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1. INTRODUCTION. CURRENT APPROACHES TO THE SIMULATION 
OF COHERENT HYDRODYNAMIC STRUCTURES

The class of hydrodynamic problems associated with various aspects of the evolution of vortex move�
ments of liquid and gas is exceptionally important both in terms of practical applications and the study of
the theory of evolution of multiobject statistical systems. The subclass of problems significantly associated
with the presence of some ordered ensembles of elementary vortices of various types (including processes
of their confluence into agglomerations and disintegration), known as (composite) coherent macro and
meso structures is of special importance. This subclass can be viewed from different viewpoints and by the
use of considerably different approaches in the description procedures. For the most part, this is due to
the possibility of analyzing and simulating the processes going on in gas�liquid coherent systems of
(1) direct classical equations of hydrodynamics reduced to a form suitable for research in this particular
case; (2) the latter’s complexes (transformed in a certain way in order to smooth and/or to average) and
equations describing the chaotic movement (which, generally speaking, may possess a quality of separa�
bility by some parameters). It should be noted that the degree of validity of the existing concepts underly�
ing the physical substantiation of this approach is a problem for discussion; leaving aside the pro and contra
of this veracity, according to the latter approach, it is possible to present the moving vortical medium (in
particular, in phenomenological simulation by a pseudo�structured shift of the turbulence) as a thermo�
hydrodynamic complex, consisting of two or three interpenetrating continua (subsystems), which fill up
one and the same volume of the configuration space continually. This procedure, in turn, can be divided
into two classes of subprocedures, one of which can be descriptionally called a decomposition�hydrody�
namic subprocedure (DHSP) and the other a hybrid subprocedure (HSP). The joint DHSP class may be
thought of as including the approaches based on binary and ternary decompositions of turbulent flows,
whose bases may have been formulated for the first time as early as in the classical works by O. Reylnolds
and L. Prandtle; today’s language of decomposition studies was formulated in the 1970s [1–4] (later the
mathematical apparatus was the topic for a great number of publications, among which [5–9] should be
noted specially). Among the similarly large number of works associated with the class of hydrid subproce�
dures, using both the Navier�Stokes equations (NSEs) and the stochastic�termodynamic approach (see,
for example, [10–13] and its review in the literature), we note [14–17], considering the subsystems of the
averaged movement of liquid (arising as the result of the theoretical probability averaging of instantaneous
hydrodynamic variables) and composite turbulent chaos (associated with the stochastic low�scale pulsa�
tion motion of vortical liquid and with a coherent component—frequency clusters, whose image in the
space of the state of equivalent dynamic systems are the limit cycles); as a result, equations of the Focker
Planck�Kholmogorov type are obtained for the functions of probability distributions of stochastic charac�
teristics of vortical formations in the space of internal coordinates (these equations describe Markov dif�
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fusion processes, , taking into account transitions among stationary states of the system as a result of the
cycle of consecutive losses of consistence—in a sense, it is possible here to speak of analogies with the evo�
lution of the quasi�stationary states of the statistical vortical systems). 

As to the approach based on the use of directly classical hydrodynamic equations, we note that with
respect to the general calculation procedures, it is at present relatively limited, because the analysis of the
behavior of multivortical systems in postlaminary modes, without auxiliary simplifying assumptions on
the structure of these equations themselves is extremely difficult: for example, the division in a certain way
of the corresponding spatial and time scales. These simplifications are a transition to the above�mentioned
decomposition level in the description of hydrodynamic processes. However, the various operations of
averaging, closing, and accentuation of high frequency pulsations (generally speaking, ambiguously intro�
duced) have a fairly significant effect on the end result. It is possible to say that these operations introduce
a system of equations of coherent�vortex motion, independent of the original hydrodynamic laminar
equations of coherent�vortex motion [18]. As an example, we can refer to differences in the approaches
between the known and widely used DNS and RANS calculation procedures [19–21]: direct inclusion into
consideration of all the levels of motions of a medium (leading to a considerable increase of time for com�
puter simulation), or the preliminary closing of the equation hierarchy for the highest moment in a rather
arbitrary way. We can also mention algorithms (specialized by scales) of the LES type (see, for example,
[22–24]) and many of their varities, in particular, the vortonic approaches / /  [25, 26]. In
this work, we limit ourselves only to mentioning procedures of this kind, since for their detailed review a
special, rather long, paper is needed. 

