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Abstract—The inverse problems of reconstructing the erythrocyte size distribution when the laser dif-
fractometry data is given for the two erythrocyte geometric models—the flat and biconcave disks—are
analyzed. It has turned out that when using each of the models the Tikhonov regularization method
taking into account a priori information about the smoothness, finiteness, and the nonnegativity of the
solution leads to a correct reconstruction of the unknown size distributions for the cases of normal
blood, microcytoses, and macrocytoses, characterized by the presence of the factions’ abnormally
small and abnormally large cells. In the case when the inverse problem is solved on the assumption of
a f lat particle shape, and the diffraction pattern is calculated by the biconcave disk model, the error in
the determination of the first three statistical moments are directly proportional to the magnitude of
the deepening in the form of a biconcave disk that simulates erythrocytes. In this case the solution
qualitatively coincides with the true distribution, but is shifted relatively to it along the horizontal axis,
which in principle can be compensated on the basis of a priori information about the average value of
the erythrocyte size distribution.
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INTRODUCTION
The human red blood cell—an erythrocyte—transports oxygen to the tissues and organs, thus support-

ing the functioning of the organism as a whole. The recognition of the importance of the erythrocyte size
distribution in clinical practice is widespread. The measurement of this distribution width is the standard
blood test. It is especially important to measure the cell size distribution in the case of socially significant
diseases such as iron deficiency, sickle cell and other blood anemia, spherocytosis, and èlliptocytosis [1].
Several fundamentally different devices are used to measure the size of red blood cells [1] and relatively
recently, it was proposed to use a laser diffractometry of blood smears [2] as a potentially fast and reliable
method, which allows quickly analyzing the sizes of millions cells, which are simultaneously illuminated
by a laser beam.

In this paper the laser light scattering on erythrocytes in the far diffraction zone is considered and the
impact of the choice of the cell model on the solution of the inverse problem of reconstructing the cell size
distribution according to the small-angle intensity distribution of the scattered light—a diffraction pat-
tern—is analyzed. This theoretical study will specify the operation of a number of devices—laser diffrac-
tometers—for measuring the cell distribution by size [2, 3]. In many works the anomalous diffraction
approximation is used to describe light scattering on a single cell [2–7], leading to a simple analytical for-
mula for the description of a diffraction pattern. This model implies that the particle shape is a f lat disk of
a finite small thickness perpendicular to the incident wave. At the same time significantly more complex
models are known [8, 9], which allow calculating light scattering by a biconcave disk, representing an
erythrocyte in normal conditions. A considerable number of works have been published on the restoring
the size distribution of various particle types from the diffraction pattern measured in an experiment.
However, the majority of these particles are fundamentally different from erythrocytes in shape, position
in space, etc. The application of general methods for the narrowly specialized task discussed in this article
can lead to significant errors (see, e.g., [10]), which makes it impossible to apply them to this problem.
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Thus, the actual goal of this study is to determine whether the simplification of the geometric model
affects the solution of the inverse problem on restoring the erythrocyte size distribution.

1. COMPARISON OF MODELS FOR THE SOLUTION OF THE DIRECT PROBLEM
OF LIGHT SCATTERING BY A MONOLAYER OF AN ERYTHROCYTE

Let the laser beam pass through a monolayer of cells located in a thin blood layer between the slides
and cover glass, i.e., using a native blood product. The size of one erythrocyte is about 7.5 μm, which is
about one order larger than the wavelength of the visible light spectrum; thus, the laser beam is scattered
by the erythrocyte predominantly forward, i.e., in the region of the angles, that are small relative to the
direction of the propagation of the incident electromagnetic wave. In this case a diffraction pattern occurs
in the far zone—the angular intensity distribution of the light scattered forward.

A single erythrocyte is a homogeneous biconcave disc with a relatively constant refractive index
. This form can be modeled with the Skalak curve [11], where the magnitudes  and  specify

the minimum and maximum thicknesses of a red blood cell, respectively (Fig. 1).

From Maxwell’s system of equations for the region  inside an erythrocyte with a constant wavenum-
ber  and the region  outside of the erythrocyte with a constant wavenumber  volume integral equa-
tion can be derived (see for example [12]):

(1.1)

where the vector  is the full field, i.e., the sum of the field of the light scattered by an erythrocyte and the
field of the incident wave , which would be at a given point in the absence of the scattering body

, and  is a 3 × 3 matrix of Green’s functions for homogeneous and piecewise-smooth media.
Equation (1.1) is a vector equation and actually contains three scalar integral Fredholm equations of the
second kind with singular kernels.

