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Abstract—In 2018, the longest vector problem and closest vector problem in local fields were
introduced, as the p-adic analogues of the shortest vector problem and closest vector problem in
lattices of Euclidean spaces. They are considered to be hard and useful in constructing cryptographic
primitives, but no applications in cryptography were given. In this paper, we construct the first
signature scheme and public-key encryption cryptosystem based on p-adic lattice by proposing a
trapdoor function with the norm-orthogonal basis of p-adic lattice. These cryptographic schemes
have reasonable key size and the signature scheme is efficient, while the encryption scheme works
only for short messages, which shows that p-adic lattice can be a new alternative to construct
cryptographic primitives and well worth studying.
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1. INTRODUCTION

Since Diffie and Hellman invented public-key cryptography in 1976 [4], quite a few public-key
cryptosystems based on computationally hard mathematical problems have been proposed.

Two famous hard problems are integer factorization and discrete logarithm problem, based on which
lots of cryptosystems have been constructed. For example, the first practical public-key cryptosystem
RSA [21] is based on integer factorization. The ElGamal cryptosystem [7] is based on the discrete
logarithm problem in finite fields. The elliptic curve cryptosystem is based on discrete logarithm of elliptic
curves over finite fields [10, 17], and hyperelliptic curve cryptosystem is based on discrete logarithm of
Jacobian of hyperelliptic curves over finite fields [11]. The two problems have not been proven to be NP-
hard yet, and Peter Shor [23] found quantum polynomial time algorithms in 1994 for them, which yields
that the classical public-key cryptosystems such as RSA and ElGamal would be broken under future
quantum computer.
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However, there are also other computationally hard mathematical problems that can be employed to
construct public key cryptosystems. For instance, multivariate cryptography [14] is based on solving
system of nonlinear equations over finite fields. The McEliece system [15] is based on decoding a
random linear code over finite fields. Lattice-based cryptography [8, 16] is based on the shortest vector
problem and closest vector problem in lattices of Euclidean spaces. These computational problems
have been shown to be NP-hard, and the corresponding cryptosystems are widely believed to be
quantum-resistant, which are the main candidates in the standardization of post quantum cryptography
initiated by NIST [26]. Specially, some new hard computational problems have been proposed in the
standardization, such as computing isogeny between elliptic curves [6, 13]. But it is still unknown if
computing isogeny between elliptic curves is NP-hard or not.

Motivated by lattice-based cryptosystems, one of the most promising post quantum cryptosystems,
Deng et al. [2, 3] introduced some new computational problems in p-adic lattices of local fields, the
longest vector problem and closest vector problem which are the p-adic analogues of the shortest vector
problem and closest vector problem in lattices of Euclidean spaces. It was expected in [2, 3] that the new
problems can be used to construct public key cryptosystems, which was left as an open problem.

In this paper, we try to solve the problem by constructing a signature scheme and a public-key
encryption scheme. The basic idea is very similar to the code-based McEliece system [15] or the lattice-
based GGH scheme [8], that is, we adopt a good basis as the private key and transform it into a bad
basis as the public key. With the good basis, we can efficiently solve the hard problem in p-adic lattice,
while the bad basis looks random that may not help solve the hard problem. We show that a norm-
orthogonal basis for a given p-adic lattice can be the good basis. More precisely, we show that if there
is a norm-orthogonal basis for a given p-adic lattice, then the longest vector problem and closest vector
problem in local fields are easy to solve. Then the norm-orthogonal bases can be used to construct
trapdoor information for cryptographic schemes. Finally we propose a signature scheme and a public-
key cryptosystem based on p-adic lattices.

We would like to point out that as main candidate of the post quantum cryptography, cryptography
based on lattices in Euclidean spaces have obtained extensive study in recent years. However, p-adic
lattices do not gain any attention. As the p-adic analogues of the lattices in Euclidean spaces, it is
reasonable to expect that the problem could be quantum-resistant. Our results shows that p-adic
lattices may be useful in cryptography and it is worth for further study, which provides a new alternative
candidate to construct cryptographic primitives. Just as Neal Koblitz said in the Preface of his book
[12]: “But in the rapidly growing field of cryptography it is worthwhile to continually explore new one-
way constructions coming from different areas of mathematics.”