However, it is necessary to note that, within the approach of classical hydrodynamic equations, proce�
dures with algorithms based on the Euler system equations with certain modifications, caused by the
introduction of certain semiphenomenological assumptions (see, for example, O.M. Belotserkovskii [27–
29]), are being successfully developed. They are characterized by the possibility of obtaining in the hydro�
dynamic modeling of large�scale coherent structures very accurate (in terms of coincidence with really
observable manifestations of natural processes) results.

At the same time, the expansion of the class of practical tasks, which is unavoidable as a result of the
progress in basic research and technologies, evidently leads to considerable problems in the available
approaches to the hydrodynamic simulation, such as the impossibility of mass practical calculations
because of the difficulty of the algorithm, insolvability of high frequency pulsations, reasoning for the
choice in the way of closing the chain of moment equations, etc. Thus, it seems necessary to turn to the
analysis of a set of problems associated with the vortical statistical mechanics, including disequilibirum
(kinetics of multivortical systems).

2. SIMULATION OF VORTICAL HYDRODYNAMIC FLOWS BY USING METHODS
OF STATISTICAL MECHANICS 

The conceptual aspects of the mechanics of liquid flows of the vortex kind have been the subject for
intensive research already for a rather long time (at least since the middle of the 19th century, starting with
the pioneering works of H. Helmholtz and G. Kirchhoff), and accordingly the results obtained during the
past one�and�a�half century can be used as the basis for the construction of evolution dynamics of large
scale (coherent) structures. The use of methods of the theory of vortices with a maximally simple struc�
ture, i.e., Onsager and Rankin vortices, is a natural mathematical formalism here; however, for the cases
where a medium’s motions may considerably differ from the global states of equilibrium in the system, i.e.,
in processes associated with transport in the presence of quite a significant degree of anisotropy/inhomo�
geneity in the system, it is necessary to take into consideration the possibility of the emergence in the con�
sidered system of compound evolving subsystems, whose description requires a principal modification of
the trivial vortical approach. A procedure based on the mean field theory (G. Joyce and D. Montgomery
[30], P. Chen and M.C. Cross [31], etc.) is the simplest and at the same time efficient method here; it can
be introduced based on the variational formalism (in particular, under the conditional extremality of the
system’s entropy) mentioned earlier. The efficiency of this approach in the investigation of about�equilib�
rium statistical systems is quite evident, which is confirmed by a considerable number of publications by
different authors that are devoted to this topic (see, for example, [32–35]); we can state quite definitely
that at present, in the construction of the calculation algorithms of the vortical models of flows of different
genesis, it seems that the most progressive procedure is the procedure that takes into account just the pres�
ence of the self�agreed interaction of the elementary substructures. The method of the mean field can be
taken as the formal basis in the construction of the consistent kinetic approach of the analysis of interac�
tions in multivortical ( ) systems having a set of quasi�stationary meta�stable states, possibly having
a tendency to relax to the asymptotic collisional equilibrium. Nevertheless, the problem of investigating
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the appearance and formation of the structure of ordered complexes of vortex�like objects in the process
of their interaction in hydrodynamic (or, in the general case, pseudo�hydrodynamic) systems (specifically,
those described by the Euler�Helmholtz, Bragg�Hawthorne, Grocco�Vazsonyi, etc., equations) having a
set of local states of relative equilibrium with the presence of restrictions—in particular, as the stationarity
of the local values of energy, circulation, etc., under the conditions of an extreme value of the spatial dis�
tribution of enstrophy (generalized enstrophy, entropy, etc.) of the evolving medium—is at the present
stage very far from completion. Approaches to the statement and analysis of this problem (even in the sim�
plest version) are at present at first sight very diverse, although actually they are based on the apparatus of
the generalized statistical theory of L. Onsager [36] and its various extensions—formalism of quasi�equi�
librium statistical mechanics with limitations in the treatment of the RSM (R. Robert�Sommeria�Miller)
[37, 38],  (Ellis�Haven�Turkington) [39] methods, or the use of the latter’s closely related
approach based on the variation of the Casimir�Chavanis functionals [40], as well as the method of vari�
ation of the stream�oriented �functional [41] (in a sense similar to the Van der Waals�Cahn�Hillard
model [42], describing the coexistence of various phases of matter in ordinary thermodynamics), as also
other such approaches (    etc.), with no more than insignificant differences from the
above mentioned ones. It should be noted that actually beyond these procedures, the problem of the direct
description of the primary genesis and nonequilibrium development of physical macroobjects of the type
considered in this work remains untouched; i.e., the description of (composite) coherent systems, includ�
ing in themselves many substructures, each corresponding to the local state of the relative stylistic equi�
librium of the given system (for example, Onsager vortices, or the carrier’s vorticity of a finite size in the
fluid flow, described by Euler’s equation or by the NSE). In other words, the microscopic dynamics of the
aggregation of the substructures, by which the vortices of various types are understood (or of their aggre�
gation ordered in a certain way), was not investigated sufficiently. In order to achieve agreement among
the phenomenological asymptotes of specific applied problems, many authors make additional assump�
tions on the structure of the vertical substructures of the total system and on the introduction of effective
(adjustable) parameters into the calculation equations (suitable examples can be found in [43–45]).
Although this is logical, it reduces the vortical dynamics to a form of one of the possible calculation pro�
cedures of hydrodynamics. Maintenance of the optimal balance between the universality of the approach
and suitability for obtaining reasonable results during numerical simulation (using the algorithms based
on this approach) is in this case a very difficult problem. This is because of a number of factors, among
which it is now necessary to find the stochastics of the properties of vortex systems at their very small num�
ber (  on a plane), the difficulty of the discernability of the instability of the simulated flow because
of the instability of the system of discrete vortices, and the general doubtfulness of the catholicity in the
application of approximations of the a priori type factorization of multivortex functions of distribution or of
account for correlations among vortices by means of some optimization assumptions (often having a very lim�
ited range of applicability in changing the set of the external and internal parameters of the problem).