Equation (1.1) is reduced to the system of linear algebraic equations (SLAEs) with a large number of
unknowns and allows calculating the light scattering in all the observation angles. In the present work, the
ADDA program has been used for the calculations according to this method [9]. The diffraction patterns cor-
responding to the biconcave disks were obtained using this program. This method is known as discrete-dipole
approximation (DDA). It is computationally complex, but allows an arbitrary geometry of a particle.

As in typical laser diffractometry experimental conditions, the light scattering by an erythrocyte is only
measured at small angles up to a maximum of 25 degrees relative to the direction of the incident wave, the
vector formulation of the problem is reduced to a scalar one due to the fact that the small-angle scattering
of light does not depend on the wave’s polarization vector. When replacing the true form of an erythrocyte
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on a f lat volume disk of a finitely small thickness h, the approximation of the anomalous diffraction is used
[13, 7] to calculate the field intensity of the light scattered by the erythrocyte:

(1.2)

where  is the Bessel function of the first kind of the first order and  is the radius of a f lat disk with thick-
ness h. The value , using Shifrin’s terminology [7], will be called the
erythrocyte weakening diameter,  is the refractive index of the medium,  is a dimensional con-
stant that does not depend on  and ,  is the wave number of the incident wave in a vacuum, m
is the relative refractive index of the erythrocyte, and  is the length of the incident wave in a vacuum.

Compare the calculations of the diffraction patterns made using the models of f lat and biconcave discs
(see further Fig. 2). The peculiarity of the problem is such [13] that if the value of the radius of the eryth-
rocyte is fixed, then for both models the positions of the local minima and maxima of the angular distri-
bution of the light scattering intensity no longer depend on the thicknesses . Accordingly, the
radii in the two models are assumed to be equal,  μm, and the values of  μm and

 will be used as physiological values for erythrocytes in the norm, when the value  ranges
from 1 to 2 μm. 

The fact that at  a biconcave disk turns into a rounded washer most closely corresponding to the
flat disk model was used for calibrating the f lat disk model relative to the biconcave disk model. In this
case, the diffraction pattern calculation using the ADDA program and in the anomalous diffraction
approximation (1.2) showed a good match of the ratios of the central and the first local maximums of the
diffraction patterns in each approximation, which characterizes the closeness of the models. For compar-
ison, it can be noted (Fig. 2b) that with  decreasing from 2 to 1 μm this ratio changes by a factor of more
than 1.5. 

The comparison of the normalized to the central maximum (at ) diffraction patterns at various 
values shows (Fig. 2a) that at the angles  close to zero (up to the first local minimum), the diffraction
patterns for a biconcave and flat disk are close to each other, the influence of the thicknesses , , and

 is here very low. However, such small angles are not enough to solve the inverse problem (see, e.g., [10]).
Currently the diffraction pattern over a wide range is fairly easily accessible for measurement. At these
angles, as seen in Fig. 2a, the difference between the two models are significant, and the influence of
which of these magnitudes— , , or —is chosen is great. However, the diffraction pattern itself in this
region also depends on the erythrocyte size in the ensemble, which improves the work of the inverse prob-
lem solver. In the next section, we study how the difference between  and  affects the work of the
inverse problem solver.
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2. THE INVERSE PROBLEM OF DETERMINING THE ERYTHROCYTE SIZE 
DISTRIBUTION FROM AN ACCURATELY MEASURED DIFFRACTION PATTERN

This section discusses inverse problems in which the target is the erythrocyte size distribution and the
well-known inaccurately measured data are the diffraction pattern. Each of these inverse problems is
described by Fredholm’s scalar integral equation of the first kind:

(2.1)

where  is the intensity of the light scattered in direction  on an erythrocyte with radius ,  is
the required cell size distribution,  is the diffraction pattern measured in the experiment,  is the min-
imum radius of the erythrocytes in the ensemble, and  is the maximum radius of the erythrocytes in the
ensemble. Based on the physiological dimensions of the erythrocytes, we took  μm and  μm.

