
ISSN 2070�0482, Mathematical Models and Computer Simulations, 2012, Vol. 4, No. 3, pp. 321–335. © Pleiades Publishing, Ltd., 2012.
Original Russian Text © M.K. Baev, G.G. Chernykh, 2011, published in Matematicheskoe Modelirovanie, 2011, Vol. 23, No. 10, pp. 44–64.

321

INTRODUCTION

The dynamics of isotropic turbulence has attracted the attention of researchers for over 70 years. Many
papers are devoted to theoretical and experimental studies of this problem [1]. In what follows, a brief
analysis is presented of the results obtained using the Karman–Howarth and Corrsin equations [1]. Ini�
tially, the equations are not closed. Each equation contains two unknown functions. Consequently, the
solution of these equations requires some additional information or hypotheses.

The main emphasis was placed on the closure of the Karman–Howarth equation. K. Hasselmann [2]
was the first to suggest a connection between the correlation functions of the second and third orders. His
model of the isotropic turbulence contains only one empirical constant and a rather complicated expres�
sion for the turbulent viscosity coefficient. Hasselmann did not use his model for any numerical calcula�
tions. Some calculation results obtained by its application are presented in V. Kostomakha’s publications
[3, 4]. In [3, 4] the most complete experimental data were obtained known to the authors about the decay
of the longitudinal two�point correlation functions of the second and third order in a turbulent flow
behind a non�heated grid. These experiments attained a high isotropy of the flow by its contraction; a
detailed experimental verification was performed of the validity of the unclosed Karman–Howarth equa�
tion. The results are also presented for the comparison of the obtained experimental data with the authors’
calculation using different other models of the isotropic turbulence decay.

M. Millionshchikov [5] proposed a different method for the closure of the Karman–Howarth equa�
tion. The coefficient of turbulent viscosity in his model was, however, such that the model yielded incor�
rect behavior of the solution for small values of the spatial variable. In order to address this defect, Mil�
lionshchikov introduced an additional empirical relationship between the spatial and time variables [6].

An original method of closure, free from the above�mentioned disadvantages, was proposed by
Yu.M. Lytkin [7, 8]. Numerical experiments based on it and carried out in [8] demonstrated good agree�
ment with the experimental data [9, 10]. Further, this model will be formulated in greater detail. Yet
another method for the closure of the Karman–Howarth equation at high Reynolds numbers was imple�
mented by J. Domaradzki and G. Mellor [11]. Their semiempirical model has the same drawback as Mil�
lionshchikov’s model yielding an incorrect description of the solution behavior when the spatial variable
is close to zero.
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N. Akatnov [12, 13] proposed a closure using a complex representation of the coefficient of the turbu�
lent viscosity and some empirical functions.

In 1993, M. Oberlack and N. Peters [14] published their work, in which the closure of the Karman–
Howarth equation was implemented by the method similar to that suggested by Lytkin [7, 8]. They pre�
sented a comparison with the experimental data from the work by R.W. Stewart and A.A. Townsend [10]
for the triple correlation function of the velocity field.

A. Onufriev [15] constructed a closed mathematical model for the dynamics of the isotropic turbulence
based on a system of two differential equations for the double and triple longitudinal two�point correlation
functions. He used a finite�dimensional equation for the probability density and Millionshchikov’s
approach (see, for instance, [1]) for the system closure. A. Onufriev showed that the model [7, 8] resulted
from the truncation of the differential transport equations for the triple longitudinal correlation function
of the velocity field.

G. Chernykh, Zh. Korobitsyna, and V. Kostomakha [16] numerically modeled the isotropic turbu�
lence under its decay in the conditions of laboratory measurements [3, 4, 10, 17] based on the closed [7, 8]
Karman–Howarth equation for the two�point correlation function of the velocity field. The Loitsiansky–
Millionshchikov asymptotic solution [18, 19] was numerically implemented, which corresponded to the
final stage of the decay.

