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Abstract—We consider methods that are the inverse of the explicit Runge–Kutta methods. Such
methods have some advantages, while their disadvantage is the low (first) stage order. This reduces the
accuracy and the real order in solving stiff and differential-algebraic equations. New methods possess-
ing properties of methods of a higher stage order are proposed. The results of the numerical experi-
ments show that the proposed methods allow us to avoid reducing the order.

Keywords: inverse Runge–Kutta methods, stiff equations, differential-algebraic equations, order
reduction phenomenon
DOI: 10.1134/S2070048217040123

INTRODUCTION
Consider the Cauchy problem for the system of ordinary differential equations (ODEs)

(1)
where y is a vector of variables, f is a vector function, and t is an independent variable. One step of the
numerical solution of system (1) by the s-stage Runge–Kutta method is performed in accordance with the
formulas

(2)

This particular method is conveniently represented in the form of the Butcher table

If  for , then the method is explicit and can be implemented directly by formulas (2). Other-
wise, the method is implicit and formulas (2) assign the system of algebraic equations during which it is
solved by an iterative method (usually, by the Newton method or its modifications). An implicit method
is called stiffly accurate if  coincides with one of the rows of the matrix A (it is usually the last row, but
by changing the order of the stages we can always ensure that the desired row becomes the last row). The
stage order of the method is defined as the largest integer q for which the following equalities are fulfilled:

(3)
(we assume the componentwise operations of multiplication and exponentiation for the vectors). Condi-
tions (3) imply the implementation of the simplifying assumptions  and  [1, 2].

The inverse method for method (2) we obtain by interchanging  and , along with replacing h with
 and  with . The inverse method possesses the following property: if we perform one step of

the direct method according to (2) and then perform a step by the inverse method in the opposite direction
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(by replacing  by ), we obtain the initial vector . Note that the term inverse (backward), used to spec-
ify such methods in [3] and some other works, is not universally accepted. In parallel with it, the terms
adjoint [4] and reflected [2] are used. For the method assigned by the triple (c, A, b), we determine the
coefficients of the inverse method ( ) as follows:

The inverse method has the same order as the original method [4, Theorem II.8.4] and the same stage
order as the original method [2, Theorem 343B]. It is easy to show that as a result of the double inversion
we obtain the original method.

Sometimes, instead of (2), it is convenient to use the alternative representation of the implicit Runge–
Kutta methods [5, 6] in the form

(4)

The corresponding modified table is presented as follows:

(5)

Of particular interest are methods that have  for . Here, for a known , we can find all the
stage values of  directly by formulas (4). Due to this, the system of algebraic Eqs. (4) in the vectors

 can be reduced to the equation only in the vector , and this ensures an efficient implementation
of the method. In [7], such methods are called mono-implicit; they are considered in many works, includ-
ing [3, 5–9].

The modified table (5) is also convenient for representing inverse methods whose coefficients we deter-
mine by the formulas , , and ,  The modified tables of the explicit
method and the implicit method that is the inverse of it have the form

Direct method Inverse method

(6)

(we omit the zero elements of matrix A). Tables (6) show that the inverse of the explicit method is a mono-
implicit method. It is proposed in [3] to use the Runge–Kutta methods that are the inverse of explicit
methods for solving stiff problems. These inverse methods have several useful properties. They are stiff ly
accurate (the first stage coincides with the final formula of integration), have a high order of the L-damp-
ing, and are convenient to implement (since they are mono-implicit). At the same time, they have a sig-
nificant disadvantage, namely, the first-stage order; this reduces the accuracy and the real order in solving
stiff and differential–algebraic equations.

We can decrease the order-reduction effect or completely avoid it by increasing the stage order of the
method. However, for some classes of the Runge–Kutta methods, this is not possible; here, this refers to
methods that are most efficiently implemented. For example, singly diagonally implicit methods and
methods that are the inverse of explicit methods can have only the first-stage order. This article describes
an alternative approach, which allows one to increase the accuracy and avoid reducing the order without
increasing the stage order. The new methods are developed: they are the inverse of the explicit methods
and free of order reduction.
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2. ORDER REDUCTION PHENOMENON
The main indicator that characterizes the accuracy of the methods for solving the Cauchy problem is

the order of convergence p. When , the global error is proportional to . The step size for nonstiff
problems is taken from the accuracy of the numerical solution; this usually ensures convergence with a
given order. If the problem is stiff, then for its solution implicit methods ensuring the numerical stability
with a sufficiently large step size should be used. However, in this case, the real order of convergence can
be smaller than the classical order, and this causes an increase of the computational costs with the aim of
attaining a given accuracy. The larger the difference between the classical and the stage order the more
noticeable the order reduction. Hence, for computations with improved accuracy, it is desirable to use
methods that have a sufficiently high stage order. The effect of the order reduction can be decreased also
by the use of stiff ly accurate methods.

