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1 1. INTRODUCTION

Mechanical functions of protein fibers such as fibronectin, fibrin fibers, microtubules, and actin fila�
ments, are important in cytoskeletal support and cell motility [1–3], in cell adhesion and the formation
of the extracellular matrix [4–7], and in blood clotting [8–10]. Physical properties of viral capsids of plant
and animal viruses [11–13], retroviruses [14], and bacteriophages [15, 16], and the transitions between
their stable and unstable states determine the life cycle of many viruses, including virus maturation, and
infection of cells [17]. Understanding the microscopic origin of the unique viscoelastic properties of pro�
tein fibers and the crossover from an elastic to a plastic behavior in viral capsids, as well as the control of
their mechanical response to an applied mechanical force constitute major areas of research in biochem�
istry and biophysics. Single�molecule techniques, such as AFM and laser tweezer�based force spectros�
copy, have been used to study the mechanical properties of protein fibers [18–21] and viral capsids
[15, 16, 22, 23]. Yet, due to the high complexity of these systems (~103–105 residues) and to their large
size (~50–200 nm), these experiments yield results that are nearly impossible to interpret without first
having some a priori information about their energy landscape [9].

Standard packages for all�atom Molecular Dynamics (MD) simulations, such as CHARMM [24]
NAMD [25], and Gromacs [26] among others, are being used to access the submolecular behaviour of
biomolecules. However, because all�atomic modeling is currently limited to a 10–50 nm length scale and
0.1–10 ms duration [27–29], these methods allow for the theoretical exploration of equilibrium proper�
ties of biomolecules, and reaching the biologically important ms–s timescale becomes virtually impossible
even for a small system. More importantly, to fully explore the free energy landscape underlying a biolog�
ical process of interest, one needs to generate a statistically representative set of trajectories. One possibil�
ity is to carry out MD simulations on manycore computer clusters, but it requires tremendous computa�
tional resources and long CPU times. For example, it takes 800000 CPU hours to obtain 20 short 1 ns MD
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trajectories for the southern bean mosaic virus, which contains as many as 4.5 million atoms, on an SGI
Altix 4700 cluster [30]. These limitations exclude computations as an investigative tool in the study of a
range of biological problems, such as the large deformations of protein fibers, the formation of biomolec�
ular complexes and aggregates, and the mechanical failure of viral capsids, for which experimental data
are already available, thereby rendering the direct comparison of the results of experiments in vitro and in
silico impossible.

Although graphics processors have been originally designed for computationally intensive graphics
rendering, they have evolved over the last few years into highly parallel, multithreaded computing devices.
Recent technological advances in the throughput�oriented hardware architecture of GPUs with
extremely high peak arithmetic performance, which employs IEEE floating point arithmetic, have
unleashed tremendous computational power that can now be utilized in general purpose scientific appli�
cations. Unlike mainstream processor architecture, GPUs devote the majority of their logic units to per�
forming actual calculations, rather than to cache memory and flow control. Massive multithreading, fast
context switching, and high memory bandwidth have enabled GPUs to tolerate latencies associated with
memory calls, and to run many computational cores simultaneously. Programming tools for modern
GPUs include several platforms such as ATI Stream Computing [31], NVIDIA Compute Unified Device
Architecture (CUDA) [32, 33], and Open Computing Language (OpenCL) [34]. CUDA, a parallel com�
puting environment (a dialect of the C and C++ programming languages), provides a high level software
platform that allows a programer to define kernels that are executed in parallel by independent computa�
tional threads.

Because GPUs differ from CPUs in several fundamental ways, CPU�based methods for molecular
simulations of biomolecules cannot be easily translated nor simply adapted to a GPU. In these methods,
particle�particle interactions are described by the same empirical potential energy function (force field),
and the dynamics of the system in question is obtained by solving numerically the same equations of
motion for all particles. Hence, there is a direct correspondence between the SIMD (Single Instruction
Multiple Data) architecture of a GPU at the hardware level and the numerical routines (software) used to
follow the molecular dynamics. It is then possible to execute “single instruction,” i.e. calculation of the
potential energy or evaluation of forces, or generation of random forces, or integration of the equations of
motion, on “multiple data” sets (for all particles) at the same time over many iterations using many Arith�
metic Logic Units (ALUs) running in parallel. This makes MD simulations a natural candidate to imple�
mentation on a GPU, but not all algorithms are amenable to this architecture. For an algorithm to execute
efficiently on the GPU, it must be recast into a data�parallel form with independent threads running the
same instruction stream on different data. There exist preliminary versions of standard packages for MD
simulations of proteins implemented on a GPU, such as NAMD [28, 35, 36], Gromacs [47], and other
applications [38–40]. Yet, there are no GPU�based implementations of Langevin dynamics simulations
that we are aware of. In this paper, we develop and test such an implementation. Because the topology and
the overall structure (geometry), rather than the atomic details, govern the force�driven molecular transi�
tions in protein systems, we employ a coarse�grained description of proteins [41–43] using a Self Orga�
nized Polymer (SOP) model [44, 45].

Implementing the Langevin dynamics algorithm on a GPU requires detailed understanding of the
device architecture. The methodology for the GPU�based implementation of Langevin simulations is
presented in the next section, where we describe the particle based and the interacting pair based parallel�
ization approaches to force computation as well as the numerical routines for generating pseudorandom
numbers, constructing the Verlet lists, and integrating forward Langevin equations to the next time step.
For purposes of presentation and to focus on the most essential computational aspects, we have simplified
the presentation of the formalism as much as possible. A comparative analysis of the results of CPU� and
GPU�based simulations of the mechanical unfolding for a test system represented by the all�strand WW
domain is performed in Section 3, where we also assess the accuracy of the numerical integration. We dis�
cuss the results of the GPU�based computations in terms of the simulation time, memory usage, and com�
putational speedup (CPU time versus GPU time) for a range of proteins including small proteins, such as
the WW domain, the Ig27 domain from human titin, the C2A domain from human synaptotagmin (Syt1),
the γC chain and the double�D fragment of human fibrinogen (Fb), single�chain models of fibrin fibers
(Fb monomer and dimer), and large�size protein assembly (viral capsid HK97). The main results are sum�
marized in Section 4.