 A detailed derivation of Eq. (2.1) is proposed, for example, in [13]. The important physical conditions
for the correct application of Eq. (2.1) are also given there, in particular a single light scattering by the cells
and their random arrangement in a fixed plane in the incident wave field.

The difference between the three tasks considered later is in using different kernels  that meet
the choice of the erythrocyte’s model geometry. For each of the three tasks, A will be considered as an
operator acting from the Sobolev space  to the Lebesgue space , thereby assuming a
priori the appropriate smoothness of the physically meaningful erythrocyte distribution. Here and below

 is the maximum viewing angle in radians.

In inverse problem 1, the kernel has form (1.2): , where the cylinder’s thickness is
. The corresponding integral operator in the left part (2.1) is denoted by A1,  is the exact

right part,  is the right part measured with the error , and the operator error is
assumed to be zero.

In the inverse problem 2, the kernel  is calculated via the solution of the vector integral
equation (1.1) for a single erythrocyte. The corresponding integral operator in (2.1) will be denoted by A2,

 is the exact right part,  is the right part with the measurement error , and the
operator error is assumed to be zero.

In the inverse problem 3, the right part for the sought distribution  is calculated by numerically
integrating the left part of (2.1) with the kernel  based on the vector model (1.1); however, the inte-
gral equation (2.1) is then solved for a simpler kernel  of the anomalous diffraction (1.2). Such an
inverse problem corresponds to the situation often encountered in the literature [2–7] when using a sim-
plified model of a f lat disk. However, the data from the field experiment is naturally much closer to the
inverse problem 2, as the erythrocyte’s physiological form under the normal conditions is biconcave, and
not a f lat disk. In fact, we can interpret the integral operator with the kernel from problem 1 as specified
inaccurately compared to the kernel from problem 2. Then the integral operator in problem 3 has the form

,  is the exact right part,  is the right part with the measurement error
 = , and the operator error  is equal to the norm of the bounded

linear operators from  to .

The introduced inverse problems are reduced to the solution of integral equations , .
It is easy to see that for all three equations the integral operators have continuous kernels. Therefore, the
corresponding linear integral operators  are completely continuous from  to

. In addition, note that the injectivity of the operator A1 and A3 = A1 follows from the results of
[15, 16], where the integral operators were considered on a half-line with the kernels of a special form

K(x, t) = , where , and the injectivity of the operator A2 with the kernel of a
general form is further assumed a priori. Hence, the integral operators Ai,  are invertible,

; however, the inverse operators  are unlimited (see, e.g., [14], s. 20.6).
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Thus, the inversion of the integral operator  for any of the three inverse problems is unstable for the
space of the solutions  and the space of the right sides . This leads to the fact that even
the analytical formulas found for the  inversion based on the Mellin integral transformation (see, e.g.,
[15]), in the case of the right part defined inaccurately (2.1) lead to physically meaningless solutions.
Therefore, the regularization according to Tikhonov was used for the numerical treatment of (2.1).

The inverse problems 1, 2, and 3 were solved by reduction to the problem of minimizing the Tikhonov
functional with the choice of the regularization parameter by the generalized discrepancy principle. The
approximation  with accuracy h in the operator norm is denoted as . Consider the Tikhonov func-

tional , where  is the regularization parameter. Following
the physical considerations, the set of constraints is defined,

which is closed (theorem on traces in ), convex, and . Since the Tikhonov functional is
strongly convex, a unique extremal  exists, leading to the functional minimum:

(2.2)

where  is the vector of errors for the operator and the right-hand side of the statement. Consider

a discrepancy  The choice of the regularization

parameter by the generalized discrepancy principle [17, p. 15] consists of the fact that if 

then  is taken as an approximate solution of (2.1). If , then in the case of the exis-

tence of  such that ,  is assumed, and in the case of  for all 

 is taken. The following statement which is a reformulation of theorem 3 from [17] is
true for the considered inverse problems.

Theorem. If  then choosing the regularization parameter by

the generalized discrepancy principle, at , we have  in the norm of the space

.
In the computational experiments on the solutions of the inverse problems 1—3, the operators  in the

left part of (2.1) were replaced by their finite-dimensional analogs (matrices)  using the approximation
of integrals by partial sums based on the Gauss quadrature with N summands. As the accuracy of the inte-
grals’ calculation directly depends on the choice of a sufficiently large N, then, given the characteristic
laser diffractometry range of measurement error levels in the diffraction pattern from 1 to 15%, the corre-
sponding evaluation error of the operators in the formula of the residuals was not considered at ,
and at  it was taken into account with the help of the ratios .

