limiter, formulas (15) take the form

(18)

Using the proposed splitting by formulas (14)−(18), we can construct approximations for the derivatives
of the f low components of Eqs. (1), whose numerical solutions we employ in order to analyze the resolving
abilities of several schemes.

For approximating the nondivergent terms of Eq. (1), we use a scheme of the second-order accuracy
with the central differences

where i specifies the number of a phase.

4.2. Reproducing the Propagation of SWs of Different Types by the Numerical Method
Consider the problem of the motion of a certain SW structure that propagates along a one-dimensional

channel. The problem consists of implementing the obtained stationary solution in the nonstationary for-
mulation of model (1), i.e., by the relaxation method. Thus, we consider the Cauchy problem for the sys-
tem of nonstationary Eqs. (1) in the case where, as the initial data, we take the numerical solution of the
boundary value problem formulated above for a system of ordinary differential equations describing a trav-
eling wave. As is known, a numerical solution contains varied infinitesimal perturbations. Therefore, the
computation of such a problem can also be interpreted as solving the question of the stability of a traveling
wave with respect to these perturbations. However, first, we dwell on the question of the convergence of
the numerical solution.

4.3. Convergence in a Grid
Figure 6 illustrates the convergence of the numerical solution of the problem of propagating a two-front

SW on a sequence of nested grids. It is seen that with a decreasing step of the computational grid, approx-
imate solutions become indistinguishable from each other. Here, the Courant number is 1.4.

4.4. Illustrations to Dynamics of SWs of Different Types
We dwell on one example of the dynamics of a one-front SW at high concentrations of the second phase

in the mixture (m2 = 0.2). As described above, there is a strong discontinuity in the head of the wave in the
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second phase. In the first phase, this discontinuity is followed by the relaxation zone of the velocities. The
adjacency to the initial state occurs continuously through the weak discontinuity. All these features are
satisfactorily transferred by the proposed numerical scheme; this can be seen in Fig. 7, where for different
points in time, the distributions of parameters in the f low field of the mixture are presented. Figures 8 and
9 show that two-front and dispersed and frozen SWs are also steadily propagated in the mixture. Here, of
course, the movement of all types of SWs is supported by a piston.

Fig. 6. Convergence in grid with computation of unsteady problem of propagating two-front SW.
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5. CONCLUSIONS

In a mathematical model of the Anderson type for describing a f low of a mixture of a gas and solid par-
ticles with respect to their own pressure (the terms ), in the present work, we develop the theory
of a stationary strong discontinuity and numerically implement this theory in an unsteady formulation.
This allows us to describe possible types of SWs.

To perform the computations, we elaborate the version of a TVD scheme of a high-order accuracy for
solving a system of nonstationary equations of MHM with different velocities and pressures (the Anderson
model, etc.). The convergence of the solution on a sequence of thickening grids is checked. The numerical
computations that illustrate these structures show the stability of their propagation with the f lows sup-
ported by a piston.

ADDITION: THE HEURISTIC DEVELOPMENT OF THE CONDITIONS ON A SHOCK WAVE 
IN THE DISCRETE PHASE OF A GAS−PARTICLES MIXTURE

Let us rewrite the motion equation of particles in a dense gas−particles mixture as follows:

(a)

We introduce the function ; then, (а) can be presented as

(b)

We integrate (b) by parts on the discontinuity located over the interval (−ε, ε) and, in accordance with
[19], find the limit of this expression for ε tending to zero. We have

(c)

The value  corresponds to the momentum inflow on a strong discontinuity
and can be determined. For this purpose, we use the relation

We substitute it into (с), require that , and obtain  on condition that the volume con-
centration of particles never becomes zero.

Note that such an approach for determining I2(0) at the physical level of strictness is used in the works
of V.G. Dulov, I.K. Yaushev, and A.N. Kraiko, along with P.G. LeFloch, Mai Duc Thanh, et al. (see pub-
lications of these researchers, where the detailed bibliography is presented).
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Fig. 9. Stability of propagation of dispersion and frozen SW for m2 = 5 × 10−5 and u0 = 430 m/s.
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