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1. INTRODUCTION

Heart rhythm disturbance is one of the main reasons of sudden death and significant reduction in the
quality and duration of life. At the present time, the most effective method for healing cardiac arrhythmia
is the minimally invasive catheter surgery, as a result of which the arrhythmogenic focus is removed by a
radio�frequency pulse or cold action. The success of such an operation significantly depends on the accu�
racy of determining the projection of the arrhythmogenic focus on the heart surface. 

The medical experiment aimed at finding the projection of the arrhythmogenic focus consists in the
following. A bipolar electrode is brought to the heart surface, and the potential difference of the heart’s
electric field is measured across the poles of the electrode at different instants of time for different direc�
tions of the electrode. Processing this data enables one to find the point on the heart surface (projection)
nearest to the arrhythmogenic focus, which is situated inside the heart. The description of these methods
used in medicine can be found, e.g., in [1] and the literature cited there. 

Unfortunately, this type of diagnostics has its drawbacks. The first one is the necessity to insert a bipolar
electrode in the region of the heart. The second one is the X�ray fluoroscopic control of the intracardiac
bipolar electrode, which causes high irradiation doses both on the patient and the medical personnel.

In this work, we consider a numerical method for finding the arrhythmogenic focus on the heart sur�
face only from measurements of the heart’s electric field potential on the trunk surface. The sought pro�
jection is calculated by solving the inverse electrocardiography problems for different instants of time.
These problems are solved by the boundary integral equations and Tikhonov regularization methods.

The algorithm developed in this work agrees with the medical experiment used for determining the
projection of the arrhythmogenic focus on the heart surface. 

2. THE INVERSE ELECTROCARDIOGRAPHY PROBLEM

The inverse electrocardiography problem in the potential form consists in calculating the heart’s elec�
tric field potential on the heart surface from this field detected on the surface of the human breast. The
inverse cardiography problem is solved independently for each fixed instant of time tk, k = 1, 2, …, N, cor�
responding to measurements made at these moments on the breast surface. 
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Let us consider a region Ω in space R3, bounded outside by surface ΓB and, inside, by a closed surface
ΓH. The surface ΓB is a union of two surfaces ΓT and ΓE. Two nonintersecting regions  with bound�
aries   are defined in Ω. This geometric configuration is interpreted as follows: ΓH is the heart sur�
face, ΓE is the part of the trunk surface on which the potential of the electric field is measured, ΓT is the
upper and lower cuts of the trunk, and  are the regions of inhomogeneity of human breast (the
left and right lungs).

Having defined   and  let us consider the following bound�

ary value problem: find a function  such that   

(1)

(2)

(3)

(4)

(5)

Here, ϕ(x) is a given function and  are given positive constants. Function ϕ(x) is the potential
on surface Γ3, and  is the quantity determining the electric conductivity of tissue occupying region Ωi.
Problem (1)–(5) defines operator A mapping potential ϕ(x) on surface Γ3 onto its values u0(x) on surface Γ0.

The inverse electrocardiography problem is formulated as follows: find a function  such

that   

(6)

(7)

(8)

(9)

(10)

where ψ(x) is a known function obtained from measurements on the trunk surface.
Problem (6)–(10) is a generalization of the Cauchy problem for the Laplace equation and is ill�posed.

One of the most significant manifestations of its ill�posedness is the instability of the potential u(x) with
respect to small variations in the initial data ψ(x).

Problem (6)–(10) can be reformulated as a problem of finding function u(x) on surface Γ3 under the
condition that u(x) satisfies (6)–(10). It can also be written as a problem of solving the operator equation
of the first kind

(11)
where ψ is a given function and the operator A is defined by problem (1)–(5) and function ϕ(x) is
unknown. 

The inverse electrocardiography problem is solved by the boundary integral equations and Tikhonov
regularization methods. After writing the system of boundary integral equations for solving problem (1)–
(5) and discretization, we obtain a system of linear algebraic equations that is a discrete analog of operator
equation (11). Applying the Tikhonov regularization method for solving this system of linear algebraic
equations, we find the approximate value of potential ϕ on the heart surface. The numerical method for
solving the inverse electrocardiography problem is described in more detail in [6, 7].

3. FINDING THE PROJECTION OF AN ARRHYTHMOGENIC FOCUS 

The projection of the arrhythmogenic focus on the heart surface is found from the values of the gradient
of potential u0(x) on this surface. For solving the problem of calculating the gradient, it is sufficient to use
the method of boundary integral equations, because this method was used for solving the inverse electro�
cardiography problem.
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Potential  in region Ω0 with boundary  satisfies Green’s
third formula

(12)

where cP is the coefficient depending on the solid angle at point P and G(P, Q) is the fundamental solution
of the Laplace equation: 

(13)

Denote by  the unit coordinate vectors and take the partial derivatives of the function u0(p)
in (12)

(14)

When points P and Q coincide, the integrals with the kernels G(P,Q) and  are improper. The inte�

gral with kernel G(P, Q) has a weak singularity and exists for points  and the integral with kernel

 must be replaced by Cauchy’s principal value. We will define Cauchy’s principal value as the limit

when P tends to the surface  along the internal normal: 

(15)

or along the external normal: 

(16)

In [8, 12], it was proved that definition (15) and (16) is equivalent to the following definition [11]:

(17)

Using formulas (15) and (16) and the method proposed in [10], we obtain 

(18)

Therefore, for calculating the gradient, it suffices to find the singular and hypersingular integrals.
In order to calculate the components of the gradient, we will construct the integral relationships based

on the Galerkin projection method [10]:

(19)

where  is the interpolating basis functions. The use of the Galerkin method substantially simplifies
the calculation of the singular and hypersingular integrals, because, in many cases, we obtain simple ana�
lytic expressions.

