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Abstract—This paper reports bursting behavior and related bifurcations in a fractional order FitzHugh-
Nagumo neuron model, by adding sub fast-slow system. We classify different bursters of the system
consisting fold/Hopf via a fold/fold hysteresis loop, homoclinic/homolininc cycle-cycle, fold/homo-
clinic, homoclinic/Hopf via homoclinic/fold hysteresis loop. We determine stability and dynamical
behaviors of the equilibria of the system by numerical simulations.
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1. INTRODUCTION

Neurons, the building blocks of the central nervous system, are highly complex dynamical systems. To
understand the way neurons interact, simplified mathematical models are used, which aim to capture the
essence of their underlying dynamics. Generic bifurcation models fall into this class of simplified neuron
models. They aim to describe the underlying dynamics of the neuron by systems of ordinary differential
equations. When these models are used in networks, techniques from the field of nonlinear dynamics can
be applied to study phenomena of synchronization and pattern emergence. The essence of mathematical
modeling is to find the right trade off between accuracy and simplicity. One of the most important ques-
tions in computational neuroscience is therefore which features of the complex dynamics observed in bio-
logical neurons form the essence of the specific tasks fulfilled by that neuron. Generic bifurcation models
might provide a promising middle way between detailed models used by experimentalists and the more
simple threshold and rate models used by computational neuroscientists.

Determining the dynamical behavior of an ensemble of coupled neurons is an important problem in
computational neuroscience. The primary step for understanding this complex problem is to understand
the dynamical behavior of individual neurons. Commonly used models for the study of individual neurons
which display spiking/bursting behavior include, integrate-and-fire models and their variants [3, 4],
FitzHugh-Nagumo model [5], Hindmarsh-Rose model [11]. Hodgkin-Huxley [7, 8] and Morris-Lecar
model [19].

The FitzHugh-Nagumo neuron model is a mathematical abstraction for an excitable-oscillatory mem-
brane, which is very adequate for emulation of small biological systems. The simplicity of the FitzHugh-
Nagumo (FHN) model permits the entire solution to be viewed at once. This allows a geometrical explanation
of important biological phenomena related to neuronal excitability and spike generating mechanism.

The relationship between spiking and bursting dynamics is a key question in neuroscience, particularly
in understanding the origins of different neural coding strategies and the mechanisms of motor command
generation and neural circuit coordination.

1 The article is published in the original.
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1.1. Bursting

Bursting behavior in neurons is a recurrent transition between a quiescent state and repetitive spiking
(state of repetitive firing), see [11, 12, 25]. Many mathematical models of bursters often can be written in
the singularly perturbed form

(1)

where x   is a vector of fast variables responsible for repetitive firing. It accounts, e.g., for the mem-
brane voltage and fast ion channels, activation and inactivation gating variables for fast currents. The vec-
tor y   is a vector of slow variables that modulates the firing. It accounts for slow ion channels and cur-
rents. (e.g., gating variable of a slow  current, an intracellular concentration of  ions, etc.). Small
parameter μ  1 is a ratio of fast/slow time scales. We say that the burster is of the m + k type when the
fast subsystem is m- dimensional and the slow subsystem is k-dimensional.