In particular, we should mention models of the distribution of vorticity in the vortex core, used in prac�
tical calculations of the distribution model of vorticity in the vortex core: those of the fractional�power
Gussian type, with an empirical cyclon profile, Q�type Leibovich, Rosenhead regularization type, etc.
Each of these models can describe sufficiently reliably only some particular types of problems (relating to
laminary flows, laminary�turbulent transition in shear flows, detachable turbulent mode of the afterflow,
etc.); however, the definition of the elementary vortex geometry by the kind of problem would be difficult
without information on the details of the real physics of the process in each case (adaptation of the specific
type of vortex structures, optimal for calculating a specific type of vortex structures, is often made a pos�
teriori by iterative selection. In particular, it is necessary to identify the specific class of works for research�
ers who are members of different research teams, depending on the opportunity and various ways of the
regulation of calculations, based on the pointlike vortices by ascribing to them the carriers with a nonzero
measure, formal desingularization of the Hamilton�Routh system, etc. The possibility of forming a scale
hierarchy of the clusters of the hydrodynamic mesolevel and macrostructures of desingularized pseudo�
point vortices seems to have been ignored up to now. The improvement of the formalism of the vortical
kinetics in the direction of the use of nonlocal vortical carriers (the development of special numerical algo�
rithms) without adequate inclusion of the effect of the intervortical correlations and/or introduction of
strictly justified assumptions on the effect of the dynamic properties of the vortical system on its local
topological properties is obviously not very promising; as a means of overcoming this barrierin the devel�
opment of the above�mentioned formalism, it is possible to propose a geometrodynamic approach, using
methods of the Lagrange and Hamilton physical geometries. It is clear that the situation with vortical non�
equilibrium transport is in many ways similar to that in the ordinary multiparticle theory (taking into
account the logarithmic weakness of the interaction on remote distances and the possibility to change the
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internal structure of the substructures when they are found to be close to each other—at a kind of inelastic
scattering using the analogy with standard processes of molecular atomic theory). In the system of vorti�
ces, as in the case of the ordinary multiparticle system, there are two modes of relaxation to equilibrium:
collisional and noncollisional (collective interaction through a self�agreed field). However, there are also
principal differences, of which the main one is the fact that the idea of equilibrium requires in our case a
somewhat different meaning than the Boltzmann distribution in the classical case: the quasi�stationary
state characterized by the presence of a local maximum entropy that in the vortical system is not the only
one (and depends in the general case on the initial conditions), and it is possible to admit the case of the
existence of consecutive transitions between such states, including those with a hierarchical complication
of the internal structure of flow: it should be noted that a similar (in a sense) situation arises also in the
astrophysical systems with the Lynden�Bell statistics [46], whose evolution is described by the Vlasov�
Poisson and Landau equations. The collisional mode in a vortical system can be described using the analog
of the Bogol’ubov�Born�Green� Kirkwood (BBGKI) chain for reduced functions of the vortices’ distri�
bution in the expanded phase space (extended on the bases of the cotangential over the configuration
spaces of the external and internal coordinates, where the latter describe the change in the shape and level
of anisotropy of a particular vortex), deduced from the corresponding Lioville equation for the monogenic
vortical function N. 