The paper is organized as follows. We recall basic fact about local fields, the p-adic lattices, the
longest vector problem (LVP) and closest vector problem (CVP) in Section 2 and present the fast
algorithms to solve LVP and CVP in local fields with the help of a norm-orthogonal basis in Section
3. We then construct a signature scheme in Section 4 and a public-key cryptosystem in Section 5. We
give some possible attacks to our schemes in Section 6 and we report our experimental results in Section
7. We present some improvements to the public-key encryption scheme for the purpose of efficiency in
Section 8.

2. LOCAL FIELDS AND p-ADIC LATTICES

In this section, we recall some basic facts about local fields, see [2, 3]. For detailed study of local fields,
please see [1, 9, 22].

2.1. Basic Facts About Local Fields

Let p be a prime number. For x ∈ Q with x �= 0, write x = pt ab with t, a, b ∈ Z and p � ab. Define
|x|p = p−t and |0|p = 0. Then | · |p is a non-Archimedean absolute value on Q. Namely, we have:
(1) |x|p ≥ 0 and |x|p = 0 if and only if x=0; (2) |xy|p = |x|p · |y|p; (3) |x+ y|p ≤ max(|x|p, |y|p). If
|x|p �= |y|p, then we must have |x+ y|p = max(|x|p, |y|p).
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PUBLIC-KEY CRYPTOSYSTEMS 25

Let Qp be the completion of Q with respect to | · |p. Denote Zp = {x ∈ Qp : |x|p ≤ 1}. We have

Qp =

⎧
⎨

⎩

∞∑

i=j

aip
i : j ∈ Z, ai ∈ {0, 1, 2, . . . , p− 1}

⎫
⎬

⎭
,

and

Zp =

{ ∞∑

i=0

aip
i : ai ∈ {0, 1, 2, . . . , p − 1}

}

.

Zp is compact and Qp is locally compact. Zp is a discrete valuation ring, it has a unique nonzero principal
maximal ideal pZp and p is called a uniformizer of Qp. The unit group of Zp is Z×

p = {x ∈ Qp : |x|p = 1}.
The residue class field Zp/pZp is the finite field with p elements.

Let n be a positive integer, and let K be an extension field of Qp of degree n. We fix some algebraic
closure Qp of Qp and view K as a subfield of Qp. Such K exists. For example, let K = Qp(α) with
αn = p. Because Xn − p is an Eisenstein polynomial over Qp, it is irreducible over Qp, then K has
degree n over Qp. Further, there are only finitely many extension fields of Qp of degree n contained in Qp,
see [18]. The p-adic absolute value (or norm) | · |p on Qp can be extended uniquely to K, i.e., for x ∈ K,

we have |x|p = |NK/Qp
(x)|

1
n
p , where NK/Qp

is the norm map from K to Qp. K is complete with respect
to | · |p. See [1] for a proof.

Denote OK = {x ∈ K : |x|p ≤ 1}. OK is also a discrete valuation ring, it has a unique nonzero
principal maximal ideal πOK and π is called a uniformizer of K. OK is a free Zp-module of rank n. OK

is compact and K is locally compact. The unit group of OK is O×
K = {x ∈ K : |x|p = 1}. The residue

class field OK/πOK is a finite extension of Zp/pZp. Call the positive integer f = [OK/πOK : Zp/pZp]
the residue field degree of K/Qp. As ideals in OK , we have pOK = πeOK . Call the positive integer
e the ramification index of K/Qp. We have n = [K : Qp] = ef . When e = 1, the extension K/Qp is
unramified, and when e = n, K/Qp is totally ramified. Each element x of the multiplicative group K×

of nonzero elements of K can be written uniquely as x = uπt with u ∈ O×
K and t ∈ Z. We have p = uπe

with u ∈ O×
K , so |π|p = p−

1
e . The valuation group of K is

{|x|p : x ∈ K×} = p
Z

e .

2.2. Efficient Computations in Local Fields
In this subsection, we describe how to do efficient computations in local fields.
We give a degree-n extension field K of Qp by giving a monic degree-n irreducible polynomial

f(x) ∈ Zp[x]. Let θ ∈ Qp be a root of f(x) = 0, then let K = Qp(θ). If f(x) is an Eisenstein polynomial,
then K is totally ramified over Qp, see [1].

