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Abstract—Let p be a prime. For d ∈ N, let Qd
p be the standard d-dimensional p-adic Hilbert space.

Let m ∈ N and Symm(Qd
p) be the p-adic Hilbert space of symmetric m-tensors. We prove the

following result. Let {τj}nj=1 be a collection in Q
d
p satisfying (i) 〈τj , τj〉 = 1 for all 1 ≤ j ≤ n and

(ii) there exists b ∈ Qp satisfying
∑n

j=1〈x, τj〉τj = bx for all x ∈ Q
d
p. Then

max
1≤j,k≤n,j �=k

{|n|, |〈τj , τk〉|2m} ≥ |n|2
∣
∣
∣
(
d+m−1

m

)∣∣
∣
. (0.1)

We call Inequality (0.1) as the p-adic version of Welch bounds obtained by Welch [IEEE Trans-
actions on Information Theory, 1974]. Inequality (0.1) differs from the non-Archimedean Welch
bound obtained recently by M. Krishna as one can not derive one from another. We formulate p-adic
Zauner conjecture.
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1. INTRODUCTION

In 1974 Prof. L. Welch proved the following result [91].

Theorem 1.1. [91] (Welch Bounds) Let n > d. If {τj}nj=1 is any collection of unit vectors in C
d,

then

∑

1≤j,k≤n

|〈τj , τk〉|2m =

n∑

j=1

n∑

k=1

|〈τj , τk〉|2m ≥ n2

(d+m−1
m

) , ∀m ∈ N.

In particular,

∑

1≤j,k≤n

|〈τj , τk〉|2 =
n∑

j=1

n∑

k=1

|〈τj , τk〉|2 ≥ n2

d
.

Further,

(Higher order Welch bounds) max
1≤j,k≤n,j �=k

|〈τj , τk〉|2m ≥ 1

n− 1

[
n

(d+m−1
m

) − 1

]

, ∀m ∈ N.

In particular,

(First order Welch bound) max
1≤j,k≤n,j �=k

|〈τj , τk〉|2 ≥
n− d

d(n − 1)
.
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p-ADIC WELCH BOUNDS 265

It is impossible to list all applications of Theorem 1.1. A few are: in the study of root-mean-
square (RMS) absolute cross relation of unit vectors [75], frame potential [10, 15, 20], correlations
[74], codebooks [31], numerical search algorithms [92, 93], quantum measurements [77], coding and
communications [81, 86], code division multiple access (CDMA) systems [55, 56], wireless systems
[72], compressed/compressive sensing [2, 7, 33, 36, 76, 84, 85, 87], ‘game of Sloanes’ [49], equiangular
tight frames [82], equiangular lines [25, 35, 48, 65], digital fingerprinting [64] etc.

Theorem 1.1 has been improved/different proofs were given in [21, 26, 27, 32, 46, 73, 81, 88, 89]. In
2021 M. Krishna derived continuous version of Theorem 1.1 [59]. In 2022 M. Krishna obtained Theorem
1.1 for Hilbert C*-modules [57], Banach spaces [60] and non-Archimedean Hilbert spaces [58].

In this paper we derive p-adic Welch bounds (Theorem 2.5). We formulate p-adic Zauner conjecture
(Conjecture 3.3).

Motivation: Following are some of the important connections of Welch bounds to other prominent
areas of research which made us to consider Welch bounds in p-adic setting.

(I) Spherical t-designs have direct relation with Welch bounds (for instance, see Chapter 6 in
[90]). Existence of spherical t-designs is known (see [79]) but their exact number is not known.
Asymptotic bounds for spherical t-design are recently derived (see [16]).

(II) Welch bounds are essential in the study of equiangular lines (see Chapter 12 in [90]). Existence
of equiangular lines having a prescribed angle in a given dimension is largely unknown (see [83]).
Asymptotic bound for equiangular lines is recently derived (see [51]).

(III) Benedetto and Fickus (see [10]) characterized finite unit norm frames for finite dimensional Hilbert
spaces using frame potential which has connection with Welch bounds (see Chapter 6 in [90]).
This characterization motivated the development of so called Fundamental Inequality for Finite
Frames (see [20]).

(IV) In compressive sensing, Welch bounds are required in the construction of matrices with small
coherence which uses the inner product (see Chapter 5 in [36]).

(V) An easy observation associated with first order Welch bound is that it gives van Lint-Seidel
relative bound for equiangular lines which was obtained by van-Lint and Seidel in a different
method (without knowing Welch bounds) [62]. Equiangular lines have interaction with several
areas which suggests the use of Welch bounds in different areas.

