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1. INTRODUCTION

Let P = {pi}∞i=1 be a sequence of natural numbers such that 2 ≤ pi ≤ N . We put m0 = 1, mn =
p1p2 . . . pn for n ∈ N = {1, 2, . . . } and Z(pi) = {0, 1, . . . , pi − 1}, i ∈ N. Every number x ∈ [0, 1) can be
written as

x =

∞∑

j=1

xj/mj , xj ∈ Z(pj), j ∈ N. (1.1)

The expansion (1.1) is unique, if for x = k/ml, k, l ∈ N, we take the representation with finite number of
xj �= 0.

Every k ∈ Z+ = {0, 1, ...} can be expressed uniquely in the form

k =

∞∑

j=1

kjmj−1, kj ∈ Z(pj), j ∈ N. (1.2)

For x ∈ [0, 1) and k ∈ Z+ with expansions (1.1) and (1.2) we define the function

χk(x) = exp

⎛

⎝2πi

∞∑

j=1

xjkj/pj

⎞

⎠ =

∞∏

j=1

(exp(2πixj/pj)
kj .

As usually, the space Lp[0, 1), consists of all measurable on [0, 1) functions such that ‖f‖p =(∫ 1
0 |f(x)|p dx

)1/p
. It is well known that Vilenkin system {χn(x)}∞n=0 is orthonormal and complete

in Lp[0, 1), 1 ≤ p < ∞ (see [7, § 1.5]). Therefore, we define the Vilenkin-Fourier coefficients and partial
Vilenkin-Fourier sums of f ∈ L1[0, 1) by formula

f̂(j) =

∫ 1

0
f(x)χj(x) dx, j ∈ Z+, Sn(f)(x) =

n−1∑

k=0

f̂(k)χk(x), n ∈ N.
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Let G(P) be the group with elements x̃ = (x1, x2, . . . ), xj ∈ Z(pj), and addition x̃⊕ ỹ = z̃, where
zj = xj + yj (mod pj), j ∈ N. The inverse operation x̃� ỹ is defined in a similar way.

The function λP(x̃) =
∑∞

j=1 xj/mj maps G(P) onto [0, 1]. It is not bijective since elements of
the type x = k/ml, k, l ∈ N, k < ml, have two different prototypes. If for such x we set xj = [mjx]

(mod pj), j ∈ N, then we define inverse mapping λ−1
P by λ−1

P (x) = (x1, . . . , xl, 0, 0, . . .). For other
x ∈ [0, 1) there exists the unique element x̃ ∈ G(P) such that λP(x̃) = x. Then we set λ−1

P (x) = x̃.

We can define a generalized distance ρ(x, y) = λP(λ
−1
P (x)� λ−1

P (y)) and an addition x⊕ y =

λP(λ
−1
P (x)⊕ λ−1

P (y)) on [0, 1). The last operation is not defined if λ−1
P (x)⊕ λ−1

P (y) = z̃, where zj =
pj − 1 for all j ≥ j0. If x ∈ [0, 1) is fixed, then x⊕ y is defined for a.e. y ∈ [0, 1) (more precisely, x⊕ y is
not defined for countable set of y). The operation x� y is introduced in a similar way.

For f, g ∈ L1[0, 1) the convolution f ∗ g is defined by

f ∗ g(x) =
∫ 1

0
f(x� t)g(t) dt =

∫ 1

0
f(t)g(x� t) dt.

From the Fubini theorem it follows that ‖f ∗ g‖1 ≤ ‖f‖1‖g‖1. It is easy to see that Sn(f) = f ∗Dn,
Dn(x) =

∑n−1
j=0 χj(x), n ∈ N.

For f ∈ Lp[0, 1], 1 ≤ p < ∞, we introduce a modulus of continuity

ω∗(f, δ)p = sup
0<h<δ

‖f(x⊕ h)− f(x)‖p, δ ∈ [0, 1].

Instead of L∞[0, 1) we consider the space C∗[0, 1) = C∗(P, [0, 1)) consisting of measurable on [0, 1)
functions f(x) such that for any ε > 0 there exists δ > 0 such that for x, y ∈ [0, 1) with ρ(x, y) < δ, the
inequality |f(x)− f(y)| < ε holds. The space C∗[0, 1) with uniform norm ‖f‖∞ = supx∈[0,1) |f(x)| is a
Banach space. The modulus of continuity for f ∈ C∗[0, 1) is

ω(f, δ)∞ = sup
ρ(x,y)<δ

|f(x)− f(y)|.