2. LANGEVIN DYNAMICS SIMULATIONS ON A GPU

In this Section, we describe the particle based and the interacting pair based methods for the parallel
computation of potentials and forces due to binary particle�particle interactions. We also outline the



274

MATHEMATICAL MODELS AND COMPUTER SIMULATIONS  Vol. 4  No. 3  2012

ZHMUROV et al.

numerical procedures involved in the generation of the Verlet lists and the random forces, and in the
numerical integration of the Langevin equations of motion. We designed the algorithm to process as many
computational fragments simultaneously on a GPU as possible in order to move the GPU into full pro�
duction efficiency and to minimize the GPU/CPU communication. The algorithm decomposition, along
with the workload division between the GPU and the CPU, is diagrammed in Fig. 1, where we also sum�
marize the computational workflow on a CPU and on a GPU, including the operation on the data files
for the molecular topology, the particle energies and coordinates, and the data flow between the CPU
DRAM and the GPU global memory (host�GPU data transfers).

In Langevin simulations of biomolecules, molecular forces are usually described by two�body (pair)
potentials, such as the harmonic potential, the FENE potential [46], the Lennard�Jones potential, etc.,
which differ in their mathematical form. Hence, the same generic algorithm can be employed to compute
these potentials. In the pseudocode listings below, the i�th residue for a protein of N residues has a unique
index i ∈ [0, N – 1]; for an array of particle coordinates r, r[i] denotes coordinates of the i�th particle. We
also use the following notations: global memory reads are represented by ⇐, saving data to the GPU glo�
bal memory is shown by ⇒, <= denotes cached texture memory reads, and ← represents local, shared, or
constant memory invocation, or assignments of variables. Consider the following computational proce�
dure for evaluating forces on a CPU:
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Fig. 1. The numerical algorithm and computational procedures for the Langevin simulations of biomolecules on a GPU.
The computational workflow is shown using black arrows, and data transfer – read and write operations from and to the
DRAM and the HDD (hard drive) on the CPU device and the GPU global memory – are represented by the dashed
arrows. Designing CUDA kernels in volves the decomposition of work into small fragments that can be mapped into
thread blocks, and further decomposition into warps and into independent threads of execution. The computational
workflow for only one (i�th) thread running on the GPU and the workload division between CPU and GPU are shown in
detail. The execution of the program is initiated on the CPU, which is used to prepare and store the initial and output
data. The CPU device starts the launch of each computational kernel on the GPU for the calculation of forces, generation
of the random forces and Verlet lists, and for the numerical integration of the Langevin equations of motion, using many
independent threads running in parallel.
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Algorithm 1: Calculation of pairwise forces (CPU implementation).
1. P ← total number of pairs in a system for a given potential
2. for p = 0 to P – 1 do
3. i ← pairs[p].i {index of the first particle in a particle pair}
4. j ← pairs[p]. j {index of the second particle in a particle pair}
5. par ← pairs[p].parameters {parameters for the i–j pair}
6. r ← r[i] – r[j]
7. df ← force (r, par)
8. f[i] ← f[i] + df
9. f[j] ← f[j] – df
10. end for
Information about the residue pairs is stored in array pairs, which has indices i and j, and variable par

for constant parameters, which specify the potential energy. In the main cycle on a CPU (line 2), index p
runs through all the pairs of interacting residues p = 0, 1, …, P – 1. For each pair, the information about
the coordinates (r[i] and r[j]) and the constant parameters (par) is gathered in lines 3–5. The force incre�
ment df is computed in force(…) for a given pair p (line 7). This value is added (or subtracted) to (from) the
force for the i�th particle (f[i], line 8) and subtracted (or added) from (to) the force for the j�th (f[j], line
9). On a CPU, the force values are computed only once (lines 7–9). Because force calculations are
sequential, they do not overlap in time. By contrast, because on a GPU a two�body potential is computed
for different pairs of residues in different threads, a naïve addition (lines 8 and 9) may cause memory con�
flicts when some or all the threads attempt to access the same address in the GPU global memory.

There are two main optimization strategies that allow one to avoid this situation. In the first approach,
all the forces for one particle are computed in one thread, which requires running N threads to obtain the
force values for all particles. We refer to this procedure as the particle based parallelization approach. The
use of this approach results in the same force, acting on the i�th and j�th particles, but computed twice in
the i�th and j�th threads [40]. Following a different strategy, which we refer to as the interacting pair based
parallelization approach, force calculations are performed for all pairs in parallel using P independent
theads, and 2P force values are saved to different locations in the GPU global memory. We pursued in
detail both optimization strategies, which exploit the data�parallel aspects of GPU based computing.

2.1. The Particle Based Parallelization Approach

In this approach, N independent threads run on a GPU concurrently, each computing all the pair
potentials for each particle and summing all force values (except for the random force) to obtain the total
force. Although the force acting on the i�th and j�th particles is computed twice, the number of global
memory calls is reduced by a factor of 2N, and the time spent on recalculating the same potential is com�
pensated by the time saved by not waiting to write the force data to and to read the data from the GPU
global memory.