(VI) Recently it is noticed that using Welch bounds one can show that Johnson-Lindenstrauss lemma
is optimal [61]. As it is well-known, Johnson-Lindenstrauss lemma has applications even in
computer science. This makes the way of Welch bounds to computer science.

2. p-ADIC WELCH BOUNDS

We begin by recalling the notion of p-adic Hilbert space. We refer [1, 29, 30, 52, 53] for more on p-adic
Hilbert spaces.

Definition 2.1. [29, 30] Let K be a non-Archimedean valued field (with valuation | · |) and X be
a non-Archimedean Banach space (with norm ‖ · ‖) over K. We say that X is a p-adic Hilbert
space if there is a map (called as p-adic inner product) 〈·, ·〉 : X× X → K satisfying following.

(i) If x ∈ X is such that 〈x, y〉 = 0 for all y ∈ X, then x = 0.

(ii) 〈x, y〉 = 〈y, x〉 for all x, y ∈ X.

(iii) 〈αx, y + z〉 = α〈x, y〉 + 〈x, z〉 for all α ∈ K, for all x, y, z ∈ X.

(iv) |〈x, y〉| ≤ ‖x‖‖y‖ for all x, y ∈ X.

Following is the standard example which we consider in the paper.
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Example 2.2. [52] Let p be a prime. For d ∈ N, let Q
d
p be the standard p-adic Hilbert space

equipped with the inner product

〈(aj)dj=1, (bj)
d
j=1〉 :=

d∑

j=1

ajbj , ∀(aj)dj=1, (bj)
d
j=1 ∈ Q

d
p

and norm

‖(xj)dj=1‖ := max
1≤j≤d

|xj |, ∀(xj)dj=1 ∈ Q
d
p.

Let IQd
p

be the identity operator on Q
d
p. Note that Qd

p is not a non-Archimedean Hilbert space as it
does not satisfies Equation (2) in [58] (see Page 40, [69]). Following is the first important result of the
paper.

Theorem 2.3. (First Order p-adic Welch Bound) Let p be a prime and n, d ∈ N. If {τj}nj=1 is any
collection in Q

d
p such that there exists b ∈ Qp satisfying

n∑

j=1

〈x, τj〉τj = bx, ∀x ∈ Q
d
p,

then

max
1≤j,k≤n,j �=k

{∣
∣
∣
∣
∣

n∑

l=1

〈τl, τl〉2
∣
∣
∣
∣
∣
, |〈τj , τk〉|2

}

≥ 1

|d|

∣
∣
∣
∣
∣
∣

n∑

j=1

〈τj , τj〉

∣
∣
∣
∣
∣
∣

2

.

In particular, if 〈τj, τj〉 = 1 for all 1 ≤ j ≤ n, then

(First order p-adic Welch bound) max
1≤j,k≤n,j �=k

{|n|, |〈τj , τk〉|2} ≥ |n|2
|d| .

Proof. Define Sτ : Qd
p 
 x �→

∑n
j=1〈x, τj〉τj ∈ Q

d
p. Then

bd = Tra(bIQd
p
) = Tra(Sτ ) =

n∑

j=1

〈τj, τj〉,

b2d = Tra(b2IQd
p
) = Tra(S2

τ ) =

n∑

j=1

n∑

k=1

〈τj , τk〉〈τk, τj〉.

Therefore

∣
∣
∣
∣
∣
∣

n∑

j=1

〈τj , τj〉

∣
∣
∣
∣
∣
∣

2

= |Tra(Sτ )|2 = |bd|2 = |d||b2d| = |d|

∣
∣
∣
∣
∣
∣

n∑

j=1

n∑

k=1

〈τj, τk〉〈τk, τj〉

∣
∣
∣
∣
∣
∣

= |d|

∣
∣
∣
∣
∣
∣

n∑

l=1

〈τl, τl〉2 +
n∑

j,k=1,j �=k

〈τj, τk〉〈τk, τj〉

∣
∣
∣
∣
∣
∣

≤ |d|max

⎧
⎨

⎩

∣
∣
∣
∣
∣

n∑

l=1

〈τl, τl〉2
∣
∣
∣
∣
∣
,

∣
∣
∣
∣
∣
∣

n∑

j,k=1,j �=k

〈τj, τk〉〈τk, τj〉

∣
∣
∣
∣
∣
∣

⎫
⎬

⎭

≤ |d|max

{∣
∣
∣
∣
∣

n∑

l=1

〈τl, τl〉2
∣
∣
∣
∣
∣
, max
1≤j,k≤n,j �=k

|〈τj , τk〉〈τk, τj〉|
}
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= |d| max
1≤j,k≤n,j �=k

{∣
∣
∣
∣
∣

n∑

l=1

〈τl, τl〉2
∣
∣
∣
∣
∣
, |〈τj , τk〉〈τk, τj〉|

}

= |d| max
1≤j,k≤n,j �=k

{∣
∣
∣
∣
∣

n∑

l=1

〈τl, τl〉2
∣
∣
∣
∣
∣
, |〈τj , τk〉|2

}

.

