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Abstract—A new data assimilation method for the correction of model calculations is developed and
applied. The method is based on the least resistance principle and uses the theory of diffusion-type
stochastic processes and stochastic differential equations. Application of the method requires solving
a system of linear equations that is derived from this principle. The system can be considered as a gen-
eralization of the well-known Kalman scheme taking the model’s dynamics into account. The method
is applied to the numerical experiments with the HYbrid Coordinate Ocean Model (HYCOM) and
Archiving, Validating, and Interpolating Satellite Ocean (AVISO) data for the Atlantic. The skill of the
method is assessed using the results of the experiments. The model’s output is compared with the twin
experiments, namely, the model calculations without assimilation, which confirms the consistency
and robustness of the proposed method.
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1. INTRODUCTION

Data assimilation methods for the observations in the hydrodynamic models of the atmosphere and
ocean circulation represent a most interesting and intensively developing area of research in modern com-
putational geophysics. Here the main idea is to combine in the optimal way the model calculations of the
fields of the geophysical characteristics (temperature, salinity, pressure, etc.), the field of flow velocities,
and other fields with the measurements obtained independently of the model. Such a combination yields
new fields of characteristics that are more suitable for further analysis and/or forecasting.

Data assimilation problems arise in modern oceanography, meteorology (weather forecasting), and
climatology (forecasting climate fluctuations). The recent achievements in this area are referred in [1—6].
The skill and utility of different data assimilation methods are assessed by comparing the forecast charac-
teristics after assimilation with the control calculations (without assimilation), as well as with the natural
observations in an a priori given metric. If the forecast after assimilation appears preferable to its counter-
part without assimilation, the corresponding assimilation method can be applied in practice. In addition,
it is possible to compare the data assimilation methods by different criteria: the requirements for numer-
ical implementation, their capabilities, computational costs and many other characteristics.

Despite the fact that intensive investigations in this area have been conducted for over 50 years, the ulti-
mate solution of the problem (i.c., the design of a generally accepted best algorithm) is still a major chal-
lenge. In some cases, a well substantiated numerical algorithm turns out to be inferior to a simpler empir-
ical algorithm in terms of the forecast accuracy.

There are two basic groups of the mathematical methods used for data assimilation. The first group is
based on minimization of a given functional that describes the distance between the model path and the
observational data in an appropriate metric. For instance, here we mention the 3D-Var and 4D-Var meth-
ods [7, 8]. The second group includes statistical or dynamical-stochastic methods considering the initial
problem as one of signal extraction against a noisy background and employing common statistical estima-
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tion and/or filtering methods [9—11]. Also, there exist hybrid assimilation methods integrating both these
approaches [12, 13].

Data assimilation using the 3D-Var and 4D-Var methods varies the initial condition (the initial field
of the parameters) so that the numerical solution path has the shortest distance to the observational data
in terms of a given metric. Therefore, variations take place on the whole domain of the model, not locally.
According to the alternative approach, i.e., data assimilation using the dynamical-stochastic methods, it
is necessary to define a weight matrix that considers the relationships between the observed and calculated
values of the parameters. During assimilation, the calculated values vary precisely in the segment of the
grid domain with the highest strength of the above relationships; these variations are determined by the
covariance between the calculated and observed values at the moment of assimilation. In other words, the
variations have a strong localization, being independent of the previous state of the system (the back-
ground state), and hence all information on the evolution of the process disappears. However, implemen-
tation of the dynamical-stochastic methods is simpler in comparison to the 3D-Var and 4D-Var methods.

The present paper suggests a hybrid assimilation method. Similarly to the dynamical-stochastic
schemes, it calculates a certain weight matrix; however, this matrix depends not only on the correlation of
the observed and calculated characteristics of the model at a given time but also on the background state.
The matrix is derived from the least resistance principle, just as in the 3D-Var and 4D-Var methods.
Another feature of the method is that the least action function has a natural form of some limit process in
the problem.

As the basic model for data assimilation, we employ version 2.2.14 of the HYbrid Coordinate Ocean
Model (HYCOM) [14, 15] configured for the Atlantic in the zone from 79° S to 55° N and from 100° W
to 20° E, except the Mediterranean. The model is described in detail below. The numerical experiments
also operate the Archiving, Validating, and Interpolating Satellite Ocean (AVISO) data available from
www.aviso.altimetry.fr. This work continues the research published in a series of papers [11, 12, 16].