Algorithm 2: Calculation of pairwise forces using particle based parallelization.
1. fi ← 0 {resulting force}
2. i ← GPU thread index {same as particle index}
3. ri <= r[i] {coordinates of the i�th particle}
4. Pi ⇐ Pp[i] {number of pairs formed by the i�th particle}
5. for p = 0 to Pi – 1 do
6. j ⇐ PairsMap[i][p].j {second particle in a pair}
7. rj ≤ r[j] {coordinates of the j�th particle}
8. par ⇐ PairsMap[i][j].parameters {parameters for the i–j pair}
9. r ← ri – rj

10. df ← force (r, par)
11. fi ← fi + df
12. end for
13. Output: fi

The array Pp keeping track of the number of pairs for all residues and the matrix PairsMap of all particle
pairs are pre�generated on a CPU and fetched to the GPU global memory. Pp is an N�dimensional vector
of integers 0, 1, 2, …. Each element of this vector corresponds to a single particle, and the i�th integer value
is the number of particles interacting with the i�th particle. PairsMap is the N × M matrix, where M is a
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maximum number from array Pp. The i�th row of the matrix PairsMap corresponds to the i�th particle and
contains the indices of all particles interacting with the i�th particle and the constant parameters for the
potential energy function. Data in the PairsMap can be easily rearranged for coalescent memory reads.
Coordinates of the second particle for each pair are accessed at random, which allows one to take advan�
tage of the texture reference in global memory reads.

Force values are computed in parallel by N threads as follows. First, the i�th thread reads the coordi�
nates ri using a cached texture reference (line 3) and the number of particle pairs Pp[i] (line 4). By cycling
through all the pairs, formed by the i residue (lines 5–12), the thread reads the index j and the coordinates
rj of the j�th particle and the constant parameters (par, lines 6–8). These are used to compute the force
increment df (line 10), which is added to the resulting force f (line 11) for the i�th particle. The parameters
par depend on the potential used. For example, for a covalent bond, described by a harmonic potential

VH =  par contains the equilibrium distance  and the spring constant 

Verlet lists: In molecular simulations, the information about the covalent bonds and the native interac�
tions (array Pp and matrix PairsMap), obtained from the PDB structure of a protein, does not change.
However, the information about nonbonded long�range interactions, describing the gradual attraction
and hardcore repulsion between pairs of atoms, needs to be updated from time to time. This is the most
computationally demanding component of the algorithm, since the complexity of the calculation is
O(N2). A common approach is to take advantage of the fact that long�range interactions vanish over some
distance. This allows one to use pair lists that include pairs of particles that are closer than the cutoff dis�
tance (Verlet lists) [47]. In the particle based parallelization approach, the array Pp and the matrix Pairs�
Map have to be regenerated on a GPU in order to accelerate the computation of the 11 potential energy
using Verlet lists. This can be done by rearranging the pseudocode for particle based parallelization (Algo�
rithm 2):

Algorithm 3: Calculation of forces using particle based parallelization and Verlet lists.
1. i ← GPU thread index {same as particle index}
2. pi ← 0 {counter of residue pairs in Verlet list}
3. ri <= r[i] {coordinates of the i�th particle}
4. Pp, i ⇐ Ppp[p1] {number of all pairs for the i�th particle}
5. for pp = 0 to Pp, i – 1 do
6. j ⇐ PossiblePairsMap[i][pp] {second j�th particle in a pair}
7. rj <= r[j] {coordinates of the j�th particle}
8. r ← |r[i] – r[j]|
9. if r < cutoff then
10. PossiblePairsMap[i][pp] ⇒ PairsMap[i][pi]
11. pi ← pi + 1
12. end if
13. end for
14. pi ⇒ Pp [i]
Cycling over pp includes all possible residue pairs to identify pairs that are within the cutoff distance.

The interparticle distances are computed in line 8. The number of particles pi that are within the cutoff
distance is counted (line 11), and a newly found pair is added to the matrix PairsMap at the (i, pi)�position,
i.e. copied from the matrix PossiblePairsMap (the map of all pairs) to the matrix PairsMap (the map of
pairs). Once the cycle is completed, pi is saved to the array Pp[i], which stores the numbers of the residue
pairs in the Verlet list.

2.2. The Interacting Pair Based Parallelization Approach

To avoid computing the two�body potentials on a GPU twice, one can design a different computational
algorithm, where each thread calculates a single pair potential for two coupled residues. Then, forces act�
ing on the interacting particles in opposite directions are computed only once, the force values obtained
are saved to different locations in the GPU global memory, and all the forces exerted on each particle are
summed up to obtain the total force. This approach requires additional memory calls and a gathering sub�
routine for the force summation, but it enables one to accelerate simulations when the number of residues
N is of the same order of magnitude as the number of ALUs, and/or when the computation of pair poten�
tials is expensive. In the following pseudocode for the force calculation, P (number of threads) is equal to

Kij
sp rij rij

0–( )
2
/2, rij

0 Kij
sp

.
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the number of interacting pairs for just one potential energy term, and each thread computes forces for
one pair of residues:

Algorithm 4: Calculation of pairwise forces using interacting pair based parallelization.
1. p ← GPU thread index {same as pair index}
2. pair ⇐ pairs[p]
3. pair ⇐ PairsParameters[p] {parameters for one pair of residues p}
4. i ← pair.i {the i�th particle in the pair}
5. j ← pair.j {the j�th particle in the pair}
6. shifti ← pair.shifti {position in array of forces for the i�th particle}
7. shiftj ← pair.shiftj {position in array of forces for the j�th particle}
8. ri <= r[i] {coordinates of the i�th particle}
9. rj <= r[j] {coordinates of the j�th particle}
10. r ← ri – rj