Currently, investigations into the dynamics of the isotropic turbulence using the Karman–Howarth
equation are continued. A.T. Onufriev and O.A. Pyrkova [20], and A.A. Onufriev, A.T. Onufriev, and
O.A. Pyrkova [21] constructed a mathematical model for the decay of weak turbulence in a homogeneous
isotropic turbulent flow taking into account the phenomenon of intermittency. The model is based on the
closure of the Karman–Howarth equation and employs the gradient hypothesis connecting second� and
third�order two�point correlation functions, and takes the dependence of the turbulent viscosity coeffi�
cient of the turbulent Reynolds number into account [15]. In the area of large turbulent Reynolds num�
bers, the expression for the turbulent viscosity coefficient in the model [20, 21] is consistent with that pre�
sented in [7, 8]. The obtained dependences for the scale of the fluctuating velocity and the longitudinal
correlation function are consistent with the known asymptotic representations of the experimental data
and the decay of the strong and weak isotropic turbulence. V. Frost studied the decay of the isotropic tur�
bulence using Hasselmann’s model [22]. The geometrical interpretation of the self�similar solution of the
closed Karman–Howarth equation corresponding to the developed turbulence was carried out by
V. Grebenev and M. Oberlack [23].

In addition to models based on the solution of the Karman–Howarth equation, there are also some
other approaches to the theoretical study of the dynamics of the isotropic turbulence, among which we
can name the analysis of the possible self�similar solutions of the unclosed Karman–Howarth equation or
its spectral analysis, attempts to close the equation using the energy spectrum, direct numerical modeling
of the isotropic turbulence based on the solution of Navier—Stokes equation, and the large�eddy method.
These approaches and the obtained results were analyzed by G. Barenblatt and A. Gavrilov [24], A. Monin
[1], A. Korneev, and L. Sedov [25]; U. Shumann and J. Patterson [26]; W. George [27], C. Speziale, and
P. Bernard [28]; J. Chasnov [29], N. Mansour, and A. Wray [30]; O. Metais and M. Lesieur [31]; and others.

The dynamics of turbulent temperature fluctuations (passive scalar concentration) was considered in
much fewer works (see, for example, [1, 32–35]). It is known [1] that the turbulence behind a grid in a
wind tunnel is near�isotropic. In [35], as in [33], the main grid creating a near�isotropic turbulence was
not heated. The heat supply was provided by a wire screen heated by an electric current placed in the flow
behind the grid (in its immediate vicinity). The most complete (to the best of our knowledge) are the data
of experiments carried out by R. Mills, A. Kistler, V. O’Brien, and S. Corrsin [33], in which measurements
were made of near�isotropic pulsation characteristics of velocity and temperature fields depending on the
distance from the grid. In particular, in [33], detailed data are presented about the dynamics of the second�
order two�point correlation functions. 

In a number of the works, the apparatus of the two�point correlation functions of the velocity fields and
passive scalar is applied to the investigations of flows more complicated than isotropic turbulence (see, for
example, [14, 36–40]).

As far as we are aware, the analysis of publications devoted to the study of a turbulent flow behind a
heated grid enables us to conclude that the numerical modeling of the flow based on the closed system of
Karman–Howarth and Corrsin equations [1, 32] is insufficiently studied. In this work, we performed the
closure of the Corrsin equation by using the gradient hypothesis similar to the one proposed in [7, 8]. A
numerical model of the locally isotropic turbulence has been constructed based on a closed system of Kolmog�
orov and Yaglom equations. In the assumption of constant Loitsiansky and Corrsin invariants [1, 19, 32], we
obtained a self�similar solution of the Corrsin equation corresponding to infinitely large turbulent Rey�
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nolds and Peclet numbers [1]. A numerical model of a turbulent flow behind a heated grid is constructed
based on a system of closed Karman–Howarth and Corrsin equations. The calculation results have been
compared with the experimental data [33]. This work is a development and continuation of [7, 8, 41, 42].

CLOSURE OF THE CORRSIN EQUATION

It is known that an isotropic turbulent flow and the dynamics of temperature fluctuations in it are
described by a system of Karman–Howarth and Corrsin equations for two�point correlation functions of
the velocity and temperature fields (the passive scalar) [1, 32]:

(1)

(2)

Here, BLL, BLL, L are the second� and third�order longitudinal two�point correlation functions of the
velocity field; Bθθ is the two�point correlation function of the temperature field; BLθ, θ is the mixed
moment of the third order; ν and χ are the coefficients of kinematic viscosity and temperature conductiv�
ity (diffusion of the passive scalar).