Whenever 〈τj , τj〉 = 1 for all 1 ≤ j ≤ n,

|n|2 ≤ |d| max
1≤j,k≤n,j �=k

{|n|, |〈τj , τk〉|2}.

We next derive higher order p-adic Welch bounds. For this we need the concept of vector space of
symmetric tensors. Given a vector space V of dimension d, let V⊗m be the vector space of m-tensors. A
vector

n∑

j=1

xj,1 ⊗ · · · ⊗ xj,m ∈ V⊗m

is said to be symmetric if for every bijection σ : {1, . . . ,m} → {1, . . . ,m}, we have
n∑

j=1

xj,σ(1) ⊗ · · · ⊗ xj,σ(m) =
n∑

j=1

xj,1 ⊗ · · · ⊗ xj,m.

Set of all symmetric m-tensors will form a vector space, denoted by Symm(V). Following result will give
dimension of this space.

Theorem 2.4. [14, 23] If V is a vector space of dimension d and Symm(V) denotes the vector space
of symmetric m-tensors, then

dim(Symm(V)) =

(
d+m− 1

m

)

, ∀m ∈ N.

Theorem 2.5. (Higher Order p-adic Welch Bounds) Let p be a prime and n, d,m ∈ N. If {τj}nj=1

is any collection in Q
d
p such that there exists b ∈ Qp satisfying

n∑

j=1

〈x, τ⊗m
j 〉τ⊗m

j = bx, ∀x ∈ Symm(Qd
p),

then

max
1≤j,k≤n,j �=k

{∣
∣
∣
∣
∣

n∑

l=1

〈τl, τl〉2m
∣
∣
∣
∣
∣
, |〈τj , τk〉|2m

}

≥ 1
∣
∣
∣
(
d+m−1

m

)∣∣
∣

∣
∣
∣
∣
∣
∣

n∑

j=1

〈τj , τj〉m
∣
∣
∣
∣
∣
∣

2

.

In particular, if 〈τj, τj〉 = 1 for all 1 ≤ j ≤ n, then

(Higher order p-adic Welch bound) max
1≤j,k≤n,j �=k

{|n|, |〈τj , τk〉|2m} ≥ |n|2
∣
∣
∣
(d+m−1

m

)∣∣
∣
.

Proof. Define Sτ : Symm(Qd
p) 
 x �→

∑n
j=1〈x, τ⊗m

j 〉τ⊗m
j ∈ Symm(Qd

p). Then

bdim(Symm(Qd
p)) = Tra(bISymm(Qd

p)
) = Tra(Sτ ) =

n∑

j=1

〈τ⊗m
j , τ⊗m

j 〉,

b2 dim(Symm(Qd
p)) = Tra(b2ISymm(Qd

p)
) = Tra(S2

τ ) =

n∑

j=1

n∑

k=1

〈τ⊗m
j , τ⊗m

k 〉〈τ⊗m
k , τ⊗m

j 〉.
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Therefore by using Theorem 2.4 we get