11. df ← force (r, par)
12. df ⇒ F[i][shifti] {saving force for the i�th particle}
13. –df ⇒ F[j][shiftj] {saving force for the j�th particle}
Each thread identifies one pair potential using the thread index p, and reads the information about the

potential from vectors pairs and PairsParameters about the constant parameters (par), the particle identity
(i and j) and particle coordinates (ri and rj), and the global memory addresses for saving the force values
(shifti and shiftj). In the array F, the force values are saved to the position defined by the particle index i or
j (i�th or j�th row) and by the parameters shifti or shiftj (columns). In the array pairs, each output position
i and shifti for the i�th particle has to be unique so that each force value computed is saved to a different
address in the GPU global memory. This allows one to avoid memory conflicts, but requires an additional
gathering kernel for summing all the forces for a given particle obtained in the array F (in Algorithm 4):

Algorithm 5: Gathering kernel for the force computation.
1. i ← GPU thread index {same as particle index}
2. fi ← 0 {resulting force due to one potential energy term}
3. Pi ⇐ Pp[i] {number of particle pairs for the i�th particle}
4. for p = 0 to Pi – 1 do
5. df ⇐ F[i][p]
6. fi ⇐ fi + df
7. end for
8. Output: fi

Pi counts the residue pairs for the i�th particle (for one potential energy term). The total force for the
i�th residue (fi) is calculated by summing over all the forces computed previously (F[i][p], line 12–13).
This part of the program can be incorporated into the integration kernel to minimize the number of com�
putational kernels. On GPUs with the new Fermi architecture (from NVIDIA), the use of thread safe
atomic addition of the computed force values to a specific location in the GPU global memory will help
to remove the performance barriers associated with multiple memory calls.

Verlet lists: In the interacting pair based parallelization approach, generating a Verlet list surmounts to
forming the vector pairs of all residue pairs for one potential energy term. On a GPU, constructing this
vector is a formidable task, since the exact position in the list, to which information about the next residue
pair should be saved, is not known. One possibility is to use the atomicAdd(…) routine from the CUDA
Software Development Kit [32], which allows one to add integers in the GPU global memory without
running into memory conflicts even when many threads attempt to access the same memory address at the
same time. However, when many threads run in parallel, identifying new pairs and saving them one after
another may result in a Verlet list that is not ordered according to the particle index. This may result, in
turn, in an inefficient utilization of the cache memory. To obtain an ordered Verlet list, it has to be sorted
or updated on a CPU. It is more efficient to compute interparticle distances on a GPU, copy them to the
CPU DRAM, and then generate a new list.

2.3. The Random Force

Langevin simulations require a reliable source of 3N normally distributed pseudorandom numbers, gi,α

(α = x, y, and z) produced at each integration step, in order to compute the three components of a Gaus�
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sian random force  where T is system temperature, ξ is coefficient of friction, kB is
the friction coefficient, and h is the integration time step. A pseudorandom number generator (PRNG)
produces a sequence of random numbers ui,α uniformly distributed in the unit interval [0, 1]. This
sequence, which imitates a sequence of independent and identically distributed (i.i.d.) random variables,
is then translated into the sequence of normally distributed pseudorandom numbers with zero mean and
unit variance (gi,α) using the Box�Mueller transformation [48]. While there exist stand alone implemen�
tations of good quality PRNGs on a GPU, in Langevin simulations a PRNG should be incorporated into
the integration kernel to minimize read/write calls of the GPU global memory.

The simplest approach for constructing a PRNG on a GPU is to initiate an independent generator in
each thread (one�PRNG�per�thread approach) so that pseudorandom numbers can be produced during
the numerical integration of the Langevin equations. First, a CPU generates N independent sets of ran�
dom seeds for N PRNGs, and then transfers them to the GPU global memory. When 4N i.i.d. pseudoran�
dom numbers ui, α are needed for generating 3N normally distributed random numbers gi,α, each thread
reads a corresponding set of random seeds to produce 4 normally distributed random numbers for each
residue. Then, a PRNG updates its current state in the GPU global memory, which is used as an initial
seed within the same thread at the next time step. In a different approach, random seeds for just one
PRNG state can be shared among the computational threads on the entire GPU (one�PRNG�for�all�
threads approach). Using both approaches, we have developed and tested GPU�based realizations of
PRNG which are based on the Hybrid Taus, Ran2, Lagged Fibonacci and Mersenne Twister algorithms
(manuscript in preparation). It has been shown that these algorithms pass a number of stringent statistical
tests and produce pseudorandom numbers of very high statistical quality [49].

2.4. The Numerical Integration Kernel

On a GPU, the Langevin equations of motion can be solved simultaneously for all N particles in N
threads working in parallel. When the particle based parallelization is utilized, the subroutines for the force
computation can be incorporated into the integration kernel. This allows a programmer to use coordinate
variables, stored locally in the GPU global memory, that are read only once at the beginning of the com�
putational procedure and are passed to the next subroutine. Since all the interactions are more or less
local, texture cache can be used as well to access the coordinates in the GPU global memory. When the
interacting pair based parallelization is employed, the force computations can be performed in a separate
kernel and the summation of all the forces (gathering kernel, Algorithm 5) can be done inside the integra�
tion kernel. Using one kernel for the force computation, the force summation and the numerical integra�
tion minimizes the number of kernel invocations on the CPU, thus, saving time for context switching on
the GPU.

Algorithm 6: Numerical integration of the Langevin equations of motion.