This paper’s major goals are given below:

(a) design, verify, and implement a new data assimilation method;

(b) demonstrate its representativeness, competitiveness, and applicability in satellite ocean data assim-
ilation;

(c) study the influence of assimilating satellite ocean data by this method on the other calculated
parameters of the model;

(d) analyze in brief the physical structure of the model’s fields before and after assimilation, as well as
compare them with the observations.

2. MATHEMATICAL STATEMENT OF PROBLEM
In a certain grid domain, consider a given mathematical model of ocean circulation that is integrated
on a finite horizon [0, 7]. Denote by X the state vector of the ocean, which includes its potential tempera-
ture (0), salinity (5), and sea surface height (SSH). Let N, and N, be the number of grid points and the
number of model variables, respectively. Therefore, the state vector X has dimensions N, X N, = r. Fur-
ther, designate by Y the vector of observed parameters and by N, the number of observations each con-

taining NV, independent variables, e.g., 0, and sea surface height anomalies (SSHA) as the differences
between SSH and their normal values at the same points. Then the observation vector has dimensions

N,xN,, = N. Generally, N,,, =2 N, since the observations cover only some of the variables calculated

mv ov

in the model. The theory of data assimilation operates two vectors of the ocean’s parameters, namely, the

ones before and after data assimilation (the background and analysis states X, X ,, respectively). They are
interconnected by

X, =X, +KY - HX,). (1)

In formula (1), matrix K of dimensions » X N is the Kalman gain. Matrix H of dimensions N X r
defines an operator projecting the model’s space into the observation space. In fact, this operator nullifies
the unobserved components of the vector X and performs the linear interpolation of the observed com-
ponents into the observation points.

Next, asampling0 =¢, <t, <....<ty =T,t,, =t,+ At, is made on the horizon [0, 7] and the data
are assimilated at the moments 7, by formula (1). Consequently, at each moment ¢, we have

Xa,n =Xb,n+Kn(Yn_HXb,n)' (2)
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Let X, ,,, = F(X, ,) indicate the model forecast obtained using the background state. Then Eq. (2) takes
the form

Xa,n+1 = F(Xa,n) + Kn+1(Yn+l - HF(Xa,n))' (3)
Assume that the model forecast F(x) represents the antiderivative of some function A, i.e.,

F(x)=x+ j A(x, T)dT. 4)

In this case, Eq. (3) can be rewritten as

tn+l Iyt
X = Xawt [ AX 00T+ Koo | Vo = HX = H [ AKX, 00 . (5)

1 1,

n

Equation (5) applies to the fields after assimilation, and subscript a will be further omitted.

The earlier works [11, 17] demonstrated that, under definite conditions, the sequence of such processes
can be approximated by a stochastic diffusion-type process of the form

dX (1) = (I — KH)Adt + (KOK)dW, (6)

where / means the identity matrixand Q = E(Y — HX)(Y — HX)' + R is the sum of the covariance matrix
of the modeling error and the covariance matrix R of the instrumental measurement errors. Symbol '
stands for transposition of a vector or matrix. By assumption, the matrix R is diagonal; i.e., the values of
the instrumental errors have no correlation with each other. Equation (6) also uses the standard notation
dW of the Gaussian white noise. The moment 7 belongs to the interval ¢, < ¢ < ¢,,. In the sequel, all the
subscripts are omitted when there is no confusion. As usual, the model is unbiased with respect to the
observations, i.e., F(Y — HX) =0, where FE signifies the expectation operator (in the physical sense,
ensemble averaging). Thus, the observations have zero average deviation from the model results.

The process X(7) is defined at all grid points and for all model variables, see (6). Without loss of gener-

n

ality, suppose that the matrices KH and Q are invertible; i.e., there exist the matrices (KH )_1 and Q_l.
These conditions imply that the observed and model variables are not linearly expressible via each other.
The optimal assimilation problem admits the following statement: find a weight matrix K minimizing the
variance of the process X (¢) under a given value of its trend. In other words, it is necessary to minimize
the matrix KQK' in the sense of some matrix norm under a given value C of the vector (/ — KH)A .
According to this statement, the vector C is an r-dimensional vector defined at all grid points and having
a certain value for each of the model variables.

Prior to the formal solution of the problem, we analyze in brief the physical character of the desired
solution. First, expression (6) is a differential equation, and hence the desired solution depends on the ini-
tial condition X (¢) = x at the moment ¢, both for a small interval (¢, ¢ + Ar) and for the whole horizon
(¢, 7). Matrix Q and vector C must be therefore defined dependent on state x. Second, under C = A(x,1),
the unique solution is the trivial one K =0, which has a physical sense. However, if C # A(x,t), a nontriv-

ial solution always exists, since A(x,?) = (KH )_I(A(x, t) — C). Moreover, if C appreciably differs from
A(x,1), then Kis very large and the process X(¢) in (6) may have a very large diffusion, yielding an unreal-
istic solution.