For implicit methods used in practice, the higher the classical order of a method the larger the differ-
ence between the classical order and the stage order. For example, the Radau IIA methods have the order

 for the stage order . Therefore, the order reduction emerges to a greater extent in high-
order methods. Methods whose stage order is equal to the classical order have no order reduction. How-
ever, such methods usually require large computational costs for solving algebraic system (2).

We demonstrate the effect of the order reduction by the example of the Kaps problem

(7)

whose solution is  and . For large μ, the largest eigenvalue by magnitude
of the Jacobian matrix of this system is approximately . Hence, μ can serve as a measure of the prob-
lem’s stiffness. To solve the problem, we use the methods considered in [3], which are the inverse of the
following explicit Runge–Kutta methods:

RK11: RK21: RK31: 

RK41: 

In the designation of a method, the first and second digits are the order and the stage order, respectively.
These methods are optimal in the sense that they have the minimum error coefficients and the nonnega-
tive coefficients of a method. The corresponding inverse methods we designate by IRK11, IRK21, IRK31,
and IRK41.

We determine the numerical-solution error ε and the order estimate of a method  for the given step
size  by the formulas

(8)

where  is the Euclidean norm of the absolute error at the point . The results of the computa-
tions are presented in Fig. 1. The most noticeable effect of the order reduction is found in the IRK31 and
IRK41 methods. The errors of these methods have the maximum values for a moderate stiffness, and for
large μ the error is even smaller than for its small values. Such behavior of an error is typical for many stiff
problems and derives from the fact that the first equation in (7) for  degenerates into the algebraic
relation , whose accurate fulfillment is ensured by stiff ly accurate methods. If a method is not
stiff ly accurate, the error increases with increasing μ and remains large for large μ. Note that the real order
of the IRK31 and IRK41 methods in a wide range of the change of μ reduces to the stage order .

0h → ph

2 1p s= − q s=

2
1 1 2 1

2
2 1 2 2 2

' ( 2) , (0) 1,

' , (0) 1, 0 1,

y y y y

y y y y y t

= − μ + + μ =

= − − = ≤ ≤

1( ) exp( 2 )y t t= − 2( ) exp( )y t t= −
−μ

0
1

0
2 3 2 3

1 4 3 4

0
1 2 1 2
3 4 0 3 4

2 9 1 3 4 9

0
1 2 1 2
1 2 0 1 2 .
1 0 0 1

1 6 1 3 1 3 1 6

p�
1 30h =

( ) ( )1 2
1 2

1 2

log ( ) ( ) 1 1( ) max ( , ),0 1 , , , ,
log( ) 25 36i i

h h
h e h t t p h h

h h
ε ε

ε = ≤ ≤ = = =�

( , )ie h t it ih=

μ → ∞
2

1 20 y y= − +

1q =



MATHEMATICAL MODELS AND COMPUTER SIMULATIONS  Vol. 9  No. 4  2017

ON IMPLICIT RUNGE–KUTTA METHODS OBTAINED AS A RESULT 501

We can assume from the above-described results that stiff ly accurate methods having a large difference
between the classic order and the stage order can efficiently solve problems with a smooth solution if the
spectrum of the Jacobian  is clearly divided into nonstiff (with small values of ) and stiff (with very
large values of ) parts. At the same time, if the problem is moderately stiff or has the distributed spec-
trum of the Jacobian (this is typical for the problems obtained by the discretization of partial differential
equations), then only stiff accuracy is not enough for an efficient solution and it is necessary to use meth-
ods with the sufficiently high stage order.

Many stiff problems are characterized by the availability of boundary layers, namely, segments domi-
nated by the components of the solution corresponding to  that are large in magnitude. Within such a
segment, a problem is not stiff, because in selecting a step from the accuracy condition, all values of 
are quite small, and this enables efficiently using not only implicit but also explicit methods in this seg-
ment. However, in the transition between slow and fast segments with a varying step, intermediate values
of  can cause an order reduction of stiff ly accurate methods even if the spectrum of the Jacobi matrix
is clearly divided into nonstiff and stiff parts. Hence, for the efficient solution of problems with boundary
layers, it is also necessary to use methods that are free from order reduction.

The order-reduction phenomenon is studied in many works, including [1, 2, 10–18]. It was first
explained in [10] by using the Prothero–Robinson equation

(9)

which has the solution . The local error of the solution of this equation by the Runge–Kutta
method is determined as follows:

(10)
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where  are error functions proposed in [12, 13] and
. The global error is expressed by the formula

(11)

where  is the stability function of the method and  is the local error at the (n
+ 1)th step.