1. i ← GPU thread index {same as particle index}

2. rec ri <= r[i](tn) {reading coordinate of the i�th particle at the beginning of each step}

3. fi ←  {total force exerted on the i�th particle due to several pair potentials}

4. gi ← (gx, gy, gz) {3D vector with 3 normally distributed random numbers}

5. ri ← ri + fi h/ξ +  {1�st order integration scheme}

6. ri ⇒ r[i](tn + 1) {saving coordinates to global memory at the end of each step}

Each thread computes the displacement vector for just one particle. Once particle coordinates are
retrieved from the GPU global memory via texture reference (line 2), they are used in the computational
procedures that follow (the total force is computed in line 3). The corresponding forces fi, ν, where the
index ν is running over different potential energy terms, are computed using ether the particle based or the
interacting pair based parallelization approach. When the former approach is used, the entire computa�
tional procedure from the force computation to the random force generation, and to the numerical inte�
gration can be organized into a single kernel. In the latter case, an additional gathering kernel is needed
to compute the total force (line 3). Continuing, particles are shifted to their new positions (line 5), which
are saved to the GPU global memory (line 6). Since these coordinates are used at the next time step tn + 1,
they have to be moved from the time layer r[i](tn + 1) to the time layer r[i](tn) at the end of each iteration.

Gi α,
gi α,

2kBTξh,=

fi ν,
ν∑

gi 2kBTh/ξ
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3. THE SOP�GPU PROGRAM FOR LANGEVIN SIMULATIONS OF PROTEINS

3.1. The SOP Model

We employed the methodology for the GPU�based realization of Langevin dynamics to develop a
CUDA program for biomolecular simulations fully implemented on a GPU. To describe the molecular
force field, we adapted the Self Organized Polymer (SOP) model (SOP�GPU program) [44]. Previous
studies have shown that the SOP model describes well the mechanical properties of proteins, including the
Green Fluorescent Protein [54] and the tubulin dimmer [55]. In the SOP model, each residue is described
using a single interaction center (C

α
 �atom). The potential energy function of a protein conformation V,

specified in terms of the coordinates {r} = r1, r2, …, rN, is given by. 

(1)

In Eq. (1), the finite extensible nonlinear elastic (FENE) potential VFENE describes the backbone chain

connectivity. The distance between two next�neighbor residues i and i + 1, is ri,i + 1, while  is its value
in the native (PDB) structure, and R0 = 2 Å is the tolerance in the change of a covalent bond (first term in

Eq. (1)). We used the Lennard–Jones potential ( ) to account for the non�covalent interactions that
stabilize the native state (second term in Eq. (1)). We assumed that, if the noncovalently linked residues i
and j (|i – j| > 2) are within the cutoff distance RC = 8 Å, then Δij = 1, and zero otherwise. We used a uniform
value for εn = 1.5 kcal/mol, which quantifies the strength of the non�bonded interactions. All the non�

native interactions in the  potential are described as repulsive (third term in Eq. (1)). Additional con�
straint are imposed on the bond angle formed by residues σi, i + 1, and i + 2 by including the repulsive potential
with parameters εr = 1 kcal/mol and i, i + 2 = 3.8 Å, which determine the strength and the range of the repul�
sion. To ensure the self�avoidance of the protein chain, we set σi, i + 2 = 3.8 Å (last term in Eq. (1)).

3.2. Benchmark Simulations

We carried out test simulations of the mechanical unfolding for the all�β�strand domain WW from the
human Pin1 protein (PDB code 1PIN, Table 1) using the SOP�GPU program. The rationale behind
choosing this protein as a test system is two�fold. First, the WW domain is of particular interest to the field
of protein folding and dynamics, and several research groups have expended considerable efforts to char�
acterize the biophysical and biochemical properties of this protein [29, 56, 57]. Secondly, this is the small�
est known independently folding all�β�domain and the all�β�protein architecture is the primordial struc�
tural state that can be studied experimentally using single�molecule force spectroscopic techniques such
as AFM, and laser and optical tweezers [58, 59]. For these reasons, the WW domain has been extensively
used in the theoretical exploration of protein folding and unfolding.

We consider the following principal sources of error: (1) precision issues arising from the differences in
single precision (GPU) and double precision (CPU) IEEE floating point arithmetic, (2) possible
read/write errors in the GPU global memory (hardware), and (3) accuracy of the SOP�GPU program, i.e.
possible errors in the numerical routines (software). We report on our implementation of the SOP�GPU
package on the NVIDIA GeForce GTX 295 (Section 2) and compare it against a dual Quad Core Xeon
2.66 GHz, considered to be representative of similar levels of technology. All CPU/GPU benchmarks
have been obtained on a single GPU and a single CPU. To obtain the dynamics of the force�induced
molecular elongation, the Langevin equations of motion for each residue ri have been integrated numer�
ically using the first�order integration scheme (in powers of the integration time step h) [60].

(2)

where Gi(t) is the random force, and f(ri(t)) =  is the total force due to the covalent and the noncova�

lent interactions (Eq. (1)) exerted on the i�th particle. Benchmark simulations of the mechanical unfolding of
the WW domain have been carried out at room temperature (kBT = 4.14 pN/nm) over 4 × 108 iterations with

V VFENE VNB
ATT VNB

REP+ + k
2
��R0

2 1
ri i 1+,

ri i 1+,

0–( )
2

R0
2

������������������������������–
⎝ ⎠
⎜ ⎟
⎛ ⎞

εn
rij

0

rij

���⎝ ⎠
⎛ ⎞

12

2
rij

0

rij

���⎝ ⎠
⎛ ⎞

6

– Δij

j i 3+=

N

∑
i 1=

N 3–

∑+log
i 1=

N 1–

∑–= =

+ εr
σi j 2+,

ri j 2+,

�����������⎝ ⎠
⎛ ⎞

6

εr
σ
rij

���⎝ ⎠
⎛ ⎞ 6

1 Δi j–( ).

j i 3+=

N

∑
i 1=

N 3–

∑+
i 1=

N 2–

∑

ri i 1+,

0

VNB
ATT

VNB
REP

ri t h+( ) ri t( ) f ri t( )( )ξh Gi t( ),+ +=

∂V ri( )
∂ri

������������–



280

MATHEMATICAL MODELS AND COMPUTER SIMULATIONS  Vol. 4  No. 3  2012

ZHMUROV et al.

the time step h = 20 ps, using the standard bulk water viscosity (ξ = 7.0 × 105 pNps/nm). Each trajectory
has been generated by fixing the N�terminal end and pulling the C�terminal end of the WW domain with
the time�dependent mechanical force fext(t) = rft in the direction corresponding to the end�to�end vector,
and using the force�loading rate rf = κν0, where κ = 35 pN/nm is the cantilever spring constant and ν0 =
2.5 μm/s is the pulling speed.