Consider the Lagrange functional
L(K,¢) = |KOK| +(¢.(] - KH)A - C), (7)
where @ is the -dimensional vector of the Lagrange multipliers, and ||«|| denotes some matrix norm.

The vector (I — KH)A is given, and minimization of the functional L(K, @) is equivalent to minimiza-
tion of the functional

L(K,9) = |[KOK + (I — KH)A - C)o]|.
Consider the variation of the functional L (K, @) in K:

dL(K,p) = LK + dK,®) — L(K, ),
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L(K + 8K, ) = |(K +3K)O(K +8K) +[(I — (K +dK)H)A - Clo/
= |KOK +8KOK + KQdK +dKQdK —dKHAQ' +[(I — KH)A - Clo].

Using the symmetry of matrix Q, the identity KQO0K = dKQK', and the well-known inequality
lal| = [|&] < |la — 8], we obtain the following estimate within the second-order terms:

BL(K,9)| < [0KQOK — HAQ")| = |[6K(Q20K — HA®))],
which gives

8L(K, )| < [(2KQ - o(HA))BK]. (®)

The functional i(K ,®), and hence the functional L(K, @) defined by (7) achieves its minimum under

the zero factor at 8K in the right-hand side of (8). In this case, the minimum of |[KQK]| subject to
(I — KH)A = C is found from the system of equations

KO - %(p(HA)’ =0, 9)

(I - KH)A = C. (10)

Equations (9) and (10) are matrix equations equivalent to (» + 1) X N scalar equations in the same
number of variables. Since the matrix Q is invertible, this system possesses a unique solution, which can

be obtained explicitly. Using Eq. (9), we express K = @(H A)'Q_' / 2 and substitute into (10) to get
©=2A-C)[(HAYQ 'HA]™".
Here the bracketed expression is a number, and the matrix K has the final expression

Ko A=A Q!
(HA)Q'HA

(1)

The matrices Q_1 and (HA)' can be canceled only in the one-dimensional case when » = N = 1. Then
formula (11) becomes the trivial expression K = (A — C)/ (HA). In the general case, if the component of
the drift vector (I — KH)A is positive, the difference (Y — HX,) is added to the model forecast (and
deduced from it otherwise). This fact has an obvious physical substantiation.

Therefore, the solution of the problem at step (# + 1) is defined by formulas (3) and (11), where vector
A (see (4)) is calculated using the approximation

F(Xa,n) - Xa,n
AV

while the projection operator H and the covariance matrix Q have specific determination in each problem.
The method is completely described.
According to the suggested method, calculation of matrix K takes into account the model dynamics
K, =K, (Y,, Xy ,11,X,,), in contrast to the classical Kalman filter [10] with K, ,; = K, ,(¥,,1, X} ,.11)-
The method possesses a major advantage that it is possible to find the optimal weight matrix (and thus

solve the assimilation problem) with the probability distribution of the deviation from the obtained solu-
tion. This distribution satisfies the Fokker—Planck equation [19]

Ip(t,x) _ AU ~ KHIAp(t, )], 19°[(KQK)p(t,x)]
ot 0x 2 ox’ ’
where p(¢, x) is the probability density of the random vector X(7). Equation (12) is solved under the initial

condition p(#,,x) = p,(x) and the boundary condition p(¢,+e) = 0, where p,(x) represents an a priori
given function.

(12)
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3. NUMERICAL EXPERIMENTS AND THEIR RESULTS

The assimilation method has been applied in combination with the HYbrid Coordinate Ocean Model
(HYCOM) [20, 21] in its latest version 2.2.14 [22]. In this configuration, the model’s grid is located in the
Atlantic from Antarctica to 55° north latitude. The model’s resolution in the horizontal axis is 0.25° in the
east—west direction. The distance between the grid points in the south—north direction varies with the
minimum resolution of 0.25° from 10° south latitude to 10° north latitude. In the vertical axis, the model
has an isopycnic structure; i.e., the whole ocean from surface to bottom is split into the predetermined
levels of the same density (isopycnic lines). The above configuration uses 21 levels. The model resolution
in the horizontal axis is 480 X 760 points. The model calculates 109 independent variables, namely, sea
surface height, 3 barotropic variables (the horizontal components of the velocity vector and sea surface
pressure), and 5 baroclinic variables for each of the 21 density levelsi.e., the horizontal components of the
velocity vector, layer thickness, temperature, and salinity. Hence, the state vector X of the model has
dimension r=480 X 760 x 109 =39763200. As the observed information, the experiments have employed
only the sea surface height anomalies from the AVISO archive. The data have been observed and recorded
daily for 8 years from 2002 to 2009. The number of daily observations N varies from 25000 to 30000. The
archive also contains the observed levels along the satellite tracks.