The situation with the analysis of the properties of kinetic equation chains for vortical systems has been
up to now not quite satisfactory, since practically all the obtained results apply only to the point vortices
(see, for example, [47, 48]). It is because of the extreme labor intensity of the preliminary analytical con�
structions and estimations, as well as the coexisting narrow practical orientation of the research in this
direction: the type of vortices used in the course of the numerical simulation, as has been already men�
tioned, is determined by the physical content of the considered problem, so that actually up to now it has
been considered more reasonable to introduce empirical corrections than trying to reveal through the
BBGKI chain the specific form of the correlations between the vertical substructures of various forms and
structure. A pragmatic approach of this kind evidently leads to the fact that the overall picture does not
appear complete here, including in terms of the principal need for the rigorous substantiation of the sim�
ulation algorithms; the Onsager vortices are a mathematical abstraction of a high level; thus, the use of the
corresponding formalism of the calculation has limits of its own, and in a number of cases they are very
important, down to the actual discrepancy with the physical picture of the hydrodynamic processes. For
simulation of the fine characteristics of the flows, in particular, those associated with the pulsation char�
acter of the flow, with the development of the instability, and with the investigation of the detachable
zones, the calculation methods by the use of point vortices are clearly not optimal, since for a description
of these effects, one has to considerably increase the number of vortices, which, among other things, leads
to the stochastization of their trajectories because of the unlimited increase of the speeds of the point car�
riers at their mutual approximation (which generates the need for the use of the apparatus of the corre�
sponding fluctuation�dependent equations, for example, those of the Boltzmann/Enskog�Langevin type
[49, 50], which in fact turns us back, at a higher level of the complexity of the approach, to the earlier men�
tioned calculation hybrid subprocedure, HSP). 

3. PROTERTIES OF COHERENT STRUCTURES OF HYDRODYNAMIC TYPE

In terms of the physical content of the processes, the coherence is associated first of all with the pre�
served order of the evolving medium in combination with the corresponding scale of the change in the spa�
tial characteristics of the system. Actually, this event, seen as a special kind of organized movement of liq�
uid, was for the first time described in [51–53]. In today’s hydrodynamics, the coherent structures are
defined, following [54], as connected, large�scale, turbulent, liquid masses with the vorticity correlated by
phase over the whole area of the space occupied by them. Similar definitions are given also in [55] and [56],
whose authors think that the most characteristic properties of coherent structures are their isolation from
the outside flow in the sense that inside these structures the vorticity and macro characteristics are distrib�
uted in a quasi�deterministic way, i.e., on average, orderly and, moreover, these structures have a suffi�
ciently long time of existence without a principal change of their species. 

The presence of the core descriptive elements in the definition of the considered physical phenomenon
brings into it a considerable level of uncertainty. Also, we have to take into consideration the probability
that in the taken definition limits of coherence, the medium’s motions are described not as an undiffer�
entiated set of structures with homotopically changing sets of parameters but as a whole range of basically
different objects, formally collected by a number of attributes, related to the features of quasi�determinism
in the given processes (the processes of the occurence of orderliness in the structure of the hydrodynamic
flow on the marked scale).



MATHEMATICAL MODELS AND COMPUTER SIMULATIONS  Vol. 8  No. 2  2016

COHERENT HYDRODYNAMIC STRUCTURES AND VORTEX DYNAMICS 139

Thus, the use of the mathematical formalism of Hamilton systems of hydrodynamics for descriptive
purposes is in this case not only reasonable but possibly quite necessary—first of all, in order to have a full
understanding of the flow coherence in a hydrodynamically natural conceptual context, excluding arbi�
trariness in interpretations (typical of descriptive definitions) and adequately separating phenomena that
are externally similar but internally substantially different, which can be put into the class of coherent
ones. In other words, in the investigation of this circle of problems, to move from the general physical level
to a specific set of problems of mathematical physics, it is necessary first to turn to the possibility of for�
malizing the basic subject of investigation. 

Thus, we will base ourselves on a strict definition of the general coherent structure on Poisson varieties
and introduce according to it a definition of the coherent structure of the hydrodynamic type. For this, we

will consider at first an abstract evolution equation of the  type, where  is an
autonomous (Hamilton) functional over the space of the states   is the variation derivative H,

which is an element of the space cotangent to space    is the structural
mapping, an operator determining the skew�symmetric and satisfying the Jacobi Poisson bracket 

where  is the internal product in the space of states. If the operator  is inconvertible, then its

nucleus is not empty and  and  is the Casimir function satisfying condition 
The system in the latter case will be the Poisson system (a generalization of the Hamiltonian system).