First, let us consider the fast subsystem  = f(x; y) alone and treat y as a bifurcation parameter. This is
a standard approach known as dissection of bursting (Rinzel and Lee (1987)). As y changes slowly, the
attractors of the fast subsystem bifurcate. The bifurcation of equilibrium that corresponds to transition
from rest state to repetitive firing which determines how the repetitive firing appears, is named burster. A
partial classification of bursters based on these bifurcations is provided by Wang and Rinzel (1995), Ber-
tram et al. (1995), and Hoppensteadt and Izhikevich (1997). A complete classification is provided by
Izhikevich (2000). For example, when both bifurcations are saddle-node on limit cycle, the burster is said
to be parabolic. When the rest activity disappears via saddle-node bifurcation and the repetitive firing dis-
appears via a saddle separatrix loop bifurcation, the burster is said to be of square-wave type. When the
quiescent state loses stability via an Andronov-Hopf bifurcation and repetitive firing disappears via a dou-
ble limit cycle bifurcation or another Andronov-Hopf bifurcation, the burster is said to be elliptic. A dis-
tinctive feature of elliptic bursting is that the frequency of emerging and ceasing spiking is nonzero, while
the amplitude may be small. Since Andronov-Hopf bifurcation may be subcritical or supercritical, there
are many subtypes of elliptic bursters. An elliptic burster is said to be supercritical or Hopf/Hopf when
both Andronov-Hopf bifurcations are supercritical (Izhikevich (1998)). An elliptic burster is said to be
subcritical or sub Hopf/fold cycle when the rest activity loses stability via subcritical Andronov-Hopf
bifurcation, and the repetitive firing disappears via a double limit cycle bifurcation (also known as saddle
node of limit cycles or fold of limit cycles). Since there is a coexistence state of rest and limit cycle attrac-
tors, the periodic transition between them often occurs via a hysteresis loop.

1.2. Classification of Bursters

Bursting is usually caused by a slow voltage- or calcium-dependent process that can modulate fast spik-
ing activity. We refer to a burster as being a point-cycle when the quiescent state is an equilibrium point
and the spiking state is a limit cycle. When the quiescent state is a small amplitude (sub threshold) oscil-
lation, then the burster is said to be a cycle-cycle. We refer to a burster as being planar when the fast spiking
subsystem is two-dimensional. A complete classification of all 16 planar point- cycle bursters, though
without the naming scheme, was first provided by Hoppensteadt and Izhikevich (1997). Among them
were the well-known

• Fold/homoclinic burster, also known as square-wave or Type I burster.
• Circle/circle burster, also known as parabolic or Type II burster.
• Sub Hopf/fold cycle burster, also known as elliptic or Type III burster.
• Fold/fold cycle burster, also known as Type IV burster.
• Fold/Hopf burster, also known as tapered or Type V burster.
• Fold/circle burster, also known as triangular burster.
The paper is organized as follows: In Section 2, we present some basic materials on neuroscience and

fractional calculus and introduced the classical FitzHugh-Nagumo model. Fractional FitzHugh-
Nagumo model and detailed analysis on the stability of the equilibria is carried out in Section 3. In Section
4, we perform numerical simulations of the system by computing different orbits of the classical and frac-
tional system and discussion. In Section 5, we conclude the paper.
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2. THE CLASSICAL FITZHUGH-NAGUMO NEURON MODELS
In this paper we consider an autonomous differential equation introduced in [11], which is a version of

Bonhoeffer-van der Pol model or FitzHugh-Nagumo (FHN) model, as follows:

(2)

where

S(y) = 

This model is a multi-time-scale system characterized by two fast variables x, y and a slow adaptation cur-
rent z. Here x mimics the membrane voltage and the recovery variable y mimics activation of an outward
current. The parameter I mimics the injected current, the parameters b and c describe the kinetics of the
recovery variable y and μ recovery variable z. For sake of simplicity we assume I = 0. Then we investigate
dynamics of fractional order of the FHN model.

2.1. A Brief Overview of Fractional Calculus

Fractional calculus is a generalization of classical differentiation and integration to arbitrary order. In
recent years, fractional calculus has been a fruitful field of research in science and engineering. Also a vari-
eties of schemes for numerical solution of fractional differential equations are proposed [1, 14, 15]. Mean-
while, applications of fractional differential equations to physics, biology and engineering are a recent
focus of interests [6, 13].

Two types of fractional derivatives of Riemann-Liouville and Caputo derivatives, have been often used
in fractional differential systems. We brief ly recall these definitions.