The method of gradient projection was used for finding the extremal in problem (2.2) at fixed α

where  is the projection operator onto the set  is the gradient projection method step, and the
matrix , which is the difference between the identity matrix and the matrix of the second dif-
ferential derivative operator, occurs at the norm approximation in  (see, e.g., [17, Chapter 1,
§5]). In this work, the distribution at which the Tikhonov parametric functional reaches its minimum in
the entire space and which is the solution of the linear algebraic equation system 
was taken as a first approximation. The method  step did not depend on the iteration number and was
chosen in accordance with the condition  where  is the maximum of the eigenvalue of

the matrix  (e.g., see [18]). The iterations of the gradient projection method ended when a
sufficiently small relative change of the solution on doubling the number of iterations had been reached.
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The root of the generalized discrepancy was found by the method of the dividing an interval in half. All
the numerical calculations were performed using the Matlab Mathworks Software. 

Remark on the stability of Eq. (2.1). As mentioned [10], a change of variables  signifi-
cantly improves the stability of the inverse problem solver:

(2.3)

This replacement makes the dispersion of the kernel values and corresponding SLAEs smaller than the
original equation. The influence of the angle θ = 0, which is usually impossible to measure in the experi-
ment, is also eliminated by a replacement. Everywhere further Eq. (2.1) will be solved only using replace-
ment (2.3) with the sought function being subsequently found in the form . The task
acquires a certain stability starting from the sizes of the wavelength order. The analysis of the singular value
decomposition of Eq. (2.3) carried out in [10] shows that the sizes that are smaller than the wavelength
weaken the stability of the equation solver. In this regard, the boundary conditions of Dirichlet

 are used in all the algorithms for solving this equation. Given the fact that the wave-
length is 0.63 μm, this range lies on the edge of this problem’s sustainability and, in fact, has still not been
examined. Note that the sustainability depends on the interval width  and the interval selection
takes into account the a priori information.

3. THE NUMERICAL RESULTS OF THE INVERSE PROBLEM SOLUTION
In this section the numerical results of the solutions of the inverse problems 1–3 described in Section 3 are

presented. The two main distributions of erythrocytes in size, corresponding to the medical practice, are
considered to illustrate the methods described above:

(3.1)

(3.2)

Formula (3.1) corresponds to the normal distribution, while (3.2) corresponds to the bimodal distribu-
tion, in which there is a 30% fraction of abnormally large cells, in particular, the one directly measured for
the case of one of the blood anemias—megacitosis [1]. The determination of the presence and amount of
this fraction is of interest. The following interval was selected for the given function:  μm and  μm.
Physiologically for a human being the absolute minimum radius is  and the maximum  μm. The
interval was selected wider for the computational experiment to make the distribution significantly finite.

All the size distribution functions are normalized to the integral ; thus, the influence of the

unknown number of cells in the ensemble is eliminated.
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In Fig. 3 the graphs of two functions are shown. The continuous curve denotes a predefined asymmet-
ric bimodal size distribution (3.2), modeling the presence of the normal and abnormally large erythrocyte
fractions. The point curve is the result of the inverse problem’s numerical solution 1 with a 15% noise level
on the right-hand side. Note that the left and right peaks of the size distribution characterizing the normal
and abnormally large cells fractions, respectively, were recovered using an accurate numerical solution of
the problem. The deviation level of the solution from the true distribution in the small angle region
roughly corresponds to the noise level in the right-hand side and, as seen in Fig. 4, almost disappears with
the reduction of the noise of the right side to 1%.

In Fig. 4 an example of the solution of the inverse problems 1–3 with the ratio of the erythrocyte thick-
ness in the center to the thickness at the periphery  and with the right side noise level amount-
ing to 1%. In this case the iteration number in the regularization method is 104. It is seen that in compar-
ison with the predetermined decision, the solution of problems 1 and 2 restore the location of the main
maximum, and the solution of problem 3 is shifted left relative to the true one.