The Euler�Helmholtz equation in the two�dimensional case  or, explicitly, 

(where  is the operator of the simplectic structure, a  matrix) is an example of the Poisson system

with the functional  of the energy of the medium’s motion in a limited area with the

Dirichlet conditions on the boundary and Poisson bracket: 

The variation derivative  can be calculated proceeding from the earlier introduced form of the

Lamb energy  by definition, the first variation  =

 however, on the other hand,

Thus,  Thus, in the standard record, the second term in the left�hand part of the Euler�Helm�
holtz equation (EHE) given above in the explicit form is 

If the task of finding the energy extremum in the presence of additional conditions of the type
 where  are additional integrals of motion, consisting of invo�

lution (  ), then its solutions will be the states of relative equilibrium (SRE)
 (determining multiplicities, invariant for motion). In the study of the vortical flow charac�

teristics, it is possible to use integrals of energy, circulation, enstrophy, angular momentum, and linear
moment: 

In particular, in order to obtain the Rankin vortex, it is necessary to solve the problem for minimization

with limitations  As a result we have 
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where  is the function�indicator of the circular area  (moreover, the function of the energy

value is  =  and the solution rotates as an aggregate

with angular velocity ).
Consideration of the relative equilibrium states for the vortical NSE can in the overwhelming number

of the cases of interest be reduced to the analysis of the stability of the inviscid SRE families. For the NSE

in the form   (in the flat D area, and the natural boundary condition 
is given on the  boundary), we assume initially  and consider the variation problem with limits, for

example, on the enstrophy  having an infinite SRE family SRE  ( ),

and the state  when and only when   are corresponding values of the dis�
crete spectrum of the Laplace operator multiplied by –1 in area D (the Euler�Lagrange equation coincides
with this problem with its eigenvalues); moreover,   at  ( ). All the  families

are invariant relative to the vortical NSE, but the SRE’s amplitude is nonstationary: for any 

their evolution is described by the equality  moreover,  and
 The  family is an attractor for the NSE; at the same time, all the remaining families

for  are unstable.
Now we provide the basic definition of coherence in a system that is based on the ideology of the vari�

ation of functionals in the Poisson systems [57, 58]: as the coherent structure (CS) for a (generalized)
hydrodynamic system will be the generalized state of equilibrium (elementary CS) or a totality ordered in
a certain way of a generalized SRE (the CS component) of the problem for variation of the specified
Casimir invariant (or of energy, thermodynamic potential, etc.) at the given values of some set of other
invariants that is the stationary solution of the Euler equation. Generalized hydrodynamic systems refer to
dynamic systems whose evolution is described by equations coinciding with the hydrodynamics equations
(of Euler, Navier�Stokes, Lamb, etc.), taking into account the formal substitution for dependent variables
and additional terms, which actually do not change the structure of the equations (potential volume
forces, Coriolis forces, terms accounting for effective dissipation, turbulent viscosity, etc.). Such systems
have been studied for a long time, in particular, with respect to plasmodynamics—based on a drift approx�
imation (the Poisson drift equations), applied to the theory of the quasi�geostrophic models of the atmo�
sphere, based on the analysis of baroclinical flows behaviors, etc. 

4. DYNAMICS AND KINETICS OF THE ONSAGER VORTICES

Consider the distribution of the Onsager pointed vortices, located at points  with intensities

(circulations)  ( ) of the limited one�connection area D (the area is ), on a
plane. We determine in the standard way the volume of the phase area of the N vortex system:

 Acting according to the ideology of the microcanonic description of the system of N vor�

tices, we introduce the density of states  determining the volume of

the phase space per unit of energy E (here  =  is a function

of the Hamilton–Raus N�vortex system, we ignore the influence of the boundary effects). Determine the
N�vortex function of the system’s distribution 

in the presence of the normalization condition of  as

We introduce the volume of the phase space, which corresponds to the energies of the  system,

smaller than some given energy E:  (  is the minimal energy of the vortical sys�

tem). This volume monotonically increases from some minimal value  up to  at the increase
of energy E in the interval  (  at the approximation of the pair of vortices ).
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Moreover,  will have the maximum (according to the known Rolle theorem) at a cer�
tain  (at  we have  to provide the convergence of the interval in the right�hand part

of the definition  given above).

The equilibrium evolution of the statistical system is described by the mean�field equation (Joyce
Montgomery or UDM), linking the local vorticity and the function of current: 

The appearance of large structures in a real vortical flow, which can be compared to those in the real
ones in the spectral energy interval, can be explained and described through the use of the subequilibrial
statistical mechanics of the vortices. 