Definition 1. The Riemann-Liouville integral  with fractional order  of function x(t) is defined as:

Where  is the gamma function. For α = 0 we set , the identity operator.

Definition 2. The Riemann-Liouville derivative with fractional order α   of function x(t) is defined by:

x(t)  

where m =   min{k  : k ≥ α}, is the ceiling of α.

Definition 3. The Caputo derivative with fractional order α  of function
x(t) is defined by:

x(t)  

where m = 
We use the following theorem to investigate the stability of the fractional-order model :
Theorem 1. [20]
Consider the following fractional-order system:
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with  (0, 1) and x  . The equilibrium points of the above system are solutions to the equation f(x) = 0.

An equilibrium is asymptotically stable if all eigenvalues  of the Jacobian matrix J =  evaluated at the equi-

librium satisfy 

2.2. Advantages of Using the Fractional-Order Capacitor of Order 0 < α < 1 in Neuron Dynamics
As pointed out in [16, 24, 26], from the basic electrical formula, the current I is the first-order deriva-

tive, the constant capacitance C and the voltage V, it holds

I = C

with the following relationship

I = C , 0 < α < 1, (3)

that represents a normal capacitive behavior, reflecting the property of real dielectrics and insulators.
Without loss of generality, assume that a step voltage u(t) is applied at t = 0. By applying the Laplace
transform and inverse Laplace transform to both sides of above equations respectively, one has [24, 26]

I(t) = C (4)

and

I(t) = , 0 < α < 1, (5)

where (t) is the Dirac delta function. In the latter case, the current follows the power law, and it decays
as a rate  continuously with time, unlike the case defined by Eq. (4) for which the current jumps to 0 at
any time t > 0. A number of electric simulation experiments verify the correctness of the power law with
different values of α, for example α = .76 for warm fog sciatic neuron and α= .86 for cold fog sciatic neu-

ron [16, 24]. For the limit case: α → 1, Eq. (5) is consistent with Eq. (4) due to . When

0 < α < 1, Eq. (5) not only shows the power law, but also reflects the memory property of membrane of
the neuron, because the current described by Eq. (3) over [0, t]
equals to

 =  = 

Hence, it is reasonable to use a fractional-order capacitor with order 0 < α < 1 in modeling of neuron
dynamics.

3. FRACTIONAL-ORDER FITZHUGH-NAGUMO MODEL AND ITS STABILITY
We introduce the fractional order system of FHN by replacing the usual integer order derivatives by

fractional order Caputo-type derivatives in a modified FitzHugh-Nagumo neuron model introduced in
[11] to obtain the following fractional order FitzHugh-Nagumo neuron model (FFHN):

(6)
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where

S(y) = 

The fractional order system (6) is more suitable than that of the integer order system due to memory
effects.

First, we decompose the model into fast and slow subsystems, and then analyze the dynamics of the
full system in the limit of the slow variable treated as a bifurcation parameter. The full system can be
decomposed into a fast subsystem

and different slow subsystems, for instance,  By treating z as a slow variable, also as a bifurcation

parameter, the steady state of fast subsystem is given by:

or

In these models, fast series of spikes burst over oscillations of the slow variable.

However, the behavior of fast and slow dynamics are clearly correlated and it can be observed that high
values of the slow variable correspond with spikes of the fast variable and low values of the slow variable
correspond with resting periods of the fast variable.

.
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Fig. 1. Steady state of fast subsystem (6) in (z, x) space for α = 0.9.
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For each equilibrium  = (x*, y*), let A be the Jacobian matrix evaluated at the , i.e.,

A =  = (7)

By Theorem (1), we check the stability of equilibria An equilibrium is asymptotically stable if all eigen-

values  of the Jacobian matrix A satisfy  i = 1, 2, and an equilibrium is unstable if there is
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Fig. 2. Bifurcation diagram of the system (6), respect to the slow variable z. Fold/Hopf bursting via fold/fold hysteresis
loop, The rest state disappears via fold bifurcation, and the repetitive spiking disappears via supercritical Hopf bifurcation.