It is known that {ω∗(f, 1/mn)p}∞n=0 can be an arbitrary nonincreasing sequence tending to zero (see [1,
Ch. 2] in the cases p = 1, 2,∞ and [6] for all 1 ≤ p ≤ ∞).

Let Pn = {f ∈ L1[0, 1) : f̂(j) = 0, j ≥ n}, n ∈ N. Then for f ∈ Lp[0, 1), 1 ≤ p < ∞, or f ∈ C∗[0, 1)
in the case p = ∞ we define the best approximation by Vilenkin polynomials as En(f)p = infg∈Pn ‖f −
g‖p. By τn(f) ∈ Pn we denote the unique polynomial of best approximation such that ‖f − τn(f)‖p =
En(f)p.

By definition, if ω(t) is nondecreasing and continuous on [0, 1], ω(0) = 0, then ω ∈ Φ. If ω ∈ Φ and
∫ δ

0
t−1ω(t) dt ≤ Cω(δ), δ ∈ (0, 1),

then ω belongs to the Bary class B; if ω ∈ Φ, α > 0 and

δα
∫ 1

δ
t−α−1ω(t) dt ≤ Cω(δ), δ ∈ (0, 1),

the ω belongs to the class Bary-Stechkin class Bα. For ω ∈ Φ and 1 ≤ p < ∞ we consider a Hölder type
class

Hω
p [0, 1) = {f ∈ Lp[0, 1) : ω(f, δ)p = O(ω(δ)), δ ∈ [0, 1]}.

Let A = (an,k)
∞
n,k=1 be a lower triangle matrix of complex numbers and let the A-transform of

{Sn(f)(x)}∞n=1 be given by Tn(f)(x) =
∑n

k=1 an,kSk(f)(x). In the present paper we consider a Vallée-
Poussin type means

Tn,m(f)(x) =
n∑

k=m

an,kSk(f)(x), m, n ∈ N, m ≤ n, (1.3)
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where

an,k ≥ 0, n, k ∈ N,

n∑

k=m

an,k = 1. (1.4)

Also we consider two conditions on coefficients ank generalizing monotonicity properties.

n−1∑

k=m

|an,k − an,k+1| =:
n−1∑

k=m

|Δan,k| ≤ Kanm, n ∈ N. (1.5)

n−1∑

k=m

|Δan,k| ≤ Kann, n ∈ N, (1.6)

where K is independent of n and m. Close conditions were used by Leindler [9] for linear means of
trigonometric Fourier series. Chandra [5] and later Leindler [9] considered linear means of trigonometric
Fourier series as linear combinations of corresponding partial sums. This approach do not use estimates
of Lebesgue constants which were applied in earlier works. Similar to [5] and [9] results for linear means
of Vilenkin-Fouier series were proved by Iofina and Volosivets in [8].

In the paper of Blahota and Gát [4] the means of type (1.3) were considered for Walsh-Fourier series
(i.e. for {χk}∞k=0 in the case pj ≡ 2). They used the condition of monotonicity of {ank}nk=m. The aim of
our paper is to generalized the results from [4] to the case of Vilenkin systems with bounded generating
sequence P and more general conditions (1.5) and (1.6). Our proofs are more simple and brief than ones
in [4].

2. AUXILIARY PROPOSITIONS

Lemma 2.1. For n ∈ N one has
∫ 1
0 Dn(x) dx = 1 and |Dn(x)| ≤ n, x ∈ [0, 1). On the other hand,

Dmn(x) = mn for x ∈ [0,m−1
n ) and Dmn(x) vanishes for x ∈ [m−1

n , 1).

Proof. The first statement of Lemma follows from the equality
∫ 1
0 χn(x) dx = 0, n ∈ N (see [7, § 1.5]),

the second one is obvious. Third is proved in [7, § 1.5]).

Lemma 2.2 is proved in [1, Ch. 4,§ 3].

Lemma 2.2. If n ∈ N and x ∈ (0, 1), then |Dn(x)| ≤ N/x, where pn ≤ N for all n ∈ N.

Lemma 2.3. Let n ∈ N, Fn(x) =
∑n

k=1Dk(x)/n.

(i) If n ∈ [ms−1,ms) ∩ Z, s ∈ N, then

|nFn(x)| ≤ C1

s−1∑

ν=0

mν

s−1∑

i=ν

(
Dmi(x) +

pν+1−1∑

l=0

Dmi(x⊕ l/mν+1)

)
. (2.1)

(ii) For all x ∈ (0, 1) and n ∈ N the inequality |nFn(x)| ≤ C2x
−2 is valid.