It is seen from (10) that the principle term of an error in solving Eq. (9) is determined by the function
. Suppose  and  are the stability and error functions of a certain Runge–Kutta method,

whereas  and  are the corresponding functions of the inverse method. We employ the fact that
the step of the inverse method and the subsequent step of the original method by replacing h by  bring
about the initial condition . We apply this property to the Dahlquist equation  and Eq. (9) for

 and obtain  and  ( ); from this it fol-
lows that

(12)

For , the stability function of explicit methods is presented as , while the

function  has the form  [15]. We substitute these expressions into (12) and
obtain the corresponding functions of the inverse methods: for IRK31 in the form

(13)

while for IRK41 as

(14)

With a fixed step size, the local solution-error of Eq. (9) for  at all stages is the same and is
expressed by the formula . In accordance with (11), the global error for , after a
large number of steps, converges to

(15)

For the order of the method in solving the considered problem we get the expression

(16)

After substituting (13) and (14) into (15) and (16), we obtain for the IRK31 method

and for the IRK41 method

Figure 2 presents the dependences  and , which explain the behavior of errors and orders of
the IRK31 and IRK41 methods shown in Fig. 1. We see that with small and large , the nonstiff error’s
component corresponding to horizontal sections of the curves  and  is dominant. With moderate

, the stiff component is dominant; this is seen from a comparison of the curves  and the correspond-
ing curves  in Fig. 2. A more detailed analysis shows that the dependence  at moderate values of

 almost coincides (accurate up to the constant multiplier) with .
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The behavior of a solution error of nonlinear stiff problems is not always explained by using Eq. (9).
Therefore, in [14] also the other equations and the error functions  corresponding to them are pro-
posed, which allowed one to explain the behavior of an error in these cases. The functions  for 
are presented in [14, 17], where it is taken that . For , one such a function is available; for

 and  there are two and five such functions, respectively. For the method of the stage order q we
have  when , while all functions  are equal. The minimization of  allows one
to decrease the effect of the order reduction and develop methods with an improved accuracy in the solu-
tion of stiff problems [12–17]. It is possible to develop methods having , and this gives an effect
analogous to the increase of the stage order by one. Here, if we additionally require that , we
get the effect analogous to an increase of the stage order by two. Such methods are considered in [15–17].

The foregoing makes it possible to extend the notion of the stage order. We shall say that a method has
a pseudostage order  if  is the largest integer for which . In the general case,

; however, for ordinary methods . For the methods we shall use the designations Method  if
 and Method  if .

This paper considers two ways of improving the accuracy and the real order of inverse methods. The
first way rests on using small values of the abscissas of the original method. It is seen from (13) and (14)

that if  decreases, then  also decreases. In this case, if we assign small values of  and , then

 and  are also small. The second way rests on using methods that have . The meth-

ods having  and  are also proposed.

3. SECOND-ORDER METHODS

The Butcher table of an explicit two-stage second-order method has the form
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and the error function  of this method is proportional to . Suppose . The corre-
sponding inverse method we present in the form of a modified table

and denote by IRK21b. Recall that the IRK21 method is obtained from the explicit method having
 (then ).

Consider now an explicit three-stage method. From the condition q = 1, we obtain a21 = c2,
, and . For such a method we have

We call for the fulfillment of the identity  and obtain the two-parametric family of second-order
methods with the coefficients

and free parameters  and . Suppose  and ; then the modified table of the corresponding
inverse IRK212 method is presented as follows:

Thе results of solving the Kaps problem by the second-order methods for  are shown in Fig.3.
Compared to IRK21, the IRK21b and IRK212 methods are more accurate and demonstrate no significant
order reduction for moderate values of μ.
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4. THIRD-ORDER METHODS
For , the modified table of an inverse method is presented as follows:

where the free parameters  and  are the abscissas of the original explicit method. Error functions of the
inverse method have the form

For these functions to be small, it is necessary to assign small values of  and . However, they should
not be assigned as very small numbers, because in this case the coefficients of the method increase and
this increases the rounding errors. Assume that  and  and denote the obtained implicit
method by IRK31b.

Explicit four-stage three-order methods that have  form the four-parametric family with the
free coefficients , , , and  [15]. The methods of this family have the functions

We assign  and obtain . Hence, we obtain the three-parametric family of explicit methods
having , , , and , together with the free coefficients , , and . The other
coefficients are determined by the formulas

Inverse methods for this family also have  and . We assign , , and 
and obtain the inverse method with the modified table

we denote this method by IRK312.
The results of solving the Kaps problem by third-order methods for  are shown in Fig. 4. We

investigate the dependence of an error on a step size for various μ. For small μ, all three methods give very
close results, during which the real order coincides with the classical order. With increasing μ, the order-
reduction effect begins to reveal itself. The dependences  for two values of  are presented in Fig. 5,
where the order of a method is specified by the slope of a curve. As in Fig. 4, the order reduction is most
noticeable for moderate values of . As  increases, the range of values of h with a reduced order expands;
this increases the advantage of the IRK312 method for small values of h.