∣
∣
∣
∣
∣
∣

n∑

j=1

〈τj , τj〉m
∣
∣
∣
∣
∣
∣

2

=

∣
∣
∣
∣
∣
∣

n∑

j=1

〈τ⊗m
j , τ⊗m

j 〉

∣
∣
∣
∣
∣
∣

2

= |Tra(Sτ )|2 =
∣
∣
∣bdim(Symm(Qd

p))
∣
∣
∣
2

=
∣
∣
∣dim(Symm(Qd

p))
∣
∣
∣
∣
∣
∣b2 dim(Symm(Qd

p))
∣
∣
∣

=
∣
∣
∣dim(Symm(Qd

p))
∣
∣
∣

∣
∣
∣
∣
∣
∣

n∑

j=1

n∑

k=1

〈τ⊗m
j , τ⊗m

k 〉〈τ⊗m
k , τ⊗m

j 〉

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣

(
d+m− 1

m

)∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

n∑

j=1

n∑

k=1

〈τ⊗m
j , τ⊗m

k 〉〈τ⊗m
k , τ⊗m

j 〉

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣

(
d+m− 1

m

)∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

n∑

j=1

n∑

k=1

〈τj , τk〉m〈τk, τj〉m
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣

(
d+m− 1

m

)∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

n∑

l=1

〈τl, τl〉2m +

n∑

j,k=1,j �=k

〈τj, τk〉m〈τk, τj〉m
∣
∣
∣
∣
∣
∣

≤
∣
∣
∣
∣

(
d+m− 1

m

)∣
∣
∣
∣max

⎧
⎨

⎩

∣
∣
∣
∣
∣

n∑

l=1

〈τl, τl〉2m
∣
∣
∣
∣
∣
,

∣
∣
∣
∣
∣
∣

n∑

j,k=1,j �=k

〈τj, τk〉m〈τk, τj〉m
∣
∣
∣
∣
∣
∣

⎫
⎬

⎭

≤
∣
∣
∣
∣

(
d+m− 1

m

)∣
∣
∣
∣max

{∣
∣
∣
∣
∣

n∑

l=1

〈τl, τl〉2m
∣
∣
∣
∣
∣
, max
1≤j,k≤n,j �=k

|〈τj , τk〉m〈τk, τj〉m|
}

≤
∣
∣
∣
∣

(
d+m− 1

m

)∣
∣
∣
∣ max
1≤j,k≤n,j �=k

{∣
∣
∣
∣
∣

n∑

l=1

〈τl, τl〉2m
∣
∣
∣
∣
∣
, |〈τj , τk〉m〈τk, τj〉m|

}

=

∣
∣
∣
∣

(
d+m− 1

m

)∣
∣
∣
∣ max
1≤j,k≤n,j �=k

{∣
∣
∣
∣
∣

n∑

l=1

〈τl, τl〉2m
∣
∣
∣
∣
∣
, |〈τj , τk〉|2m

}

.

Whenever 〈τj , τj〉 = 1 for all 1 ≤ j ≤ n,

|n|2 ≤
∣
∣
∣
∣

(
d+m− 1

m

)∣
∣
∣
∣ max
1≤j,k≤n,j �=k

{|n|, |〈τj , τk〉|2m}.

Remark 2.6. Conditions given in the Theorem 2.5 says that the operatorSτ in the proof of Theorem
2.5 is diagonalizable. Thus Theorem 2.5 is restrictive as the hypothesis is stronger than that of
Theorem 2.3 in [58]. However, note that the field Qp does not satisfies the Equation (2) in [58]
(see [69]) and hence neither the results in this paper can be derived from the results in [58] nor
the results in [58] can be derived from the results in this paper.

Remark 2.7. Theorems 2.3 and 2.5 hold by replacing Q
d
p by a d-dimensional p-adic Hilbert space

over any non-Archimedean (complete) valued field (such as Cp).

3. p-ADIC ZAUNER CONJECTURE AND OPEN PROBLEMS

Using Theorem 2.3 we ask the following question.

Question 3.1. Given a prime p, for which (d, n) ∈ N× N, there exist vectors τ1, . . . , τn ∈ Q
d
p

satisfying the following.
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(i) 〈τj , τj〉 = 1 for all 1 ≤ j ≤ n.

(ii) There exists b ∈ Qp satisfying
n∑

j=1

〈x, τj〉τj = bx, ∀x ∈ Q
d
p.

(iii)

max
1≤j,k≤n,j �=k

{|n|, |〈τj , τk〉|2} =
|n|2
|d| .

We can formulate a strong form of Question 3.1 as follows.

Question 3.2. Given a prime p, for which (d, n) ∈ N× N, there exist vectors τ1, . . . , τn ∈ Q
d
p

satisfying the following.

(i) 〈τj , τj〉 = 1 for all 1 ≤ j ≤ n.

(ii) There exists b ∈ Qp satisfying
n∑

j=1

〈x, τj〉τj = bx, ∀x ∈ Q
d
p.

(iii)

max
1≤j,k≤n,j �=k

{|n|, |〈τj , τk〉|2} =
|n|2
|d| .

(iv) ‖τj‖ = 1 for all 1 ≤ j ≤ n.