Let α ∈ K, we express α as a polynomial of θ of degree < n with coefficients in Qp. The map

α̂ : K −→ K

is defined as α̂(β) = α · β, i.e., the map from K to K by multiplying α. This map is Qp-linear. The norm
NK/Qp

(α) is the determinant of the map α̂. We can take the basis (1, θ, θ2, . . . , θn−1) of K over Qp,
then representing the map α̂ by an n× n-matrix over Qp. The determinant of this matrix is the norm
NK/Qp

(α). So we can efficiently calculate the p-adic absolute value |α|p.
Let α1, . . . , αn be a basis of K over Qp, and let β ∈ K. Using the following method, we can represent

β as a Qp-linear combination of α1, . . . , αn. Write
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

α1

α2

...

αn

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

= B

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1

θ
...

θn−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠
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with B ∈ GLn(Qp). It is clear that

β = (b1, b2, . . . , bn) ·

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1

θ
...

θn−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

= (b1, b2, . . . , bn) · B−1 ·

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

α1

α2

...

αn

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

2.3. p-Adic Lattices, LVP and CVP

In [2, 3], two new computational problems in p-adic lattices are introduced, they are the Longest
Vector Problem and Closest Vector Problem. We first review it briefly.

Let p be a prime number, and letK be an extension field ofQp of degree n, where n is a positive integer.
Let m be a positive integer with 1 ≤ m ≤ n. Let α1, . . . , αm ∈ K be m many Qp-linearly independent
vectors. A lattice in K is the set

L(α1, . . . , αm) =

{
m∑

i=1

aiαi : ai ∈ Zp, 1 ≤ i ≤ m

}

of all Zp-linear combinations of α1, . . . , αm. The sequence of vectors α1, . . . , αm is called a basis of the
lattice L(α1, . . . , αm). The integers m and n are called the rank and dimension of the lattice, respectively.
When n = m, we say that the lattice is of full rank.

Since a p-adic lattice of rank m is a free Zp-module, obviously, two bases of the same lattice is related
with a matrix in GLm(Zp), i.e., an m×m matrix with coefficients in Zp and its determinant is in Z×

p .

2.3.1. Longest vector problem(LVP). For any element α =
∑m

i=1 aiαi ∈ L, since each ai ∈ Zp, we
have

|α|p =

∣
∣
∣
∣
∣

m∑

i=1

aiαi

∣
∣
∣
∣
∣
p

≤ max
1≤i≤m

(|aiαi|p) ≤ max
1≤i≤m

(|αi|p).

This indicates that the length | α |p of any element of the p-adic lattice L is bounded above. Since the
valuation group of K is discrete, as a subset of K, the set of lengths of elements of the lattice L is also
discrete.

Definition 2.1. [2, 3] Let L = L(α1, . . . , αm) be a lattice in K. We define recursively a sequence of
positive real numbers: λ1, λ2, λ3, . . . as follows.

λ1 = max
1≤i≤m

(|αi|p)

λj+1 = max{|x|p : x ∈ L, |x|p < λj} for j ≥ 1.

We have λ1 > λ2 > λ3 > . . . and limj→∞ λj = 0.

Definition 2.2. [2, 3] Given a lattice L = L(α1, . . . , αm) in K, the longest vector problem (LVP)
is to find a lattice vector v ∈ L such that |v|p = λ2.

Theorem 2.3. [2, 3] Given a lattice L = L(α1, . . . , αm) in K. Fix an integer j ≥ 2. There exists
an algorithm to find a lattice vector vj ∈ L satisfying |vj |p = λj . The algorithm takes O(pm(j−1))
many p-adic absolute value computations of elements of K.

Remark. Since p-adic lattices have essential difference from Euclidean lattices, all about Euclidean
lattices including mathematics and algorithms do not hold for p-adic lattices, at least need further study.
This is a new research area. One can compare p-adic analysis with classical real and complex analysis.
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2.3.2. Closest vector problem(CVP). Given a target vector t ∈ K. Since the function

L −→ R

v �−→ |t− v|p
is continuous on the compact set L, it can take the minimum and maximum on L. Set

μmin = min
v∈L

|t− v|p and μmax = max
v∈L

|t− v|p.