Consider the bounded system  of area G, occupied by the vortices (circulations  will be thought of
as those that have the same sign); as the coordinates  are canonically conjugate, the measure of the cor�

responding phase space of the N�vortical system is finite and presentable as  Moreover,

the density of the energy states is equal to  and the connec�

tion with the equilibrium N�vortical function is  = 

(  = 1). The volume of the phase space responsible for energies H, not exceeding the

assigned value E, is 

Function  monotonically increases from zero to  with the corresponding increase of the
argument from  to  Thus,  has the local maximum at  For the
microcanonical ensemble, the entropy S and temperature T are found in the following way: 
and  Obviously, for  function  decreases and, therefore, in this interval the tem�
perature of the system is negative ( ). Thus, the qualitative picture of the vortices’ behavior depending
on E in this area is clear: it is the creation of vortical clusters with a concentration that is found in the sig�
nificant dependence on the temperature field, and the density of the vortices in them increases with the
increase of the energy of states, starting with  In the case  the temperature is  and the vor�
tices will be accumulated near the area walls. 

The dynamics of point�like vortices on a plane can be described by the Euler equations

 (  ), obtained through variation of action 

on the Lagrange�Chapman function: 

These equations of motion  ( ) in a vortical system can be pre�

sented by the Legendre transformation in the Hamiltonian form (for simplicity for equal circulations γ):

  where  is the Hamiltonian�Kirchhoff function of the

system,  is the potential of interaction of the vortices; and 

The Poisson bracket corresponding to this (non�dissipative) Hamiltonian system is

Defining in the standard way (similarly to the N�partial), the N�vortical function of the distribution
 as the density of the probability that at time moment t the ith vortex is located at the point

 ( ), we consider the corresponding Liouville equation for  
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This equation can be presented as  where  is the Liouville operator of the system of N
vortices on the plane

where  The reduced k�vortical ( ) functions of distribution are found
through relationship 

Consecutive integration of the Liouville equation by variables  ( ) leads to a chain of
meshing equations of the BBGKI type of the kind of

Introducing k�vortical correlation functions for the given chain of equations and using the Ursell�Mayer
decompositions 

 it is possible to obtain within  on the condition of the ignorance of the th order correlation

function, a closed combination of k kinetic equations; moreover,    and in

general  In particular, for  and  we obtain

 The next�to�last equation coincides formally with the Euler hydrodynamic equation and can be jux�
taposed to the Vlasov equation (with the self�consistent field), used in the molecular�kinetic theory. The
system of the two latter equations can be brought to one equation with the pseudo�collisional terms of dif�

ferent types. As tolerances establishing the explicit kind  it is possible to include the collective
effects, or the terms only of  order, as well as transition (its absence) to the Markov limit  in the
corresponding operator of the Volterra shift by the trajectory of the vortices.

5. APPEARANCE OF VORTICES IN THE SHIFT FLOW AS A CONSEQUENCE 
OF THE PROCESSES DESCRIBED IN THE TERMS OF MOLECULAR KINETICS

We consider problems associated with the appearance of vortical structures in a liquid in a shift flow (as
the most physically evident process in the formation of coherence in a hydrodynamic flow) in terms of the
molecular�kinetic theory. 

The stationary Boltzmann equation in the n�dimensional ( ) case after nondimensionalization
(using the characteristic values of the flow parameters) is 

where  is the scatter index ellipsoid for solid spheres of radius  and

 is the Knudsen number (Ma and Re are the Mach and Reynolds numbers, respec�
tively). 
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The collisional term  is a bilinear integral operator, acting

between the Cartesian pair of Banach spaces (BS) of vector functions  and BS  

  is the Hilbert space (HS) with scalar product 

 is the linear part of the collisional operator,  is the self�conjugate integral oper�

ator (in HS ),  is the frequency of collisions of the molecules�spheres ( ), and

 =  The operator  is non�positive ( ) and is of the Fredholm qual�

ity of the zero index ( ) with an �dimensional kernel 
consisting of functions  

The Frechet operator derivative, associated with this equation is 

To  we apply the Laplace transformation by coordinate x1: 

where  is the parameter corresponding to the tolerable absciss of the line�contour in the

(semi)plane of the transformation’s convergence (in ); we obtain  –

 We assume  in order to get rid of the inhomogeneity of the equation (as will
be seen below, this requirement is insignificant in the structure of the analysis). 

