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1. INTRODUCTION 

The fluid flow under a Zhukovskii rabbet through irrigated soil bedded by very permeable pressure
horizon, whose left semi�infinite roof is simulated by an impenetrable inclusion, is examined. To study the
seepage process to a free surface, it is assumed that the velocity of the flow at the rabbet’s end is a finite
quantity and meets the following condition: 0 <  < ε, where ε (0 < ε < 1) is the infiltration’s uniform
intensity related to soil seepage coefficient κ = const. 

Below, we investigate the case when the velocity of the flow at the rabbet’s end is accepted as infinite.
In this case, the area of complex velocity is not one�sheeted in contrast to the case described in [1], where
the area of the complex velocity is one�sheeted. The Polubarinova�Kochina method [2, 3] and also the
procedures of conformal mapping [4–6] for special areas, which are typical for the problems of under�
ground hydromechanics [7–9] are used to solve the mixed multi�parametric boundary problem. The exact
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analytical representations for characteristic sizes of flow
motion are obtained. On the base of this model, an algorithm
for calculating the ground water height behind the rabbet,
coordinates of depression curve points, and other parameters
of the flow is developed. The hydrodynamic analysis of the
structure and typical peculiarities of the simulating process is
performed with the help of numerical calculations. There are
limit cases of flow motion since there is no impermeable
inclusion or upthrust in the bottom very permeable aquifer.
The results are compared with the results obtained for the
case of a finite velocity of the flow at the end of the rabbet [1].

2. PROBLEM DEFINITION

Figure 1 depicts schematically the flow pattern. As before
[1], we examine a flat steady�state motion of incompressible
fluid according to Darcy’s law in uniform and isotropic soil
through a soil layer of power T towards a very permeable aqui�
fer with constant water head  and for this case the left semi�0H
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Fig. 1. Flow pattern for the flow around the
Zhukovskii rabbet in the irrigated soil bed�
ded by a very permeable pressure horizon.
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infinite part of the roof BC is simulated by a water�proof inclusion. The moving water flowing around the
rabbet rises at a certain height GF and forms a free surface DF, to which the infiltrated water flows with
intensity ε. In the examined case, the velocity of the flow at the rabbet’s end is infinite, in contrast to [1],
where the peak of this velocity is limited by value ε. 

Let us introduce the complex potential of motion ω = ϕ + iψ, where ϕ is a velocity potential, ψ is a
flow function, and the complex coordinate z = x + iy is related κH and H, respectively. Under such
assumptions, traditional for the examined class of flows, the process of seepage simulation is reduced to
the problem of how to find the complex potential ω(z) under the following boundary conditions:

  (1)

where  is the seepage flow rate. The procedure for determining the water height GF behind the rabbet,
i.e., S – d, is of great interest.

3. SOLUTION

Despite the fact that the boundary conditions of the problem coincide with the boundary conditions
for the case ; here, the structure and area of complex velocity presented in Fig. 2 are changed dras�
tically. This area, belonging to the class of polygons in polar grids [8, 10], becomes two�sheeted (in con�
trast to the case examined in [1]), and if we travel along the boundary, at points C and G, we pass to the
second Riemann sheet and back. 

By considering specific properties of the areas in polar grids caused by right angles and cuts, it is con�
venient to accept the rectangle of plan τ as a canonical domain [11] (Fig. 3): 

     

where K(k) is a complete elliptical integral of the first kind for module k [12].Using the procedure for gen�
erating the mapping functions for similar domains [4–6], let us determine the following expression for the
function that performs the conformal mapping of the auxiliary rectangle of plane τ into an area of complex
velocity: 

, (2)

where ϑ1 and ϑ2 are the first and second theta�functions with parameter q = exp(–πρ), which is con�
nected unambiguously with module k [12]; α, β, and γ are the unknown constants of the conformal map�

ping that binds by the following relationship thπ(0.5ρ + α − β − γ) = .To solve boundary problem (1),
let us use the Polubarinova�Kochina method [2, 13, 14], the main idea of which is to use the analytical
theory of the Fuchs linear differential equations [15]. 

By using the procedure for determining the functions’ characteristic measures dω/dτ and dz/dτ near
nonsimple points [2, 3, 14, 15] and by considering Eq. (2) and w = dω/dz, we can write 
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.(3)

Here, , ϑ0, and ϑ3 are zero and third theta�functions [12], sn(u,k) is an elliptical Jacobi sine, and
.

To determine the constant of simulation M, let us use the following ideas [16]. When point τ travels
around point B along quadrant Cr with sufficiently small radius r (i.e., when vector 0.5(1 + ρi) – r = reiΘ

turns and changes its argument Θ from –0.5π to –π), the respective point z should pass from ray AB to ray
BC and the z increment should differ insignificantly from –iT: 

 (4)
where O(r) is infinitesimal as r → 0.