Simulations of (6), (a), (b), (c), (d), with slow subsystem  when α = 1, a = 1.55, c(z) = z, b = 2.5, d = 0.1,
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some  satisfying . A Hopf bifurcation occurs if all of the eigenvalues satisfy in

 except for a pair of conjugate eigenvalues with 

A bifurcation diagram of fast subsystem with respect to the slow variable z is shown in Fig 1. It is clear that there
exists a Z-shaped equilibria bifurcation curve in the (z, x)-plane which is made up of three branches:

• On the upper branch (pallid line), the equilibrium is unstable (at least one eigenvalue with absolute

argument less than ), its stability changes via a Hopf bifurcation indicated by , in which absolute

value of argument of the corresponding eigenvalues equals to 

iλ ( )  arg
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απλ > ( )  arg .
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2
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1H

.
2

απ

Fig. 3. Bifurcation diagram of the system (6), respect to the slow variable z. Fold/Hopf bursting via fold/fold hysteresis
loop, The quiescent state disappears via a fold bifurcation, and the repetitive spiking disappears via a supercritical Hopf

bifurcation. Simulations of (6), (a), (b), (c), (d), with slow subsystem  when α = 0.9, a = 1.55, c(z) = z, b = 2.5,

d = 0.1, 
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• The middle branch (bold line) is made up of stable points (absolute of argument of all the eigenvalues

are greater than ). Stability on this branch changes via a Hopf bifurcation indicated by .The points

LP1 and LP2 represent fold bifurcations of equilibrium.
• On the lower branch, the equilibria are all unstable.

4. NUMERICAL SIMULATION AND DISCUSSIONS
In this section, numerical simulation is carried out to locate the bursting patterns of the fractional

FitzHugh-Nagumo model, including new patterns that did not observe in the corresponding integer-
order model. The parameter values that are used for the classical FitzHugh-Nagumo model with fast-slow
variables are taken from [11].

We use the numerical approach introduced in [18], which approximates derivatives of f as:

Using this approximation, with zero initial conditions for the following system:
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Fig. 4. The phase trajectory of model (6) in (x, y)-plane with different parameters (a) z = –0.52, (b) z = 0.2, (c) z = 0.35,
(d) z = 0.2.
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Fig. 5. Bifurcation diagram of the system (6), the same fast subsystem and different slow subsystem, respect to the slow
variable z. Homoclinic/homoclinic cycle-cycle bursting: The transitions between quiescent and spiking limit cycles occur
via saddle homoclinic orbit bifurcations. Simulations of (6), (a), (b), (c), (d), with different slow subsystem
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where  For the sake of simplicity, we set  to obtain the fol-

lowing recurrence relation:

It turns out that show that the fractional-order derivative plays an important role to activate the slow ion
channel faster.

To figure out differences between bifurcation scenarios of classical and fractional models, for the same
parameter values, we compare numerical results obtained for the integer order system with that of frac-
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Fig. 6. Bifurcation diagram of the system (6), the same fast subsystem and different slow subsystem, respect to the slow
variable z. Homoclinic/homoclinic cycle-cycle bursting: The transitions between quiescent and spiking limit cycles occur
via saddle homoclinic orbit bifurcations. Simulations of (6), (a), (b), (c), (d), with different slow subsystem
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tional order system. We particularly compare Fig. 2 with Figs. 3, Fig. 5 with Figs. 6, Fig. 7 with Fig. 8, to
examine different bifurcation scenarios for classical and fractional systems, respectively, for the same
parameter values with different α. We set α = 1 and α = 0.9, for the classical and fractional systems respec-
tively. Figures 2 and 3, different perspective of same picture, show the time history of a fold/Hopf bursting
via fold/fold hysteresis loop, for a Hopf bifurcation H. The fast variable x forms a cycle of relaxation oscil-
lation process in (z, x)-plane with respect to slow variable z. As the current value z decreases, the unstable
node on the lower branch coincides with the stable node on the middle branch, the fold bifurcation occurs
at LP2, meanwhile, a stable limit cycle appears around the unstable focus on the upper branch due to a
Hopf bifurcation. Hence, the lower rest state switches to the upper repetitive spiking state, as z increases,
stability of the equilibria on the upper branch changes via a supercritical Hopf bifurcation and then the