(iii) For all n ∈ N we have ‖Fn‖1 ≤ C3.

All constants C1, C2, C3 are independent of n and x.

Proof. Assertions (i) and (iii) are proved by Pal and Simon in [10] (for (iii) see also [1, Ch. 4, § 10]). In
the case of (ii) we take x ∈ [m−1

r+1,m
−1
r ), r ∈ Z+. If ν from the right-hand side of (2.1) is greater than

r, then i ≥ ν > r. Therefore, we have m−1
i ≤ m−1

r+1 and l/mi+1 < 1/mi ≤ 1/mr+1 for all l ∈ Z(pi+1).
We conclude that for such ν and i ≥ ν both numbers x and x⊕ l/mi+1 belong to [m−1

r+1,m
−1
r ) for all
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l ∈ Z(pi+1) and that by Lemma 2.1 the equality Dmi(x) = Dmi(x⊕ l/mi+1) = 0 holds. Thus, in the
right-hand side of (2.1) we take only ν ≤ r and i ≤ r to obtain by Lemma 2.1

|nFn(x)| ≤ C1

r∑

ν=0

mν

r∑

i=ν

(N + 1)mi ≤ C1(N + 1)

r∑

ν=0

mν

r∑

i=0

mi ≤

≤ 4C1m
2
r(N + 1) ≤ 4C1(N + 1)x−2.

The statement of (ii) is proved.

Lemma 2.4 is the famous Watari-Efimov inequality (see [7, Ch. 10,§ 10.5].

Lemma 2.4. Let f ∈ Lp[0, 1), 1 ≤ p < ∞, or f ∈ C∗[0, 1) (p = ∞). Then

2−1ω∗(f,m−1
n )p ≤ Emn(f)p ≤ ‖f − Smn(f)‖p ≤ ω∗(f,m−1

n )p, n ∈ Z+.

Lemma 2.5. Let n, m = m(n) and {ank}∞n,k=1 satisfy the condition (1.5). Then ann ≤ Canm, where
C depends only on K. If they satisfy (1.6), then ann ≥ Canm.

Proof. If (1.5) holds, then we write

ann − anm =

n−1∑

k=m

(an,k+1 − an,k) ≤
n−1∑

k=m

|an,k+1 − an,k| ≤ Kanm,

i.e. ann ≤ (K + 1)anm. The second statement of Lemma is proved in the same way.

Lemma 2.6. Let 1 < p < ∞. Then the operators Sn are bounded in Lp[0, 1) and for f ∈ Lp[0, 1) we
have

‖f − Sn(f)‖p ≤ CEn(f)p, n ∈ N.

Proof. The first statement of Lemma 2.6 was proved in 1976 independently by Schipp, Simon and
Young (see [11]). The second statement follows from the first one by a standard procedure (see, e.g.,
[3, Ch. 7, § 20]).

3. MAIN RESULTS

Theorem 3.1. Let f ∈ L1[0, 1), n,m = m(n) are natural numbers and {ajk}∞j,k=1 satisfy the
conditions (1.4) and (1.6). If ann = O(n−1), n ∈ N, and r ∈ Z+ is defined by the condition m ∈
[mr,mr+1), then

‖f − Tm,n(f)‖1 ≤ Cω∗(f,m−1
r )1. (3.1)

Proof. Using (1.4) and the equality Sk(τm(f)) = τm(f) for k ≥ m we obtain

f − Tmn(f) = f − τm(f)−
n∑

k=m

ankSk(f − τm(f)),

where τm(f) ∈ Pm is the polynomial of best approximation of order m for f in L1[0, 1). Applying
Lemma 2.3 (iii), summation by parts, equality

∑k
j=1Dj = kFk and the convolution inequality ‖h ∗ g‖1 ≤

‖h‖1‖g‖1, h, g ∈ L1[0, 1), we have

‖f − Tmn(f)‖1 ≤ ‖f − τm(f)‖1

+

∥∥∥∥∥

n∑

k=m

ankDk ∗ (f − τm(f))

∥∥∥∥∥
1

≤ Em(f)1
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+C1

∥∥∥∥∥

n−1∑

k=m

ΔankkFk + nannFn − (m− 1)anmFm−1

∥∥∥∥∥
1

‖f − τm(f)‖1

≤ Em(f)1 +C1

(
n−1∑

k=m

k|Δank|+ nann + (m− 1)anm

)
Em(f)1. (3.2)

By the condition (1.6) and Lemma 2.5 we find that
n−1∑

k=m

k|Δank|+ nann + (m− 1)anm

≤ C2nann + nann + (m1)anm ≤ C3nann ≤ C4

and ‖f − Tmn(f)‖1 ≤ (C1C4 + 1)Em(f)1. Since

Em(f)1 ≤ Emr(f)1 ≤ ω∗(f,m−1
r )1

be Lemma 2.4, we obtain (3.1)

Theorem 3.2. Let f ∈ L1[0, 1), n,m = m(n) be natural numbers, r be defined as in Theorem 1 and
{ajk}∞j,k=1 satisfy the conditions (1.4) and (1.5). If anm = O(n−1), n ∈ N, and r ∈ Z+ is defined by
the condition m ∈ [mr,mr+1), then (3.1) holds.