In accordance with the property of the local stability of the index and the defect of the Φ�isomorphism

( ) with a relatively limited perturbance in the neighborhood  t.  whose radius is determined

by the value of the minimally reduced module  (  is the narrowing of operator  by

   where  is a projector (in H) into a set of added invari�

ants), set  of the eigenvalues of the ( ) operator  is three�dimensional ( ). The Eigen

(generalized) functions of the operator beam  are  where

 We introduce endomorphisms   whose
action in the corresponding BS is determined by equalities 

where  and  (  ). We have the opportunity of
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Application to both parts of the equation  of operators  and  allows us to

obtain a system of equations of the Lyapunov�Schmidt branching method ( ):

 The first one of the equations given above, considered as a totality of differential�functional equations,
can be viewed as a system of autonomous combined propulsion units (CPUs) of the Riccati type with the
coefficients expressed through the values of the functions of a certain (above�mentioned) kind on the sec�

ond Frechet derivative of the collinional term CPU 
The second Lyapunov�Schmidt equation can be rewritten as follows:

 As the polar features of the generalized resolvent 
of the linearized Boltzmann operator are not included in it, there is a possibility to introduce for consid�

eration a limited pseudo�reverse operation   Its construction is
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with the norm  From what was said above, it is evident that both the Frechet derivative

 and the operator that is the reverse of it  are limited; there�
fore, based on the theorem of the implicit function, it is possible to introduce (in the only possible way) a
limited, continuously greatly differentiated mapping  (functional on three�dimensional sets of
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( ), where  is a scale parameter (for example, ), leads to a change of

operator  by its homotopical expansion  ×  Consider
the solution corresponding to the second equation of the branching system at the above�mentioned nor�

malization of the equation in the neighborhood  = 

where  is some (a priori known) function with the end norm, but  is determined by the relationship

  

In this neighborhood  and based on the above�mentioned theo�

rem on the implicit function,  is the functional on dependent variables η,   It is pos�

sible to show that the iteration scheme is realizable for obtaining functions  and  using as the

initial approximation, for example,  (the functions obtained from the hydrodynamic calcu�

lations) and  in the earlier given form through a pseudo�reverse operator  (the radius of
convergence of scheme ρ).

The former equation of the Lyapunov�Schmidt system  that is of a global character,
depending on the configuration variable, can be written as follows:

where 

 

Having studied the properties of this equation, we obtain the conditions for the appearance of cortices
in the laminar flows. They consist of the possibility of presenting the spectrum of the matrix of the Riccati
linearized system as a decomposition into eigenvalues lying on an imaginary axis (complex conjugated),
and a set of eigenvalues with a negative imaginary part. In real physical systems, such a structure can be
obtained in the consideration of the Boltzmann type of equation system (in the simplest case in the con�
sideration of the Lorentz type of gas). Thus, the appearance of vortical structures can be explained by the
Hopf theory of bifurcations, for which it is necessary to include the Langevin collisional term into the
right�hand part of the kinetic equations. Moreover, the operator spectrum associated with the modified
equation shifts and a intersection (with a possible overlapping) takes place of the zones of decay of their
imaginary eigenvalues. 

6. CONCLUSIONS

The optimal procedures for the construction of the kinetic theory of vortical objects should be oriented
toward universality in applications and describe the possibilities of (1) the use of an additive presentation
of the cluster function of the distribution of the vortical system (through the medium of the group densities
of the probability of metastable elementary vortical clusters of different topologies); (2) the application for
designing the corresponding hierarchy of the BBGKI type (a) of the desingularized elementary vortices
(including those in the coarse�grained presentation, taking into account the changed statistics) and (b) the
totalities of a certain kind of Onsager vortices that are the states of relative equilibrium and approximation,
in the sense of the similarity of certain integral characteristics, the pseudo�local Rankin, Kirchhoff, Tay�
lor, and other totalities of a certain kind (clusters of the vortical crystals’ type [59]; (3) division of the
dynamics of the mesostructures into external and internal, and the endolevel evolution is described in
terms of the geodesic motion of the elementary vortices, and that of the exo�level, relative to their clusters,
adapted to specific needs (including those of specially designed Lagrange varieties). The developed for�
malism of the double�level coherence (with the establishment of a certain correspondence of the proper�
ties of the meso� and macrostructures) is applicable to both the solution of applied problems and the anal�
ysis of the theoretical aspects in the dynamics of the coherent motion of a medium. Moreover, the given
formalism has its conceptual justification in the theory of the Back�Cohen super�statistics [60], stating, in
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particular, that with the presence of scale segregation in the structural design of dynamic systems, the cor�
responding statistics and typoforms of the stationary states may change in an extremely fundamental way. 