On the other hand, under such a small increment Δτ, the increment of function z is also small (in our
case dz/dτ (3) is continuous at point τ = 0.5(1+ρi)). Therefore, 

. (5)

If we equate (4) and (5), obtained for Δz, and pass to the limit under r → 0, we determine 

. (6)

Here, we use the known result [12]

.
If we write Eq. (3) for different boundary segments of area τ and perform integration along the entire

boundary of the auxiliary area (Fig. 3), we close the area of motion z. As a result, we generate the expres�
sion for the main geometrical and filtration performances 

  (7)

for points coordinates of the free surface DF

 . (8)

In formulas (7) and (8) the subintegral functions are the expressions in the right�hand side of Eq. (3)
at the respective boundary segment of plane τ.

4. LIMIT CASE. CASES WITHOUT UPTHRUST AND INCLUSIONS

First of all, let us examine the case when H0 = 0, i.e., there is no upthrust caused by the underseam
underground water. Analysis shows that if we fix all the physical parameters of the scheme and if the head
of the curve in the a permeable underseam decreases, the inflection point of depression curve E moves
along the boundary towards point D and coincides with it at the limit under γ = γ* = 0. Under such γ, the
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right part of semicircle 
(dashed line in Fig. 2) drops out of the area of complex
velocity w, which is bifoliate, and in the flow plane z, the
free surface flattens at point D and comes out to the roof
of the water�permeable layer at a right angle to the
abscissa equal to L2, where L2 is the projection of the
curve of the depression to the x axis (Fig. 4). The solution
for this limit case is determined from Eqs. (2)–(8), if we
accept that γ = 0.

If in the plane of motion z points B and C coincide at
infinity, it corresponds to the case when the impermeable
inclusion, which is on the underseam of the roof of very
permeable ground, disappears (L1 = ∞). In this case, the
rectangle for the plane of auxiliary variable τ transforms
into semiband , , since ,

, K = π/2, and , and therefore ρ = ∞. 

From the analysis it follows that if we fix all physical
parameters of the scheme, and if the width of the imper�
meable inclusion decreases, point C moves along the
boundary of area z towards point B and coincides with it
at infinity at β = β* = 0.5ρ. For such β, the second sheet
of the Riemann surface in the area of complex velocity w

0.5(1 ) 0.5(1 )w i− + ε < − ε

0 Re 0.5< τ < 0 Im< τ < ∞ 0k =

' 1k = 'K = ∞

degenerates into point B, which jointly with point A, passes to a certain point (for which vy = H/T > 1) to
the bottom sheet (Fig. 2).

The solution for this limit case is obtained from Eqs. (2)–(8), if we accept that k = q = 0 and consider
that under β = β* [15]

In this case, the series for theta�functions is cut at the first members, elliptical functions degenerate
into trigonometric ones, and expressions (2) and (3) can be written as follows:

The correspondence of points G in planes w and τ results in the following relationship

,

which makes it possible to determine parameter g. Under γ = 0, equation  can be solved
graphically. 

5. NUMERICAL CALCULATIONS AND COMPARISON WITH THE RESULTS OBTAINED IN [1]

Formulas (2)−(8) contain 5 unknown constants: ordinates a and g for points A and G images in plane
τ, parameters of conformal mapping α and β, and also module k. The first five equations in (7) and the
following expressions are used to determine the unknown values and also to check the calculations 

( ) ( ) ( )
1 4

2 2 32 exp ( ).*i i q i−

ϑ τ ± β = ϑ τ ± ρ = πτ ϑ τ∓

1 2

1 2

sin 2 2 ( ) cos
,

sin 2 2 ( ) cos

i
w i

i

−

−

⎡ ⎤πτ + ε πγ πα π α − γ − ε πτ⎣ ⎦= ε
⎡ ⎤ε πτ + πγ πα π α − γ − ε πτ⎣ ⎦

ch sh ch

ch sh ch

1 2sin 2 2 ( ) cos
,

( )

idz
d

−⎡ ⎤ε πτ + πγ πα π α − γ − ε πτ⎣ ⎦=
τ Δ τ

ch sh ch

1 2sin 2 2 ( ) cos
,

( )

idw M
d

−⎡ ⎤πτ + ε πγ πα π α − γ − ε πτ⎣ ⎦= − ε
τ Δ τ

ch sh ch

2 2( ) sin sin .aΔ τ = πτ π − πτch

exp( )
( )

g g
πγ πα

π = π

π α − γ

ch sh
sh

sh
exp( )g gπ = πsh

( )1 0,Gw =

0.5

0 0

( ) 0

a

DF BC FAdt dtΦ − Φ + Φ =∫ ∫

.....
..
. ..

.. ..
..
..
.

....
.. .
.. . .

..
..
.. .