Let us turn to finding the projection of the arrhythmogenic focus on the heart surface. As a result of
solving the inverse electrocardiography problem at different instants of time tk and calculating the gradi�
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ent, we know    Let us consider function  for  which is the
projection of  onto the tangent plane.

Then, we calculate on the heart surface the vector function  such that, for an arbitrary point  

(20)
where 

(21)

From the known function  we find the scalar function  that minimizes the functional 

(22)

where  is the gradient of the function a(x) calculated at the point x of the tangent plane. The point x*
at which function a(x) attains its maximum is taken as the sought projection of the arrhythmogenic focus. 

The above�described algorithm corresponds to the medical experiments on finding the arrhyth�
mogenic focus on the heart surface. In this experiment, in order to find the function a(x), an electrode is
brought to the heart surface; its position varies in time. This mathematical algorithm enables one to find
the projection of the arrhythmogenic focus on the heart surface only from measurements of the potential
of the electric field on the human trunk surface.

4. EXAMPLES OF COMPUTATIONS AND THEIR COMPARISON 
WITH MEDICAL EXPERIMENTS 

Let us consider the results of some numerical experiments. The details of the numerical implementa�
tion of the method of boundary integral equations are the following. Each surface  was approximated by

a polygonal surface  consisting of plane triangles. Each such triangle is termed a boundary element. In
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each element, linear interpolating basis functions  j =
1,2, …, M, with the nodes at the vertices of the triangle are
introduced. The potential and the normal derivative of the
potential were approximated by the expansion in the sys�
tem of basis functions ϕj(x). The normals at the vertices of
the triangle were averaged. The integrals of the product of
the fundamental solution by the basis functions in ele�
ments in which the collocation and integration points do
not coincide were calculated by the Gauss quadrature for�
mulas of the 4th order. The singular and hypersingular
integrals were calculated by the analytic expressions
obtained in [10].

In the first numerical experiment, we used the real
trunk and heart geometries. On surface Γ3, the electric
field potential ϕ(x) corresponding to the potential pro�
duced by a quadruple situated inside the heart, at its geo�
metrical center was specified. The direct electrocardio�
graphy problem was solved with this value, and potential

( ),j xϕ

Table 1. Results of the first numerical experiment

No. Number of nodes/elements ε, min ε, max ε, average Computation time, s

1 247/490 0.0205 0.3212 0.0510 11.02

2 504/1004 0.0055 0.2576 0.0432 23.25

3 1023/2042 0.0112 0.3521 0.0398 48.12

4 1542/3080 0.0025 0.2243 0.0291 74.99

5 2585/5166 0.0019 0.2498 0.0251 139.15
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0 2π3π/2ππ/2
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Results of the second numerical experiment. 
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ψ(x) on surface Γ0 was calculated. An error was introduced into the potential on surface Γ0, which gave
function ψδ(x) with which the inverse problem was solved. The direct and inverse problems were solved for
a piecewise�homogeneous model of a breast with σ0 = 1 and σ1 = σ2 = 5. After solving the inverse electro�
cardiography problem on the heart surface, the gradient was numerically calculated at each node of the
triangulation polygonal grid and compared with the analytically calculated gradient of the potential pro�
duced by a quadruple. The experiment was performed for polygonal grids with different numbers of nodes
and elements. For each polygonal grid, the minimum relative error (ε min), the maximum relative error
(ε max), and the average value (ε average) over all nodes were calculated. The results of the numerical
experiment are summarized in Table 1.

The second numerical experiment was aimed at comparing functions a(x) and  The first function
was directly measured in the medical experiment, and the second one was calculated by the method pro�
posed in this work from the data of measuring the potential on the trunk surface only. The details of the
experiment are the following. A patient was subjected to the above�described procedure of determining
the position of the projection of the arrhythmogenic focus. Simultaneously, the heart’s electric field
potential was detected on the trunk surface. The geometries of the trunk and heart were reconstructed
from the computer tomography data. Then, on the basis of measurements on the trunk surface only, func�
tion  was numerically calculated and compared with the directly measured function.

Figure 1 shows the values of the measured function  and the numerically determined function 
on a contour comprising the cross section of the heart passing through the found projection of the arrhyth�
mogenic focus at an angle of 35 degrees to the vertical axis of the heart. 

The aim of the third experiment was to compare the results of determining the projection of the
arrhythmogenic focus from the medical experiment and by the numerical method from the data of mea�
surements on the trunk surface only. For some types of arrhythmia, a medical experiment on determining
the position of the projection of the arrhythmogenic focus was conducted for a group of patients. Simul�
taneously, the patients’ heart’s electric field potential on the trunk surface was detected and the projection
of the arrhythmogenic focus was determined by the above�described numerical method. After that, the
minimum distance over the heart surface between the found points was calculated.

Table 2 presents the results of comparison between the projections of the arrhythmogenic focus for dif�
ferent types of arrhythmia. For each type of arrhythmia, the number of patients subjected to the above�
described procedure is presented and the distance between the two found projections of the arrhyth�
mogenic focus of the patient for whom the error of determining the focus was maximal is given. 

The results of this work lead to the conclusion that our algorithm enables one to determine the position
of the arrhythmogenic focus on the heart surface with sufficient accuracy.
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