However, the analysis of the coherent macrostructures has specifics of its own (related directly to the
basis properties of the given objects, following directly from the definition); thus, we propose formulating
the procedures of their description based on the fully conditioned approaches or by the hierarchy of the
kinetic equations (not directly using the theory of random processes). It seems reasonable to specially note
that, generally speaking, the existence of vortex�like structures of different types is not a prerogative for
exclusively gas�hydrodynamic flows (among which it is quite reasonable to specially mention some of the
seemingly exotic, boundary, subspecies, for whose analysis it is quite possible to use the concepts of shal�
low water, (quasi�)geographical flows, and Rossby waves). Due to the similarity of the control equations,
it is possible to expect a possibility for the implementation of this type of objects also in the theory of the
helium�II movement, magnetic hydrodynamics, the dynamics of star clusters, and plasma dynamics (in
the use of the apparatus of Vlasov’s equation). In particular, in the electronic hydrodynamics (in the for�
mal redenomination of variables: taking charge for the local circulation, the magnetic field strength for the
current function), it is possible to obtain equations of the Charney�Hasegawa�Mima�Petviashvili type,
whose solutions are vortex�like (and are accessible for observation in the course of the experiments); the
presence of the filamentation of the thread�like structures is natural in the computation experiments for
high�current electron�proton beams, including the relativistic and quantum�statistical dynamics of a
high�flow liquid. However paradoxical the above�mentioned similarity of the control equations may
seem, it is one of the causes for the relevance of the development of a suitable kinetic apparatus; the phe�
nomenological corrections, ordinarily used by most of the authors in modeling vortical motions in hydro�
dynamic problems, cannot be directly transferred to the cases with fundamentally different problems of
magnetic hydrodynamics in terms of the physical context, plasma dynamics, etc., and, besides, a change
in the set of macroparametrical variables, even in the common hydrodynamics, plasma dynamics, etc.,
may lead to a fundamental change in the character of the flow (for example, that of Taylor�Couette and
Benard). Thus, the above�mentioned corrections cease to effectively perform their role and cannot guar�
antee the correctness of the obtained results. At the same time, the construction and development of the
theory of kinetics of vortical structures, in particular, those that are close in a sense to CS�states, allow the
direct study of physically different processes, and the critical effects in the change of the macroparameters
of the medium can here be taken into account in a more consistent way, outside the bounds of the limiting
phenomenological tolerances (in particular, by the method of the bifurcation theory for solutions of non�
linear equations at the points of the discrete and pseudo�discrete spectra). The genesis and develop�
ment/decay of the coherent state in the macrostructures need to be taken into account in the description
of the change in the topology system in its entirety (the local intracluster transitions of the states in relative
equilibrium to close geometrical configurations are, generally speaking, determined not only by the inter�
action with the nearest neighbors but also by the collective effects due to the influence of the neighboring
mesostructures, although in a number of cases there is a possibility for their disconnection in scale). One
of the procedures of the description of these processes that appears rational is the introduction of metrics,
self�consistent with the dynamics of the coherent macrostructure metrics, on the cotangent stratification
over the multiplicity of the external coordinate system (of the clusters) of vortices. Thus, it seems reason�
able to turn to a detailed study of the problem (generally speaking, including a whole complex of prob�
lems) for constructing the basis for the corresponding physical geometry (Lagrangian or Hamiltonian).
The geometrical methods of this kind can evidently be used not only for establishment of the Hamiltonian
hierarchical structure of the hydrodynamic flow with the subsequent division of the latter into cluster mul�
tiparticle subsets but also for the generalization of the development theory for Riemannian multiformities.
For this, it is necessary to also consider the Lagrangian spaces with the corresponding to the nonlinear
connectivities and effective metrics. The choice of the proper method for the elevation of the tensor struc�
ture of the configuration space leads to the metrics of the Sasaki, Cheeger�Gromoll, etc., type. With the
use of the analogs of the Christoffel coefficients of these metrics, it is possible to design kinetic equations
with the properties given earlier, which can provide for the a priori given choice of their properties. This
appears reasonable for modeling both the multiparticle dynamics on both multiplicities with nonlinear
curvature and for taking account of the effects of the influence of the braking radiation, self�action, etc.
(for example, in a self�gravitating beaming plasma or dust cloud), and for inclusion of the effects of fric�
tion, viscosity and in the general losses of energy, characteristic, in particular, of the NSE and modified
Euler equation with the effective account for viscosity. 
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