Following [1], we obtain the integral scales of turbulence Lu, Lθ, and turbulent Reynolds and Peclet

numbers from the relations   ReL = uL/ν, PeL = uL/χ, and 

where  and 
If the numbers ReL and PeL are sufficiently large, then, as is known [1], there exists an equilibrium

range of values r  L, over which (1) and (2) are reduced to equations for the structure functions DLL,
DLL,L, Dθθ, and DLθ,θ connected with BLL, BLL, L, Bθθ, and BLθ, θ as follows:

The time dependence in these relations can be neglected and the consequences of Eqs. (1) and (2) have
form [1]

(3)

(4)

where  and  are the rates of the dissipation and equalization of temper�
ature inhomogeneities (concentration inhomogeneities of the passive scalar), respectively. Equation (3)
was derived by A.N. Kolmogorov [43]; equation (4) was obtained by A.M. Yaglom [44] (as a direct conse�
quence of the Navier�Stokes equations).

Following [7, 8, 41], we express BLL, L and BLθ, θ in terms of BLL and Bθθ, using the relations of the gra�
dient type

or for the structure functions

(5)

Here, K1 and K2 are the coefficients of the turbulent viscosity and diffusion. We find K1 and K2 in the fol�
lowing way [7, 41]:

(6)

where æ1 and æ2 are empirical constants. Taking into account (5), the system of equations (3), (4) can be
written as
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(7)

(8)

The initial conditions for system (7) and (8) are

(9)

From the solution of equations (7) and (8), it follows [1] that in the inertial�convective range

   and  over which K1  ν, K2  χ and the quantities
DLL and Dθθ are equal respectively to

(10)

In these equations expressing the law of two�thirds, the values Cu and Cθ are universal constants. In [1],
the value Cu = 1.9 is suggested based on the processing of a large number of experimental data; hence, in
[7] it was obtained that æ1 = 0.076. The value recommended in [1] is Cθ = 3.0; it corresponds to æ2 =
0.242.

From the structure functions DLL and Dθθ found by solving the problem (7)–(9) of one�dimensional
spectra of velocity fields and the passive scalar (k is the wave number), can be calculated [1]

(11)

For calculations and comparison with experimental data [3, 4, 45–48], the dimensionless system of
equations (7) and (8)was written as follows:

(12)

(13)

Here, r* = r/ηu,     and 
The Cauchy problem (7)–(9) was solved using the standard Runge�Kutta method of the fourth�order

accuracy [49]. Moreover, the solution was found at the grid nodes ri = ri − 1 + hi, i = 1,…, I; r0 = 0. A rather
high value of rI was selected. In order to calculate one�dimensional spectra (11) using the values

  found in (7) and (8), cubic interpolating splines were constructed and Filon’s

method was applied [50]. The algorithm for spectra calculation was tested by computing the Fourier trans�

forms of the functions    and  The exact analytical values of these quantities are

known. The values of the wave number varied so that the Fourier cosine transform decreased by 15, 15,
and 11 orders, respectively. The calculated values of the Fourier transforms coincide with their analytical
values with an accuracy of up to 3–4 significant digits. As an example, Table 1 shows the calculation results

for a cosine Fourier transform of the function  Column 1 presents the exact analytical values

 column 2 shows the results of calculations performed in the present work using the above�

described technique; in column 3 the results of the calculations are given obtained by a standard Filoth
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program [51]. The results of column 2 were obtained using an irregular grid (hi = hi − 1 × 1.0025) with the
node number 5000, initial step h1 = 0.0000001 and rI = 10. It can be seen that that the standard Filoth pro�
gram allows calculations for large values of wave number k, but it requires an analytical definition of the
function. Varying the number of grid points and the values of the initial step does not lead to any significant
deviations.