Why Question 3.2 is different than Question 3.1? Reason is that unlike non-Archimedean Hilbert
spaces, in p-adic Hilbert spaces, norm is not defined as

√
|〈·, ·〉|. A particular case of Question 3.1 is the

following p-adic version of Zauner conjecture (see [3–6, 11–13, 37, 40, 47, 54, 59, 63, 71, 78, 95] for
Zauner conjecture in Hilbert spaces, [57] for Zauner conjecture in Hilbert C*-modules, [60] for Zauner
conjecture in Banach spaces and [58] for Zauner conjecture in non-Archimedean Hilbert spaces).

Conjecture 3.3. (p-adic Zauner Conjecture) Let p be a prime. For each d ∈ N, there exist
vectors τ1, . . . , τd2 ∈ Q

d
p satisfying the following.

(i) 〈τj , τj〉 = 1 for all 1 ≤ j ≤ d2.

(ii) There exists b ∈ Qp satisfying

d2∑

j=1

〈x, τj〉τj = bx, ∀x ∈ Q
d
p.

(iii)

|〈τj , τk〉|2 = |d|, ∀1 ≤ j, k ≤ d2, j = k.

Question 3.2 gives the following Zauner conjecture.

Conjecture 3.4. (p-adic Zauner Conjecture - strong form) Let p be a prime. For each d ∈ N,
there exist vectors τ1, . . . , τd2 ∈ Q

d
p satisfying the following.
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(i) 〈τj , τj〉 = 1 for all 1 ≤ j ≤ d2.

(ii) There exists b ∈ Qp satisfying

d2∑

j=1

〈x, τj〉τj = bx, ∀x ∈ Q
d
p.

(iii)

|〈τj , τk〉|2 = |d|, ∀1 ≤ j, k ≤ d2, j = k.

(iv) ‖τj‖ = 1 for all 1 ≤ j ≤ d2.

We recall the definition of Gerzon’s bound which allows us to remember companions to Welch bounds
in Hilbert spaces.

Definition 3.5. [49] Given d ∈ N, define Gerzon’s bound

Z(d,K) :=

⎧
⎨

⎩

d2 if K = C

d(d+1)
2 if K = R.

Theorem 3.6. [18, 24, 45, 49, 66, 70, 80, 92] Define K = R or C and m := dimR(K)/2. If {τj}nj=1 is
any collection of unit vectors in K

d, then

(i) (Bukh-Cox bound)

max
1≤j,k≤n,j �=k

|〈τj, τk〉| ≥
Z(n− d,K)

n(1 +m(n− d− 1)
√
m−1 + n− d)− Z(n− d,K)

if n > d.

(ii) (Orthoplex/Rankin bound)

max
1≤j,k≤n,j �=k

|〈τj , τk〉| ≥
1√
d

if n > Z(d,K).

(iii) (Levenstein bound)

max
1≤j,k≤n,j �=k

|〈τj , τk〉| ≥

√
n(m+ 1)− d(md+ 1)

(n− d)(md+ 1)
if n > Z(d,K).

(iv) (Exponential bound)

max
1≤j,k≤n,j �=k

|〈τj , τk〉| ≥ 1− 2n
−1
d−1 .

Theorem 3.6 and Theorem 2.3 give the following problem.

Question 3.7. Whether there is a p-adic version of Theorem 3.6? In particular, does there
exists a version of

(i) p-adic Bukh-Cox bound?

(ii) p-adic Orthoplex/Rankin bound?

(iii) p-adic Levenstein bound?
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(iv) p-adic Exponential bound?

We already wrote that Welch bounds have applications in study of equiangular lines. We wish to
formulate equiangular line problem for p-adic Hilbert spaces. For the study of equiangular lines in Hilbert
spaces we refer [8, 9, 17, 19, 28, 38, 39, 41, 44, 50, 51, 62, 67, 68, 94], quaternion Hilbert spaces we refer
[34], octonion Hilbert spaces we refer [22], finite dimensional vector spaces over finite fields we refer
[42, 43], for Banach spaces we refer [60] and for non-Archimedean Hilbert spaces we refer [58].

Question 3.8. (p-adic Equiangular Line Problem) Let p be a prime. Given a ∈ Qp, d ∈ N and
γ > 0, what is the maximum n = n(p, a, d, γ) ∈ N such that there exist vectors τ1, . . . , τn ∈ Q

d
p

satisfying the following.

(i) 〈τj , τj〉 = a for all 1 ≤ j ≤ n.

(ii) |〈τj , τk〉|2 = γ for all 1 ≤ j, k ≤ n, j = k.

In particular, whether there is a p-adic Gerzon bound?

Question 3.8 can be easily lifted to formulate question of p-adic regular s-distance sets.
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