Before the numerical experiments on data assimilation, it is necessary to perform several preliminary
operations. By assumption, the model is unbiased with respect to the observations, and hence the real
average residual (difference) between the model and the observations must be eliminated or at least min-
imized. For this, we have used a special procedure, i.e., bias elimination along the satellite tracks [16]. The
model calculation along each satellite track and the observations are averaged independently along each
satellite track (the results of the model calculations are interpolated into the observation points), and then
the difference between the average observed value and the average model value on each satellite track is
subtracted from the real observation. At the preliminary stage, the observations are also smoothed using
the moving average, as the sampling step is approximately 5 km and the grid resolution achieves 25 km.
Moreover, inadequate observations and values outside the current zone have been rejected. All these tech-
niques reduce the number of required daily observations by a factor of ten, making N close to 3000.

Specification of the vector C and the covariance matrix Q also runs in part at the preliminary stage. For
each grid point in the horizontal plane, it is necessary to draw a circle of radius 0.25° and to average all the
observations within the circle; this average is assigned to the grid point under consideration. The value of
the vector C at this point is the average minus the model value with assimilation at the previous time step.
If the circle contains no observations, the value of the vector C at this point coincides with the model’s
counterpart. The values of the vectors HF and HA are defined by analogy. At the same time, matrix Q has
a more complicated specification procedure defined by the anomaly strategy, which is common in data
assimilation with ensemble interpolation (EnOI). First, it is necessary to calculate spin up 40 years with
the external boundary conditions, wind, heat, and moister flows defined from the NCEP atlas [21]. In this
calculation, the daily data for the past 10 years are recorded and averaged over 10 years, and for a specific
day the deviation of the calculated value from the obtained average value (the anomaly 1) is obtained. This
anomaly is interpolated into the observation point using the same scheme as for calculation of vector C:
all the anomalies are averaged at the grid points lying within a circle of radius 0.25° near each of the obser-
vation points, and the average value is assigned to this observation point. The same technique applies to
the state vector x. Next, the covariance matrix Q is calculated by

Nens
0 ==~ —x) + R

ens ;_

where N, means a given number of ensemble elements (in the experiments, N,,,= 50). Matrix R has been
described above, and its diagonal contains the values §;,= 0.01 m?,j =1, ..., N, as recommended in [22].
To assimilate the data for a specific day, the ensemble elements have been selected around this data within
5 days. For instance, if assimilation is performed for April 7, then the values of the ensemble are defined
as April 1, 4, 7, 10, and 13 for these 10 years, i.e., 50 values in total. By this definition, Q represents a sym-

metric matrix of dimensions N X N, which is invertible as supposed earlier.

Note that specification of matrix Q resembles that of matrix HBH', where B is the background covari-
ance matrix widespread in Kalman filtering [10]. However, in this case, matrix Q is calculated inde-
pendently of the state vector x at the previous step (the background state).

Using the developed assimilation method, we have performed numerical experiments on data assimi-
lation in HYCOM. The experiments cover a horizon of 15 days, i.e., [0,7] =[01.04.2011, 15.04.2011], with
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Fig. 1. The SSHA fields (a) after assimilation, (b) before assimilation, and (c) their difference at day 15 (the last day of
assimilation).

step Af = 1 day, data assimilation at each step by formulas (3) and (11), and specification of vectors A, C,
HF, and HA, as well as matrix Q, as described above.