In our work, along with model (12) and (13), we also considered the closure of the system of equations (3)
and (4) based on A.M. Obukhov’s model [1]

(14)

where S = −0.306 and F = −0.322 are the empirical constants. The closed system of equations in this case
can be written as

(15)

(16)

The initial conditions for DLL and Dθθ remain zero. System (15) and (16) was numerically integrated
both by an implicit refined Euler–Cauchy method [49] and using the standard Runge�Kutta method of
the fourth�order accuracy. When the latter method was applied, for reasons of stability the calculations

were performed on the interval  (in the calculations it was assumed  = 200), which was later
followed by the transition to asymptotic representations (10). A similar approach was also used for the
numerical integration of the system of equations (12) and (13), along with direct numerical integration (in
order to control the accuracy of the calculations).

The results of the calculations based on model (12) and (13) were compared with the experimental data
[45, 46] (Figs. 1, 2; Pr = 0.72). In Fig.1a, the calculated longitudinal structure functions of the velocity
fields and the passive scalar (temperature) of the second order are compared with the experimental data
[45]. The agreement appears to be satisfactory. The structure functions of the third order, calculated using
model (12) and (13) are compared with the experimental data [45] shown in Fig.1b; the agreement is suf�
ficiently good. Good agreement was also obtained for the results of measurements of the two�point longi�
tudinal structure functions of the velocity field of the second and third orders [3, 4].

In addition, in Fig. 2, the calculated second�order structure function of the temperature field is com�
pared with the experimental data [46]. The scatter of the experimental data is rather large.

The one�dimensional spectrum of the velocity field calculated from the solution of Eq. (12) is com�
pared in Fig. 3 with the measurement results in various turbulent flows collected in [47] (comparisons with
earlier studies, available at the time of performance, are presented in [3, 4, 7]). It is obvious that there is
good agreement with the experimental data. This figure also shows the results of the calculations using
model (15). Obukhov’s model gives a somewhat more rapid decrease in the one�dimensional spectrum,
which is consistent with the results obtained in Golitsyn’s study [52].

The calculated one�dimensional spectrum of the passive scalar field is compared with the results of the
measurements presented in [48] and known asymptotics [1] in Fig. 4. The agreement is satisfactory. We
note that by the authors’ estimates [48], the value Cθ ≈ 2.8. In the present work, following recommenda�
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Table 1. Comparison of the calculated and exact values of the Fourier cosine transform

k I II III

1 6.9019422352E�01 6.9019422352E�01 6.9019408793E�01

5 1.7108204339E�03 1.7108204340E�03 1.7108073053E�03

10 1.2307869792E�11 1.2307473130E�11 1.2307775326E�11

11 6.4585773190E�14 6.4432149597E�14 6.4585056752E�14

11.5 3.8786771597E�15 3.8828485725E�15 3.8786303172E�15

12 2.0556235864E�16 2.0511051610E�16 2.0554924279E�16

12.5 9.6142794521E�18 6.9354614471E�18 9.6164072352E�18
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tions [1], Cθ = 3 was chosen. Batchelor’s theory [1] corresponding to Pr  1 also comprises an empirical
constant matched in [48] during the comparison with the experimental data (Fig. 4) to Cθ = 2.8.

Note that the validity of the approximation of local isotropy with respect to the field of the passive sca�
lar [53] has often been discussed in many publications. In our view, the above�presented comparison of
the calculation results and experimental data is, to some extent, a positive answer to this question.

Following [1, 43, 44], we note some solution properties of the Cauchy problem (7)–(9). First of all,

under r  ηu (r*  1), we have  and  These asymptotics are obtained in
the above�cited works from the analysis of the solution of the Cauchy problem for a nonclosed system of
equations (3) and (4) under the assumption that the third�order moments are small. On the assumption

Pr  1 and of the validity of the above�mentioned asymptotic representation  there exists

a range of values in which  The latter [1] corresponds to

the representation on some interval of wave numbers (see Fig. 4).
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librium range but also for all values of r. The self�similar
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[1, 19, 32, 33] and the fulfillment of the boundary con�
ditions
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(20)

Here,    are the Loitsiansky and

Corrsin invariants; t0 = const; and   Note that it follows from (20) that

ϕ ≈  = ϕ0(ξ) at small ξ. The self�similar solution (18), (19) was obtained by Lytkin in [7].
The laws of decay of (19) are consistent with the known laws of Kolmogorov [1, 43]. The plotted function
ϕ(ξ) is presented in Fig. 5. Along with ϕ(ξ), Fig. 5 also shows the function  = 
i.e., the self�similar solution of the Corrsin equation closed with the help of the simplified Millionshchikov

model [5, 6], in which it was assumed K1 =  and K2 =  The law of the θ2 decay
seems to have first been presented by Corrsin [32].