The data for Figs. 3 and 4 were obtained using the desired bimodal distribution. Similar results are also
true for the Gaussian distribution (3.1). Many other distributions (trimodal, peak linear, parabola, etc.)
were also considered; however, due to the limitation of this article only the cases which are most in
demand in applications were presented.

For the application of the diffractometry methods in medical practice, it is important that the average
value and the second moment (the distribution width), as well as the approximate third point character-
izing the distribution asymmetry, are recovered correctly when solving the inverse problems 1–2. Here
and below the nth statistical moment of the distribution is equal to the value of the integral

. The data about the moments make it possible to discover the volume of the abnormally

large cell fraction with an accuracy of about 15% at the same noise level. For the bimodal distribution
(3.2), the statistical moments of the distribution found by solving problem 3 for different values of 
ranging from a strong bending of the erythrocyte form to the almost complete absence of it at the level of
the Gaussian noise of 15% on the right-hand side are presented in Table 1.
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Fig. 4. Sample solution of inverse problems 1–3 (curves 1–3) with noisy right side (1%) in comparison with exact solution
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First moment Second moment Third moment

4.90 25.19 134.35 0.40
4.30 19.96 97.68 0.80
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3.70 14.00 54.59 0.99
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The same data for the solutions of problems 1 and 2, as well as the values of the true distribution
moments are presented in Table 2.

It is seen that with a reduction of the depression in the center of the erythrocyte geometric model the
values of the first three moments of problem 3 approach the true distribution values. In addition, the error
of the restored moments of the size distribution of the erythrocytes for problems 1–2 corresponds to the
error of the right-hand side of the equation. 

The study of the influence of the choice of the erythrocyte’s geometric model on the solution of the
inverse problem of laser diffractometry is important from the point of view of finding the size distribution
of the erythrocytes under the conditions of a real experiment. In our recent work [19], a field experiment
was conducted in which the erythrocyte size distribution, obtained using the solution of Eq. (2.1), was
compared with the similar distribution obtained by an alternative method: by using automated optical
microscopy. In laser diffractometry the incident wave scatters at the same time on hundreds of thousands
of cells, allowing us to use Eq. (2.1) to obtain more accurate information about the fractions of the eryth-
rocytes of different sizes, while the microscopy method typically allows exploring not more than a few
thousand cells in the sample. Thus, the models of light scattering by the erythrocytes being developed in
this work open the possibility of creating a medical device for the analysis of the size distribution of eryth-
rocytes which will have a number of advantages in comparison with its analogs.

Note that the problem of the additional calibration of the considered models and the compensation of
a shift in the position of the main maximum of the recovered distribution identified in the transition to the
simplified anomalous diffraction kernel (1.2) is relevant. One of the methods used to solve it is the approx-
imate formula of the dependence between the angular position of the first local minimum of a diffraction
pattern and the average value of the size distribution (see, e.g., [3]), allowing evaluating the magnitude of
the corresponding distribution shear along the axis OX during the solution of the inverse problem a priori.
However, a detailed study of the efficiency of using the a priori information of such type remains a matter
for the future.

CONCLUSIONS

The inverse problems of the recovery of the human erythrocyte size distribution with the well-known
inaccurate data of the erythrocyte laser diffractometry for two erythrocyte geometric models—flat and
biconcave disks—are analyzed in this paper. It turned out that the Tikhonov regularization method, taking
into account the a priori information about the smoothness, finiteness, and nonnegativity of the solution,
leads to a correct reconstruction of the unknown size distributions for the cases of the norm and the
micro- and megacytoses of blood, which are characterized by the presence of factions of abnormally small
and abnormally large cells. In the case when the inverse problem is solved assuming the f lat shape of a par-
ticle and the diffraction pattern is calculated by the model of a biconcave disk, the error in determining
the first three statistical moments is directly proportional to the magnitude of the deepening in the form
of the biconcave disk that simulates the red blood cells. In this case the solution qualitatively coincides
with the true distribution, but is shifted relatively to it along the horizontal axis. Such a behavior of the
solution opens the opportunity to correct this error by using a priori information about the average value
of the size distribution of an erythrocyte.
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Table 2. First three moments for problems 1, 2 in comparison with true ones

First moment Second moment Third moment

3.60 13.21 48.42 True
3.60 13.19 49.85 Problem 1
3.63 13.54 41.81 Problem 2
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