For the analysis of the results, it is possible to consider the SSHA field maps obtained before and after
assimilation. Figures 1a—1c show the field after assimilation (the analysis field), the field before assimila-
tion (the background field), and their difference for 15 days (the last day of assimilation), respectively. Fig-
ure 2 illustrates the SSHA field map yielded by the parallel experiment using the model without assimila-
tion (control calculation) for the same day. As it is clear from Fig. 1a, the SSHA field has a eddy mesogrid
structure, which is pronounced in the northern part of the calculation domain (in the Gulf Stream zone),
as well as near Drake Straight and the Brazilian—Malvinas border in the southern Atlantic. The ampli-
tudes of the anomalies reach 0.6 m, which is a very large quantity in the synoptic scale. Generally, the
fields in Fig. 1b have a similar structure as the field demonstrated in Fig. 1a, but their amplitudes are
smaller and the eddy mesogrid dynamics become faint. This is especially noticeable in Fig. 1c, which
shows the difference between these fields (the analysis field minus the background field). The northern
and southern parts of the Atlantic have explicit eddies with amplitude reaching 0.3 m, both of positive and
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Fig. 2. The SSHA fields for the check calculation.
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Fig. 3. The interpolated SSHA field and the reanalysis-based observed SSHA field for April 15, 2011.
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negative dynamics. Hence, the data assimilation preserves and even strengthens the synoptic and mesog-
rid structure of the SSHA fields, whereas the model without assimilation smoothens it. This conclusion
is verified by the SSHA field obtained using the parallel calculations in the control experiment (see Fig. 2).
Here the SSHA field contains appreciably fewer eddies of the synoptic scale and mesoscale and their
amplitude is also considerably smaller than in Fig. 1. An exception is the pronounced eddies in the Gulf
Stream zone that appear in all the calculations.
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Fig. 5. The bounds of the SSHA analysis field at each point under given initial variance (95% significance level at 40° S,
50° W).

Figure 3 shows the SSHA field for April 15, 2011. This field has been directly copied from the data from
www.aviso.altimetry.fr in the NetCDF format and their visualization using the FERRET graphics pack-
age. Therefore, the domain in Fig. 3 is not identical to the model domain, see Figs. 1 and 2. Moreover, the
quantitative comparison of these fields (the model and observed ones) seems complicated, as the grids do
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not coincide and the interpolation procedure yields an additional error that is difficult to consider. How-
ever, it is possible to make a qualitative comparison.

According to Fig. 3, the observed field in the equatorial Atlantic is homogeneous, whereas in the
northern and southern Atlantic, it has a pronounced eddies structure. The amplitude of these vortices
coincides or approaches the SSHA field obtained by data assimilation. Another feature is the existing neg-
ative anomaly in the equatorial zone, i.e., a “tongue” along the equator whose amplitude reaches 0.1 m.
This anomaly appears in the analysis field (see Fig. 1a), but disappears in the check field; i.e., the model
does not reproduce it. The anomaly exists in the field before assimilation, but its amplitude differs from
the observations. And we conclude that, due to assimilation, the correction runs properly, both in quali-
tative and quantitative terms.

The skill of the assimilation methods can be assessed by the closeness of the assimilated field and the
observations in comparison to the control field. This technique is widespread, both in the theoretical
investigations and practical calculations [1, 17]. Figure 4 shows three curves corresponding to the behavior
of the anomalies of the sea surface height along a satellite track during integration of the model, namely,
the observed SSHA (dashed curve), the calculated SSHA (thick solid curve), and the assimilated SSHA
(thin solid curve). Obviously, the calculated curve lies between the control and observed ones.

At the end of this section, we estimate the adequacy of the obtained curve at a given point during assim-
ilation. As shown above, the assimilation method allows computing the confidence bounds for the con-
structed analysis field at each point under the given initial variance. Figure 5 presents these bounds with
the 95% significance level at 40° S, 50° W. The calculation has been based on the Fokker—Planck equation
(12) with the initial Gaussian distribution having a zero mean and 0.01 m? variance. All the parameters of
this equation have been defined numerically using the model. We do not describe the calculation method
of Eq. (12), as it is similar to the one adopted in [17]. According to Fig. 5, the confidence bounds expand
rapidly, becoming almost invariable as of the sixth day of integration. Under the initial anomaly of 0.3 m,
the lower bound is close to 0 and the upper one is about 0.6 m.

4. CONCLUSIONS

This paper has been dedicated to the theoretical development and practical implementation of the new
data assimilation method based on the theory of diffusion-type random processes.

The method is rather simple to implement and reproduces the real structure of the observed fields at
the synoptic scale and mesoscale. It has been demonstrated that, under altimetric data assimilation, the
modeling error decreases and the resulting fields are closer to the observed counterparts. Moreover, it is
possible to construct the confidence bounds of the modeling error, both in theory and practice.

The paper has analyzed and assimilated only the altimetric fields, more specifically, the anomalies of
the sea surface height. However, the method can be used to calculate all the model fields before and after
assimilation, as well as to assimilate other observed parameters, particularly, the sea surface temperature
and the ARGO drifter data. This is the subject of future research.
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