5. FOURTH-ORDER METHODS
The construction of explicit four-stage methods is considered in [4], where the formulas for determin-

ing the coefficients of such methods are presented. These methods have  and for  form a two-
parametric family. Suppose  and  and denote the obtained inverse method by IRK41b.
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We now construct explicit fourth-order methods that have  i.e., , , and
. One of the methods of this family is presented in [15]. The number of stages of such methods

must not be less than six. For , they form a six-parametric family assigned by the coefficients , ,
, , , and . All these methods have . We find the weights , , and  by solv-

ing the equations  + , , and

. We determine the remaining coefficients by the formulas
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The inverse methods also have . Setting , , , , and , we
obtain the inverse IRK413 method with the modified table

The results of solving the Kaps problem by the fourth-order methods for  are shown in Fig. 6.
The results presented in Figs. 4 and 6 demonstrate the convincing advantage of the methods that have

.

6. SOLUTION OF DIFFERENTIAL–ALGEBRAIC EQUATIONS
Consider the system of differential–algebraic equations (DAEs) given in the semiexplicit form
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(17)

The formulas of one step of solving this system by the inverse of the explicit two-stage method with the
coefficients , , and  have the form

(18)

From these equations one can exclude ; then in the case of a system of ODEs, we obtain the formula of
one step . Analogously, when solving the system of ODEs, a step
of any mono-implicit method can be represented in the form of an algebraic equation with respect only
to the vector . However, if the system contains algebraic equations, then in the general case, it is not pos-
sible to eliminate internal stage values. For example, one cannot exclude  from (18). In the general case,
it is also impossible to exclude from the equations of the method the values of the internal stages if the
system of DAEs is given in the implicit form . Hence, in solving DAEs the advantage of mono-
implicit methods cannot be fully used.

Consider the use of inverse methods for solving DAEs. When implementing the IRK212, IRK312, and
IRK413 methods, it is necessary to eliminate the dependent stage values by setting  in the
IRK212 and IRK312 methods, along with  and  in the IRK413
method. Due to this, the complexity of the obtained system of algebraic equations is identical with that of
the IRK21, IRK31, and IRK41 methods having the smaller number of stages and the same order. We
derive computational relations using the ε-embedding method. For this purpose, we write the formulas of
integration of the system of ODEs  and ; then we assume that . As an example,
for the IRK212 method, the obtained equations with respect to stage values in solving DAEs (17) are pre-
sented as

The equations of the more general form for solving ODEs and DAEs are implemented as a structure dia-
gram in the MVTU software package (such a diagram for solving ODEs is presented in [19]). The results
of solving various systems of ODEs and DAEs are obtained by using this diagram, including the results
presented in the present paper.

Systems of DAEs of the highest indices, i.e., indices that are larger than one (the definition of the dif-
ferentiation index of DAEs is presented in [1]), are the most difficult to solve numerically. At the same
time, such equations often arise when solving problems in mechanics, control theory, and electrical engi-
neering [1]. For example, equations of a mechanical system (with links) that are formed on the basis of
the Lagrange principle have index three.

Consider the system of DAEs of index three

whose solution is  and . For the numerical solution we use the
third- and fourth-order inverse methods, along with the fifth-order Radau IIA method, which we denote
by Radau5. At , we determine the errors and estimates of the order by formulas (8) for each of the
following components of the solution: , which is the y component (the variables of index one);

, which is the z component (the variables of index two); and u, i.e., the u component (the vari-
able of index three). The results are presented in the Table 1.
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Methods IRK31, IRK31b, IRK41, and IRK41b do not ensure convergence, because with decreasing a
step, the error does not decrease as illustrated by the near-zero and negative estimates of the order. There-
fore, these methods are unsuitable for solving DAEs of index three (but for solving equations of index two
with poor accuracy we can use them). The other methods from the Table 1 successfully solve systems of
index three; here, IRK413 is highly competitive with Radau5, which is considered to be one of the most
efficient methods (in various cases, including the solution of DAEs of index three).

CONCLUSIONS
The results of the experiments show that the IRK212, IRK312, and IRK413 methods having 

offer a convincing advantage among inverse methods. Unlike other inverse methods, they barely reduce
the order when solving stiff ODEs and ensure convergence when solving DAEs of index three. Note that
the absence of order reduction is very important in calculations on thickening grids [20] and in all cases
where the extrapolation by Richardson is used [4] for estimating an error or improving a solution.
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