A detailed discussion of the constancy of the Loitsiansky and Corrsin invariants can be found in a num�
ber of works [1, 8, 16, 19, 29, 54–59]. In [8, 16, 57], the constancy of the Loitsiansky invariant follows
from the assigned initial conditions consistent with the experimental data and the applied numerical
model.

NUMERICAL MODELING OF A TURBULENT FLOW BEHIND 
A HEATED GRID IN A WIND TUNNEL

As noted in the introduction, near�isotropic turbulence can be generated in the laboratory conditions
by placing a swirling grid in the test section of a wind tunnel or a flow channel. The results of the measure�
ments of correlation functions in the flow behind the swirling grids can be used for comparison with the

2 3
1 2

0

2 3 1 1exp[ ( æ æ ) ( ) ]; .f d K L Q

ξ

θϕ = − − ξ θ =∫

( )( )1

57 14æ 2 3 ,uA Q= Λ

4

0
( ) ( , ) ,LLt r B r t dr

∞

Λ = ∫ 2

0
( ) ( , )K t r B r t dr

∞

θθ= ∫
4

0
( ) ,uQ f d

∞

= ξ ξ ξ∫ 2

0
( ) .Q d

∞

θ = ξ ϕ ξ ξ∫
( )1 2

2 31 2æ 3æ− ξ

1( )ϕ ξ ( )( )1 2exp 2æ 3æ ,− ξ

1æ (0, )LLr B t 2æ (0, ).LLr B t

107

101

100

10–1

10–2

10–3

10–4

10–5

10–6
10010–110–210–310–5

106

105

104

103

102

10–4

E1u/v2
ηηu

1
2

k/ηu

Fig. 3. Comparison of the calculated one�dimensional spectrum of the velocity field (points 1, 2) with the experimental data
collected in [47]; points 1 and 2 are calculation results (point 1 is obtained by using model (12); point 2, by using model (15)).



328

MATHEMATICAL MODELS AND COMPUTER SIMULATIONS  Vol. 4  No. 3  2012

BAEV, CHERNYKH

1.0

0.5

0 18126
ξ

ϕ

3

2

1

Fig. 5. The self�similar solution of the Corrsin equation
corresponding to Qu = 100; (1) ϕ(ξ) is determined by for�

mula (20); (2) function ϕ0(ξ) = 1 – 

(3) function 

( )1 2
2 32æ 3 æ ;ξ

( )( )1 21( ) exp 2æ 3æ .ϕ ξ = − ξ

104

103

102

101

100

10–1

10–2

10–3

10–4

10210110010–110–210–3

E1u/v2
ηηu, E1θ/2θ2

kηu

1
2
3
4

5

~k–5/3

~k–1

~k–17/3

1

3

2

k/ηu

Fig. 4. Comparison of calculated and measured [48] one�dimensional spectra of the fields of velocity and the passive sca�
lar; Points 1, 2, and 3 correspond to E1θ for Pr = 700; 7; and 0.72; 4 is the calculated spectrum E1u; 5 are the calculations
using the Obukhov model, Pr = 7; Curve 1 is processing [48] of the experimental data of a one�dimensional spectrum of
the velocity field; curves 2 and 3 are theoretical Batchelor curves for a one�dimension spectrum of the passive scalar, Pr =
7; 700; small�size signs are experimental data [48].

calculation results. It is convenient at the same time
to write the closed equations (1) and (2) in a dimen�
sionless form as follows:

(21)

(22)

Here,   

  
  x is the

distance from the grid; U∞, Θ is the flow velocity and
temperature in the test section of the wind tunnel or
the channel; M is the cell size of the swirling grid;
and ReM, PeM are the Reynolds and Peclet numbers.