Proof. We have (3.2) again. By the condition (1.5) and Lemma 2.5 we find that
n−1∑

k=m

k|Δank|+ nann + (m− 1)anm ≤
n−1∑

k=m

n|Δank|+ nann + nanm

≤ C1nanm + nann + nanm ≤ C2

and ‖f − Tmn(f)‖1 ≤ C3Em(f)1. As in the proof of Theorem 1, we deduce (3.1).

Corollary 3.3. Under conditions of Theorem 1 or Theorem 2 the inequality ‖f − Tmn(f)‖1 ≤
CEm(f)1 holds.

Corollary 3.4. (i) Let f ∈ L1[0, 1), n,m = m(n) ∈ N, r be defined as in Theorem 1, {ajk}∞j,k=1

satisfy the condition (1.4) and {ank}nk=m be nondecreasing for every n ∈ N. If If ann = O(n−1),
n ∈ N, then (3.1) holds.

(ii) Let f ∈ L1[0, 1), n,m = m(n) ∈ N, r be defined as in Theorem 1, {ajk}∞j,k=1 satisfy the
condition (1.4) and {ank}nk=m be nonincreasing for every n ∈ N. If anm = O(n−1), n ∈ N, then (3.1)
holds.

Remark 3.5. In the case pi ≡ p the number r in (3.1) is [logpm], where [x] is the integer part
of x. The result of Corollary 3.4 (i) for pi ≡ 2 is Theorem 4.1 from [4], while the result of
Corollary 3.4 (ii) for pi ≡ 2 coincides with one of Theorem 4.2 in [4]. The theorem 4.3 in the same
paper [4] is contained in Theorem 4.2 since for 2l ≤ m < n < 2l+1 the conditions anm=O(m−1) and
anm = O(n−1) are equivalent.

The analogues of Theorem 3.1 and 3.2 are valid for f ∈ C∗[0, 1). We combine them into

Theorem 3.6. (i) Let f ∈ C∗[0, 1), n,m = m(n) are natural numbers, r be as in Theorem 3.1 and
{ajk}∞j,k=1 satisfy the conditions (1.4) and (1.6). If ann = O(n−1), n ∈ N, then

‖f − Tm,n(f)‖∞ ≤ Cω∗(f,m−1
r )∞. (3.3)

(ii) Let f ∈ C∗[0, 1), n,m = m(n) are natural numbers, r be as in Theorem 3.1 and {ajk}∞j,k=1

satisfy the conditions (1.4) and (1.5). If anm = O(n−1), n ∈ N, then (3.3) holds.
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Proof. We repeat the arguments of proofs of Theorems 3.1 and 3.2 and use the almost obvious
convolution inequality ‖h ∗ g‖∞ ≤ ‖h‖∞‖g‖1 for h ∈ C∗[0, 1), g ∈ L1[0, 1).

In Lp[0, 1), 1 < p < ∞, we obtain a more sharp result.

Theorem 3.7. (i) Let 1 < p < ∞, f ∈ Lp[0, 1), n,m = m(n) are natural numbers, r be as in
Theorem 3.1 and {ajk}∞j,k=1 satisfy the condition (1.4). Then

‖f − Tm,n(f)‖p ≤ C1

n∑

k=m

ankEk(f)p ≤ C2ω
∗(f,m−1

r )p. (3.4)

Proof. By Lemma 2.6 we have

‖f − Tmn(f)‖p =
∥∥∥∥∥

n∑

k=m

ank(f − Sk(f))

∥∥∥∥∥
p

≤
n∑

k=m

ank‖f − Sk(f)‖p

≤ C1

n∑

k=m

ankEk(f)p ≤ C1Em(f)p

n∑

k=m

ank = C1Em(f)p.

As in the proof of Theorem 3.1 we obtain (3.4).

If we consider a function from a generalized Hölder class, then we can sharpen the estimates of
Theorems 3.1 and 3.2.