The results of the CPU� and the GPU�based computations are presented in Fig. 2, where we compare
the force�extension curves f(R) and the average temperature 〈T〉 for two representative trajectories of
unfolding, and the distributions of unfolding forces p(f*) sampled from 260 trajectories on a CPU and
300 trajectories on a GPU. Temperature conservation (d 〈T〉/dt), mechanical work performed on the sys�

tem (w = ) and the distribution of peak forces (f*’s) are rigorous physical metrics for measuring

the precision of molecular simulations. Aside from small deviations due to the different initial conditions,
the profiles of f(R) and 〈T〉, obtained on the CPU, are close to the profiles of the same quantities, gener�
ated on the GPU. A small drop in 〈T〉 is due to the onset of the unfolding transition in the WW domain,
which occurs at t ≈ 0.15 ms. Both the CPU� and the GPU�based calculations of the histogram of unfold�
ing forces p(f*) result in similar values of the average force, i.e. 〈f*〉 ≈ 120.56 pN on the CPU and 〈f*〉 ≈
120.94 pN on the GPU, but slightly different standard deviations of  ≈ 5.83 pN on the CPU versus

≈ 6.58 pN on the GPU due to the small sample size (Fig. 2). The magnitude of the critical force for
unfolding is well within the 60 pN – 200 pN force range observed for mostly β�strand single domain pro�
teins [58, 61].

3.3. Accuracy of the Numerical Integrators

Langevin simulations fully implemented on a GPU enable one to obtain long trajectories of protein
dynamics generated over as many as 109–1010 iterations. Consequently, there emerges a question about the
numerical accuracy of the integration scheme used. In Langevin simulations of proteins, the equations of
motion are solved numerically using the first�order integrator (Eq. (2)) [60]. However, the magnitude of
the associated numerical error, which may, potentially, add up over many billions of iterations, is not
known. We assessed the numerical accuracy of integration protocols by considering the mechanical
unfolding of a protein. To test the results of simulations of the protein extension ΔX(t) = X(t) – X0 against
the theoretical predictions, we used an exactly solvable model of a Brownian particle X(t) evolving in a
one�dimensional harmonic potential, V(X) = Ksp(X – X0)

2/2, where X0 is the equilibrium position and Ksp

is the molecular spring constant [62].

f R( ) Rd
R0

Rfin

∫

σf*

σf*

 
 Number of residues, covalent bonds, native contacts stabilizing the folded state, and residue pairs for a range of pro�
teins (WW �domain, Ig27, C2A�domain, γC and βC chains), protein fibers (Fb monomer and dimer) and protein
assembly (viral capsid HK97) used in the benchmark simulations.

Protein WW1 Ig272 C2A3 γC4 D�dimer5 Fb6 HK978

PDB�code 1PIN 1TIT 2R839 1M1J10 1FZB 3GHG 3GHG 1FT111

Residues 34 89 126 517 1062 1913 3849 115140

Covalent bonds 33 88 125 521 1072 1932 3839 114720

Native contacts 65 255 328 1770 3498 5709 12560 467904

Pairs 463 3573 7422 131101 558833 1821212 7389077 1617802812

Note: 1 All�β�strand WW �domain. 
2 Ig27 domain of human titin.
3 C2A�domain from human synaptotagmin Syt1.
4 βC and γC domains from human fibrinogen Fb.
5 Double�D fragment (D–D interface) of human fibrinogen Fb.
6 Human fibrinogen monomer Fb.
7 Human fibrinogen dimer (Fb)2 created from two Fb monomers (3GHG) and the D–D interface (1FZB).
8 HK97 is Head II viral capsid.
9  C2A domain of human Syt1 protein.
10 βC and γC chains in human Fb starting fom the CY S ring in the D�domain.
11 PDB code for a structural unit; the full HK97 capsid structure can be found in the Viper [64] database.
12 Based on a cut�off distance of 200 Å.

Fb( )2
7
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Under the non�equilibrium conditions of the time�dependent force application, fext(t) = rf t, the aver�
age particle position (the end�to�end distance), computed theoretically, is given by

(3)

where τ = ξ/Ksp is the characteristic timescale. In pulling simulations, the average particle position at the
step n + 1, 〈X(tn + 1)〉, where tN = nh, can be obtained recursively from the average position obtained at the
previous n�th step, 〈X(tn)〉, using the first�order integration scheme

(4)

or the second�order integration scheme,
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Fig. 2. Comparison of the results of pulling simulations for the all WW �domain (Table) obtained on a CPU and on a GPU
(the color code is explained in the graphs). Panel (a): Representative examples of the dependence of mechanical tension
experienced by the protein chain f as a function of the molecular extension R (force�extension curves) obtained using run�
ning averages over 500 data points. Panel (b): The histogram based estimates of the distribution of unfolding forces p(f*),
i.e., peak forces  f* extracted from the force�extension curves. The histograms have been constructed using the bandwidth
(bin size) of  ≈ 3.6 pN. Panel (c): Representative examples of the time dependence of the average temperature of the

protein chain 〈T(t)〉 (in units of kBT), which correspond to the force�extension curves (panel (a)), obtained using running
averages over 500 data points.
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(5)