We supplement the system of equations (21) and
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(23)

and the initial conditions

(24)

In accordance with the physical meaning of the problem, functions  must be continuous,
bounded, have a maximum at  and tend to zero under 

Under the assumption of a sufficiently rapid decay of functions  and the solution 
of problem (21)–(24) under  the consequence of Eqs. (21) and (22) is the known Loitsiansky and
Corrsin invariants [1, 19, 32, 33]

 

In the following, the nondimensionalization sign “~” is omitted. 
For the numerical solution of (21)–(24), implicit conservative difference schemes were used based on

the integro�interpolation method [60]

(25)

(26)

Here,   n is the number of the time layer; τn and hi (n = 0, 1, …, N;

i = 0, 1, …, I) are the steps of the difference grid in the temporal and spatial variables, respectively;
  and s is the number of the iteration with respect to nonlinearity;

 

In accordance with the boundary and initial conditions (23) and (24), the following initial�boundary
conditions were set for solving the finite�difference problem
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A sufficiently large value rI was selected. In per�
forming iterations with respect to nonlinearity it was

assumed that  Iterations with
respect to nonlinearity were performed until the con�

dition  ≤ 

was fulfilled, where the value δ > 0 was selected
within the range δ = 10−5–10−4 (the further decrease
in δ did not lead to any significant change in the
solution). To achieve this accuracy, it was sufficient
to make 3.5 iterations with respect to nonlinearity
(Eq. (25)) at each time layer. Parameters τn, hi I, and
δ were chosen experimentally in the course of the
calculations.

The numerical model was tested on the problem
of the turbulence decay behind an unheated grid
[3, 4]. The initial conditions at t0 = 40 were estab�
lished on the basis of the experimental data. The
changes in the dependence of the calculated and
measured values BLL(0, t) on the distance from the
grid are presented in Fig. 6. The calculated normal�
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ized correlation function  for t = 200 is compared with the measured one in Fig. 7.
It is obvious that the calculation results in Figs. 6 and 7 are in good agreement with the experimental data
(earlier, a detailed comparison had been carried out in [3, 4, 16]).

The experiments [33] in a wind tunnel contained fairly detailed measurements of turbulence charac�
teristics behind a heated grid at ReM = 7200 and PeM = 5184. Under t = x/M = 17.0, the initial conditions

were specified as the correlation functions  Bθθ/Θ2 obtained in [33]. Before proceeding to the
comparison of the calculated correlation functions of the temperature and experimental data [33], it
should be noted that the quantity æ2 was assumed to be equal to 0.095 on the basis of the condition of its
better agreement with the experimental data. Its value is consistent with our results shown in Fig. 2. The

changes in the values  and  with the increase in t = x/M is presented
in Fig. 8. It is evident that the calculation results are fairly close to the experimental data. At æ2 = 0.125
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results of processing the experimental data in [33]; dashed lines are the calculation results under æ2 = 0.095; the dashed�
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(which corresponds to the value Cθ = 5.8 [1]), a greater deviation of the calculation results from the exper�
imental data is observed.

As is known, the turbulent flow behind a heated grid is characterized by two microscales, i.e., λf and λθ

[1, 32, 33]. Each of those can be found in two ways. By definition, Taylor λ1f and Corrsin λ1θ microscales
are obtained from the relations [1, 32, 33]

(29)

In [33], the relations

(30)

resulting from the Taylor expansion of all terms of equations (1) and (2) are also employed. According to
the terminology adopted in [1], these relations are zero terms of the expansion when r = 0. In [33], rela�
tions (29) and (30) are treated as independent and are used to control the accuracy of the measurements.
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It should be expected that the values λ1f and λ2f will
be close. These values coincide only for parabolic

correlation functions  (for small r).
The measurement results [33] are sufficiently close.
The results of numerical simulations are practically
the same. A similar situation with the experimental
data is also observed for the values λ1θ and λ2θ. The
calculated values λ1f and λ2f differ but insignifi�
cantly.