Theorem 3.8. Let f ∈ L1[0, 1), n,m = m(n) are natural numbers and {ajk}∞j,k=1 satisfy the condi-
tions (1.4) and (1.6), ω ∈ B ∩B1 and f ∈ Hω

1 [0, 1). Then

‖f − Tm,n(f)‖1 ≤ C(1 + nann)ω(n
−1)1. (3.5)

Proof. By Lemma 2.1, (1.4), summation by parts and generalized Minkowski inequality we have

‖f − Tm,n(f)‖1 =
∥∥∥∥∥

∫ 1

0
(f(· � t)− f(·))

n∑

k=m

ankDk(t) dt

∥∥∥∥∥
1

≤
∫ 1

0
‖f(· � t)− f(·)‖1

×
∣∣∣∣∣

n−1∑

k=m

ΔankkFk(t) + nannFn(t)− (m− 1)anmFm−1(t)

∣∣∣∣∣ dt. (3.6)

It is known that ω ∈ B1 satisfies the Δ2-condition ω(2t) ≤ C1ω(t), t ∈ [0, 1/2]. Let ω∗(f, t)1 =
ω∗(f, 1)1 for t ≥ 1. Then we have for t ∈ [0, 1)

‖f(· � t)− f(·)‖1 ≤ ω∗(f, 2t)1 ≤ C2ω(t)

and

‖f − Tm,n(f)‖1 ≤ C3

(∫ 1/n

0
+

∫ 1

1/n

)
ω(t)

∣∣∣∣∣

n∑

k=m

ankDk(t)

∣∣∣∣∣ dt = I1 + I2.

By Lemmas 2.2, 2.1 and the condition ω ∈ B we have

I1 ≤ C3

∫ 1/n

0
ω(t)

∣∣∣∣∣

n∑

k=m

ankDk(t)

∣∣∣∣∣ dt
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≤ C4

∫ 1/n

0

ω(t)

t

n∑

k=m

ank dt ≤ C5ω(n
−1). (3.7)

On the other hand, by Lemmas 2.3 (ii), 2.5, (3.6),(1.6) and the condition ω ∈ B1, we find that

I2 ≤ C3

∫ 1

1/n
ω(t)

C5

t2

(
n−1∑

k=m

|Δank|+ ann + anm

)
dt

≤ C6ann

∫ 1

1/n

ω(t)

t2
dt ≤ C7annnω(n

−1). (3.8)

Combining (3.7) and (3.8) we obtain (3.9).

Theorem 3.9 can be proved similar to Theorem 3.8.

Theorem 3.9. Let f ∈ L1[0, 1), n,m = m(n) are natural numbers and {ajk}∞j,k=1 satisfy the condi-
tions (1.4) and (1.5), ω ∈ B ∩B1 and f ∈ Hω

1 [0, 1). Then

‖f − Tm,n(f)‖1 ≤ C(1 + nanm)ω(n−1)1. (3.9)

Remark 3.10. Similar to Theorems 3.8 and 3.9 results are valid in Lp[0, 1), 1 < p < ∞, andC∗[0, 1).
The following examples show that for some concrete ω Theorems 3.8 and 3.9 are more sharp

than Theorems 3.1 and 3.2. Let ω(t) = tα, 0 < α < 1 (i.e. ω ∈ B ∩B1), j ∈ N, m = j, n = 2j > j
and ank = (2j − j + 1)−1 for j ≤ k ≤ 2j . Then Theorems 3.1 and 3.2 give ‖f − Tj,2j(f)‖1 = O(j−α),
j ∈ N, for f ∈ Hω

1 [0, 1), while by Theorems 3.8 and 3.9 one can obtain ‖f − Tj,2j(f)‖1 = O(2−jα),
j ∈ N, since 2ja2j ,k = 2j/(2j − j + 1) ≤ 2 for j ≤ k ≤ 2j .
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Hölder and Lp norm,” East J. Approx. 15 (2), 143–158 (2009).
9. L. Leindler, “On the degree of approximation of continuous functions,” Acta Math. Hungar. 104 (1-2), 105–

113 (2004).
10. J. Pal and P. Simon, “On a deneralization of the concept of derivative,” Acta Math. Hungar. 29 (1-2), 155–

164 (1977).
11. W. S. Young, “Mean convergence of generalized Walsh-Fourier series,” Trans. Amer. Math. Soc. 218, 311–

320 (1976).

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

p-ADIC NUMBERS, ULTRAMETRIC ANALYSIS AND APPLICATIONS Vol. 16 No. 3 2024