Hence, Eq. (3), (4), and (5) can be used to assess the accuracy of the numerical integrators. 
We carried out calculations of 〈ΔX(t)〉 at room temperature for n = 109 iterations using X0 = 0 as initial

condition, which corresponds to the initial molecular extension of ΔX(0) = 0, Ksp = 40 pN/nm, which is
within the 20–50 pN/nm range of values observed in the experimental force�extension curves of proteins.
We used the time steps of h = 1, 25 and 50 ps. We set κ = 10 pN/nm and ν0 = 1 μm/s, which translates to rf =
10–5 pN/ns. These are typical values of a cantilever spring constant and a pulling speed used in AFM exper�
iments. We set the diffusion constant to D = kBT/ξ = 1.5 × 10–11 cm2/s, which corresponds to the force�
driven ~150 nm extension of the fibrinogen molecule observed in AFM experiments over time t = 0.1 s
[21]. The slow force�driven “diffusion of the molecular extension,” ΔX(t), described by the Brownian par�
ticle model with D ≈ 10–11 cm2/s, should not be confused with the free Brownian diffusion of protein mol�
ecules in aqueous solution, for which D is in the 10–6–10–8 cm2/s range.

We found that the average extensions 〈ΔX(tn + 1)〉 sim, calculated using the first order (Eq. (4)) and the
second order (Eq. (5)) integrators, agree very well with each other and with the theoretical curve of this
quantity 〈ΔX(t)〉 th (Eq. (3)) for all values of h. The simulated data points of 〈ΔX(tn + 1)〉 sim practically collapsed
on the theoretical curve 〈ΔX(t)〉 th in the entire range of time (data not shown). To quantify any reduction in
accuracy, we estimated the relative error of the molecular extension, |〈ΔX(tn + 1)〉 sim – 〈ΔX(t)〉 th|/〈ΔX(t)〉 th,
accumulated at the end of each trajectory and averaged over 105 runs. The relative error was found to be
less than 2 × 10–5 (1 × 10–5) for the first�order (second�order) scheme, significantly below the 10–3 level
considered the acceptable maximum for relative error in biomolecular simulations. These results show
that in a stochastic thermostat (random force) the numerical integration errors, associated with the cal�
culation of the global mechanical reaction coordinate X(t), are minimal and/or cancel out, and that single
precision arithmetic is adequate for production runs.

Hence, in the context of long simulations of biomolecules on a GPU, the first�order integrator
(Ermak�McCammon algorithm) can be used to describe accurately their mechanical properties under
physiologically relevant conditions of force application.

3.4. Performance Measurements

We have compared the overall performance of an end�to�end application of the SOP�GPU program
with the heavily tuned CPU�based implementation of the SOP model (SOP�CPU program) in describe
ing the Langevin dynamics of the domain WW at equilibrium (Fig. 3, Table 1). To fully occupy the GPU
resources, we profiled the computational performance of the SOP�GPU program as a function of the
number of independent trajectories running concurrently on a single GPU. We refer to this as the “many�
runs�per�GPU” approach. Alternatively, we could have assessed the performance of the program by run�
ning one trajectory on a single GPU, but for a range of systems of different size N, which we refer to as the
“one�run�per�GPU” approach. The results obtained indicate that for a small system of 34 residues (WW
domain, Table 1), the use of a single GPU device allows one to accelerate simulations starting from 3 inde�
pendent runs (for small systems, there is insufficient parallelism to fully load the GPU), which is also
equivalent to running one trajectory on a single GPU for a system of ~102 residues, such as the domains
Ig27 and C2A (Table 1). While the simulation time on the CPU scales linearly with the number of runs,
the scaling in this regime on the GPU is sublinear (nearly constant) until the number of runs is ~500. At
this point, depending on the number of threads per thread block, the GPU shows significant performance
gains relative to the CPU reaching its maximum 80–90�fold value (the speedup is shown in the inset of
Fig. 3b). We ran the simulations long enough to converge the speedup ratio (n = 106 steps of size h = 40 ps).
Beyond this point, the GPU device is fully subscribed and the execution time scales linearly with the num�
ber of runs as on the CPU.

In general, the total number of threads of execution Mth = mBB, defined by the number of thread blocks
mB of size B, is roughly equal the product of the system size N and the number of trajectories s running
concurrently on the GPU, i.e. Mth = Ns. Because it is impossible to predict which block size B will result
in the best performance, we carried out benchmark computations for B = 64, 128, 256 and 512 for pur�
poses of performance comparison. Our results indicate that all ALUs must to be fully loaded and that Mth

should exceed the number of ALUs on a single GPU by a factor of 10–15. For example, on a graphics card
with 240 ALUs (GeForce GTX 280 or GTX 295, or Tesla C1060), Mth ≈ 5000–10000, and in the case of
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WW domain (N = 34) this translates to s ≈ 100 (Fig. 3). This implies that the use of small thread blocks is
more advantageous when Mth ≤ 3000, e.g., when simulating one trajectory for a system of the size of fibrin�
ogen monomer Fb (N ≈ 2000) or 30 runs for a system with N ≈ 100 (Ig27), or ~50 runs for a smaller system
such as the WW domain (N = 34). However, larger thread blocks should be used when Mth > 3000 to sim�
ulate a few trajectories for larger systems such as the fibrinogen dimer (Fb)2 (N = 3849) or to obtain one
trajectory for a very large system, e.g., the viral capsid HK97 (N = 115, 140, see Table 1).