It should be noted that the equalities λ1f = λ2f

and λ1θ = λ2θ do not follow from the numerical
model. The calculated microscale values result
from the computer processing of the data obtained
by a numerical experiment (in [33] by a laboratory
experiment). In this paper, we consider also a mod�
ification of the numerical model, in which, under r
= 0, boundary conditions were set for the correla�
tion functions instead of the Neumann condition
(23) (thereby introducing into the model the equal�
ity of the microscales obtained from relations (29)
and (30)):
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(31)

The values λ3f and λ3θ found are close to the values λ1f, λ2f, λ1θ, and λ2θ (Fig. 9). The influence of the
boundary conditions (31) on the calculated values of BLL(r, t) and Bθθ(r, t) proved to be negligible. The grid
values of the correlation functions differ by no more than 1% in the uniform grid norm for all the consid�
ered range of t values.

The values of the turbulent Reynolds and Peclet numbers  were calculated

from the values  λf, and λθ found in the numerical experiments. It was established that under
t = x/M = 20–65, the values of the turbulent Reynolds and Peclet numbers decrease and are in the ranges
Reλ = 26.1–35.6, Reλ = 26.1–20.3 (Fig. 10).

These data are consistent with the experimental data [33] indicating a weak variation of the turbulent
Reynolds and Peclet numbers at the initial stage of the turbulence decay behind the grid. The slow change
in Reλ was mentioned, in particular, in [3, 4, 8, 16, 57]. Above, in formulating the closing relations (5) and
(6), it has been noted that the empirical constant æ1 calculated in terms of the universal Kolmogorov con�
stant Cu, corresponding to the representation of the structure function DLL within the inertial range of
scales. The performed numerical experiments (see also [3, 4, 7, 8, 16, 57]) showed that the value æ1 was
sufficiently universal. As for the empirical constant æ2, as has been noted above, the value æ2 = 0.095 was
chosen taking into account the compliance with the requirement of the agreement between the calcula�
tion results and the experimental data [33] (see also Fig. 2). The choice of æ2 = const for the numerical
simulation of the dynamics of turbulent fluctuations of temperature at the initial stage of modeling the
decay of turbulence behind a heated grid in a wind tunnel is also determined by the small changes in Peλ
(Reλ) in the considered range of distances.

Figure 11a shows calculated and experimental normalized correlation functions f(r). The agreement of
the obtained data can be considered satisfactory (some other examples, in which the calculation results
and experimental data are in good agreement are given in [3, 4, 7, 8, 16]).

Figure 11b presents the calculation results for normalized correlation functions m(r). It is evident that
the calculated and measured functions are in sufficiently good agreement. The calculation results
obtained for æ2 = 0.125 (they are not shown in Fig. 11) are more consistent with the experimental data.
However, in this case, there are significant deviations of the calculated and measured values θ (Fig. 8b).
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In the course of numerical experiments, the behavior of the values  (Loitsiansky

invariant) and  (Corrsin invariant) was also analyzed. In the numerical solution, the

values of these quantities remain constant, i.e., L(t) = 5.235 × 10–5 and K(t) = 1.247 × 10–3. Thus, the cal�
culation results do not contradict the hypothesis of the existence of finite nonzero Loitsiansky and Corrsin
invariants. As has already been noted, the issue of the Loitsiansky invariant in the numerical experiments
based on the closed Karman–Howarth equation (21) was discussed in detail in [16, 57].

CONCLUSIONS

A closure of the Corrsin equation is performed using the gradient hypothesis connecting the multivari�
ate two�point correlation moment of the third order with the second�order two�point correlation function
of a passive scalar field. A numerical model of the locally isotropic turbulence is constructed based on a
closed system of Kolmogorov and Yaglom equations. The calculation results for the structure functions
DLL, DLL, L, Dθθ, and DLθ, θ and the one�dimensional spectra of the fields of the velocity and the passive
scalar are in good agreement with the known experimental data. Under the assumption of the constant
Loitsiansky and Corrsin invariants, a self�similar solution of the Corrsin equation is constructed, corre�
sponding to the infinite Reynolds and Peclet numbers. A numerical model of the dynamics of turbulence
and temperature fluctuations behind a heated grid in a wind tunnel is developed, based on the closed Kar�
man–Howarth and Corrsin equations. The calculation results obtained with the help of it are in good
agreement with the available experimental data.
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