... . ..
.. . ..
. .

. . .
.. ..

......

y

H

A
0 x

d

F

S

G

–4 –2

–2

–4

T

B

C D

L1 L2

B

Fig. 4. The flow pattern calculated under the fol�
lowing parameters ε = 0.5, H = 5, T = 5, S = 4,
Q = 6.5 and L1 = 4.5.
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(the first equation means that the velocity at the rabbet’s end is equal to infinity, and the second one fol�
lows directly from the boundary conditions). When the unknown constants have been determined, we find
value d (the last equation in (7)) and calculate the coordinates of the points for the depression curve
according to formulas (8)–(12). 

Let us estimate how physical parameters of the model ε, L1, Q, H, T, and S influence sizes d and L2.
For this purpose, we examine the case when there is no upthrust caused by the underseam, i.e., when
H0 = 0. Figure 4 depicts the flow pattern, calculated under the following parameters: ε = 0.5, L1 = 4.5,
Q = 6.5, H = 5, S = 4, and T = 5 (basic values). Tables 1 and 2 present the results of the calculation that
show how physical parameters of the scheme influence sizes d and L2. Figure 5 depicts the relationship
between d (curve 1) and L2 (curve 2), as well as parameters ε, H, and S.

Analyzing the information presented in Tables 1 and 2 and in the plots, it is possible to make the fol�
lowing conclusions.

If seepage and upthrust intensities are increased and the width of the impermeable inclusion, seepage
flow rate, the rabbet’s length, and layer power are decreased, the value of d drops; i.e., the ordinate of point
F, where the depression curve comes out of the rabbet, increases. According to the information presented
in Table 1, if parameters L1 and Q are changed by a factor of 1.1, value d decreases 6.5%. The layer power
T significantly influences size d. From Table 2 it is seen that if T is increased by a factor of 1.2, value d
increases by 33.8%. It is seen that d varies linearly with T.

As for the value L2, it increases, if the upthrust, seepage flow rate and the width of impermeable inclu�
sion are increased, and it decreases, if the seepage intensity and the rabbet’s length are increased. In this
case, parameter L2 is the most dependent on width L1 and upthrust Н: if values L1 and Н are varied by a
factor of 1.1 and 1.3, respectively, the projection of the free surface changes by 502.4 and 2025.3%, respec�
tively. As shown in [1], the layer’s power influences insignificantly on L2: if parameter Т is varied for the
variants, which are presented in the right part of Table 2, we have the same value of L2 = 0.0432.

We see different behavior for parameters d and L2, if Н and S are varied (Table 2) and, vice versa, a sim�
ilar qualitative character for the relationships between these sizes and ε and L1 (Table1): if the last param�
eters are decreased, the ordinate of the point at which the ground water comes out of the rabbet decreases
and the projection of the depression curve increases. If we compare the obtained results with the results

for the case when the velocity of the flow at the end of the rabbet meets the condition | |< ε [1], we see
that the relationships between d and L2 and parameters Н, S, and Т (Fig. 5) are similar qualitatively.

The most interesting is the case when we vary width L1 for the segment of a very permeable layer adja�
cent directly to the impermeable inclusion ВС, which characterizes the position of point С. The results of
the calculations (Table 1) show that if parameter L1 is increased; i.e., if point С moves away from ordinate

Gv

 
Table 1. The results of the calculation for d and L2, if ε, L1

 and Q are varied

ε d L2 L1 d L2 Q d L2

0.1 3.8459 0.0521 4.35 3.9227 0.1169 6.47 3.7091 0.0292

0.3 3.8059 0.0476 4.40 3.8639 0.0869 6.50 3.7584 0.0432

0.5 3.7584 0.0432 4.45 3.8070 0.0637 6.56 3.8441 0.0669

0.7 3.7092 0.0386 4.50 3.7584 0.0432 6.62 3.9060 0.0869

0.9 3.6602 0.0341 4.58 3.6814 0.0194 6.67 3.9485 0.0997

 
Table 2. The results of the calculation for d and L2, if H, S, and T are varied

H d L2 S d L2 T d

4.9 3.7888 0.0291 3.4 3.1621 0.0509 4.2 2.95841

5.0 3.7584 0.0432 3.8 3.5356 0.0469 4.6 3.35841

5.5 3.6312 0.1984 4.2 3.9763 0.0385 4.8 3.35584

6.0 3.5566 0.3959 4.6 4.4090 0.0255 5.0 3.75841

6.5 3.5136 0.6189 4.8 4.6572 0.0158 5.2 3.95841
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axis (to the left), the projection of the free surface L and value d decrease. The calculations also show that
in contrast to the case when the flow velocity is finite, for which point C (the right end of the impermeable
inclusion) is always to the right of the ordinate axis [1], in the examined model it is to the left. 
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