To profile the associated computational time and memory demand for the SOP�GPU software we ran
a series of benchmark simulations on several different protein systems (Table 1) using the one�run�per�
GPU approach. The execution time of an end�to�end application of the program as a function of particle
count was recorded using the standard CUDA runtime profiling tool. To more closely assess the performance
characteristics of the SOP�GPU code as a function of the system size N, we analyzed one simulation run for
each protein system, generated over n = 106 steps of size h = 40 ps and block size of B = 64 threads (Fig. 4). For
all test systems of less than ~3.000 residues the associated simulation time remains roughly the same, i.e.
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(1–3) ~10–4 seconds per step. This is not surprising since Mth > 3000 is the amount of threads needed to
fully utilize the GPU resources. For larger systems (N > 3000), the computational time scales roughly lin�
early with N (Fig. 4). Small variation in runtime versus N around the monotonic linear dependence is due
to the different native topology of the test systems, i.e. the number of native and non�native contacts in
the PDB structure (Table 1). The amount of on�board memory in contemporary graphics cards – ~1 GB
(GeForce GTX 200 series) and 4GB (Tesla C1060) – is sufficient for Langevin simulations of large bio�
molecular systems comparable in size with the fibrinogen dimer (Fb)2. The amount of on�board memory
will most likely increase with the next generation of graphics cards with new Fermi architecture from
NVIDIA (up to ~6 GB) [63].

4. CONCLUSION

We have developed and tested, to the best of our knowledge, the first GPU�based implementation of
Langevin simulations of biomolecules, where the particle based and the interacting pair based approaches
have been employed in the parallel computation of forces due to the covalent and non�covalent interac�
tions governed by the standard pair potentials. We have presented the numerical routines for the genera�
tion of pseudorandom numbers using the Hybrid Taus algorithm to describe random collisions of a bio�
molecule with solvent molecules, for the construction of Verlet lists, and for the numerical integration of
Langevin equations of motion based on the first order scheme. Although we focused on the C

α
�based

coarse�grained SOP model of a protein, which involves only two�body potentials in the potential energy
function, the developed formalism can be used in conjunction with more sophisticated biomolecular force
fields to explore, e.g., protein�protein and protein�DNA interactions, and it can also be extended to
include the three�body (angle) potentials to describe side chains. In addition, the numerical integration
kernel can be modified to follow the Langevin dynamics in the underdamped limit, in order to describe
the thermodynamics of biomolecular transitions.

The developed formalism has been mapped into a standard CUDA code for Langevin simulations of
biomolecules (SOP�GPU program). Benchmark simulations have shown that for a test system of the all�
WW domain the results of simulations of the mechanical denaturation on the GPU agree well with the
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Fig. 4. The one�run�per�GPU approach: shown are the simulation time on the GPU on a log�log scale and the memory
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test systems, including small proteins (the WW �domain, the Ig27 domain from human titin, the domain C2A from human
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about the native state topology for these biomolecules is summarized in Table.



MATHEMATICAL MODELS AND COMPUTER SIMULATIONS  Vol. 4  No. 3  2012

LANGEVIN DYNAMICS SIMULATIONS OF MICROMECHANICS 285

results obtained on the CPU (Fig. 2). In a separate work, we also compared the forced unfolding data,
obtained on the CPU and on the GPU, for the human synaptotagmin Syt1 [54] and for the human fibrin�
ogen Fb molecules [55], and found that the results of the CPU� and GPU�based computations agree very
well. Using an exactly solvable model of a Brownian particle evolving in a harmonic potential, we have
assessed the accuracy of the numerical integration of Langevin equations of motion in describing the
force�induced elongation of a protein chain. We found that using the first�order integrator is sufficient to
accurately describe the force�driven elongation of a protein over many billions of iterations.

GPUs can be utilized to generate a few trajectories of Langevin dynamics for a large system of many
thousands of residues (one�run�per�GPU approach). This is the major approach used by many research�
ers in this field. As it was also shown, GPU can be utilized to obtain many trajectories for a small system
composed of a few hundreds of amino acids (many�runs�per�GPU approach). This approach can be used
to get a statistically significant set of results for the direct comparison of the theoretical and experimental
distribution functions. Important point made in this work is that an efficient utilization of texcture cache
allows one to obtain on a GPU a computation speed�up of about 90 times compared to CPU.

The results obtained attest to the accuracy of the SOP�GPU program. The SOP�GPU software can
now be utilized to describe the mechanical properties of proteins, the strength of the noncovalent bonds
that stabilize protein�protein complexes and aggregates, and the physical properties of large�size protein
assemblies. A combination of the SOP model and the GPU�based computations enables one to carry out
molecular simulations in reasonable wall�clock time in order to explore the unfolding micromechanics of
protein on the timescale of 0.01–0.1s. This allows one to interpret the experimental force�extension
curves and force�indentation profiles of biomolecules, obtained in dynamic force spectroscopy assays,
thus, bridging the gap between theory and experiments. For example, on a GPU GeForce GTX 280 or
GTX 295 it takes only ~4 days to generate a single unfolding trajectory for the fibrinogen monomer Fb
using experimental pulling speed of 2.5 μm/s. By contrast, it would take as long as ~8 months to obtain
just one trajectory using the CPU version of the program on a 2.66 GHz Intel Core i7 with 6GB of mem�
ory. It takes ~20 days to generate one force�indentation curve for the viral capsid HK97 on a single GPU
(GeForce GTX 200 series, Tesla C1060) using experimental pulling speed of 10 m/s. Identical simulation
run on a CPU would take about 5 years.

Beyond that, we note that due to rapid evolution of GPU hardware, the simulation time on the GPU
will decrease significantly with the introduction of the MIMD (Multiple Instruction Multiple Data) based
Fermi architecture (NVIDIA) in the near future [63]. Presented SOP�GPU program can be easily
adapted for the new hardware which will presumably allow one to carry out simulations of many more bio�
logical systems for which experimental results already obtained. The presented methodology can be
expanded for the simulations of other biological systems such as molecular motors, nucleosomes, lypo�
somes, etc.
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