Fig. 7. Bifurcation diagram of the system (6), the same fast subsystem and different slow subsystem, respect to the slow
variable z. Homoclinic/Hopf cycle-cycle bursting via homoclinic/fold hysteresis loop: The quiescent oscillation disap-
pears via saddle homoclinic orbit bifurcation and the periodic spiking disappears via supercritical Hopf bifurcation.. Sim-

ulations of (6), (a), (b), (c), (d), with different slow subsystem  when α = 1, a(z) = 0.77 + , b(z) = 1.65

+ z, c = –0.15 + z, d = 0.1, 
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stable limit cycle converges to a upper stable focus crossing the Hopf point H. So the upper repetitive spik-
ing state is back to the rest state on the upper branch. Eventually, as z increases further the other fold bifur-
cation at LP1 relevant to transition from the upper rest state to the lower rest state to form a close cycle of
relaxation oscillation.

In short, the whole relaxation oscillation process of this type of bursting contains four bifurcation
points: the transition between the lower rest state and the upper repetitive spiking state which is relevant
to a fold/ Hopf bifurcation at LP2 and a H, respectively, the other two critical bifurcation points relevant
to transition between the upper state and the lower state are a fold/fold bifurcation at LP1 and a LP2,
respectively, which form a hysteresis loop. Hence, according to the classification by Izhikevich, this type

Fig. 8. Bifurcation diagram of the system (6), the same fast subsystem and different slow subsystem, respect to the slow
variable z. Homoclinic/Hopf cycle-cycle bursting via homoclinic/fold hysteresis loop: The quiescent oscillation disap-
pears via saddle homoclinic orbit bifurcation and the periodic spiking disappears via supercritical Hopf bifurcation. Sim-

ulations of (6), (a), (b), (c), (d), with different slow subsystem  when α = 0.9, a(z) = 0.77 + , b(z) =

1.65 + z, c = –0.15 + z, d = 0.1, 
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of bursting is known as fold/(supercritical) Hopf bursting via fold/fold hysteresis loop. Further, if the crit-
ical points of bifurcation at the H and LP1 coincide, then the hysteresis loop disappears.

When α = .9, bursting types are shown in Fig. 3. We can see that the slow ion channel is activated faster
by the fractional-order derivative, i.e., the equilibrium potential varies in a smaller range, compared with
that of the integer-order case.

The phase portrait of system (6) with different values of z, Fig. 4, enhances our understanding of the
bifurcation mechanism corresponding to such bursting type. Figure 4 corresponds to the case of Fig. 3. In
Fig. 4a there exists a stable limit cycle which emerges around the upper unstable equilibrium. In Fig. 4d a
stable and two unstable equilibria are indicated, the stable equilibrium is the same one as indicated in (b).
In (c) a stable equilibrium is shown which coexists with a stable limit cycle.

Scenarios corresponding to the Figs. 5, 6, 7, 8 can be treated similarly.

5. CONCLUDING REMARKS
In this paper, by numerical means, we analyze bursting behaviors and corresponding bifurcation sce-

narios of a fractional order FitzHugh-Nagumo neuron model. For this purpose, we add a sub fast-slow
system to the fractional model and by numerical simulation we classify different bursters, namely,
fold/Hopf via a fold/fold hysteresis loop, homoclinic/homolininc cycle-cycle, fold/homoclinic, homo-
clinic/Hopf via homoclinic/fold hysteresis loop.
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