If t ∈ L, it is obvious that we have μmin = 0 and μmax = λ1. Here λ1 is the same as in Definition 2.1. So
we below assume t /∈ L. Hence μmin > 0. Since the valuation group of K is discrete, the above distance
function will take only finitely many values. So we have the following definition.

Definition 2.4. [2, 3] Let L = L(α1, . . . , αm) be a lattice in K and let t ∈ K −L be a target vector.
Define s positive real numbers μ1 > μ2 > μ3 > · · · > μs as follows, where s is a positive integer.

{μ1, μ2, μ3, . . . , μs} = {|t− v|p : v ∈ L}.

So μmax = μ1 and μmin = μs.

If |t|p > λ1, since v ∈ L, |v|p ≤ λ1, we have |t− v|p = |t|p, thus μmin = μmax = |t|p. So we below
assume |t|p ≤ λ1.

Definition 2.5. [2, 3] Let L = L(α1, . . . , αm) be a lattice in K and let t ∈ K − L be a target
vector with |t|p ≤ λ1. The closest vector problem (CVP) is to find a lattice vector v ∈ L such that
|t− v|p = μmin.

3. SOLVING LVP AND CVP WITH ORTHOGONAL BASES

3.1. Norm-Orthogonal Bases

Let p be a prime. Let V be a left vector space over Qp. A norm on V is a function

| · | : V −→ R

such that:

(i) |v| ≥ 0,∀v ∈ V, and |v| = 0 if and only if v = 0;

(ii) |xv| = |x|p · |v|,∀x ∈ Qp, v ∈ V ;

(iii) |v + w| ≤ max(|v|, |w|),∀v,w ∈ V.

If | · | is a norm on V , and if |v| �= |w| for v,w ∈ V , then we must have |v + w| = max(|v|, |w|). Weil
[25] proved the following proposition:

Proposition 3.1. [25, p.26] Let V be a left vector space over Qp of finite dimension n > 0, and
let | · | be a norm on V . Then there is a decomposition V = V1 + · · ·+ Vn of V into a direct sum of
subspaces Vi of dimension 1, such that

∣
∣
∣
∣
∣

n∑

i=1

vi

∣
∣
∣
∣
∣
= max

1≤i≤n
|vi|,∀vi ∈ Vi, i = 1, . . . , n.

So we can define the norm-orthogonal basis.
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Definition 3.2 (Norm-orthogonal basis). Let V be a left vector space over Qp of finite dimension
n > 0, and let | · | be a norm on V . We call α1, . . . , αn a norm-orthogonal basis of V over Qp if V
can be decomposed into the direct sum of n 1-dimensional subspaces Vi’s (1 ≤ i ≤ n), such that

∣
∣
∣
∣
∣

n∑

i=1

vi

∣
∣
∣
∣
∣
= max

1≤i≤n
|vi|,∀vi ∈ Vi, i = 1, . . . , n,

where Vi is spanned by αi. If α1, . . . , αn is a norm-orthogonal basis of the vector space spanned
by a lattice L =

∑n
i=1 Zpαi, then we call α1, . . . , αn a norm-orthogonal basis of the lattice L.

Weil’s proof is not constructive, and he did not give a method to find out a norm-orthogonal basis.
The following is immediate.

Proposition 3.3. Let V be a left vector space over Qp of finite dimension n > 0, and let | · | be a
norm on V . Let α1, . . . , αn be a basis of V over Qp. If

{|vi| : vi ∈ Qp · αi}
⋂

{|vj | : vj ∈ Qp · αj} = {0},∀i, j = 1, . . . , n, i �= j,

then α1, . . . , αn is a norm-orthogonal basis of V over Qp.

Proposition 3.4. Let K be an extension field of degree n of Qp. Let π be a uniformizer of K. Set

V =

e−1∑

i=0

Qp · πi

where e is the ramification index of K/Qp. Then V is an e-dimensional Qp-vector subspace of K,
and 1, π, . . . , πe−1 is a norm-orthogonal basis of V , where the norm of V is given by the p-adic
absolute value of the field K.

Proof. We know 1, π, . . . , πe−1 are Qp-linearly independent, see [1, p.125, Lemma 5.4]. Since |π|p =
p−

1
e ,

{|x|p : x ∈ Qp · πi} = {0}
⋃

pZ−
i
e .

Now the result follows from Proposition 3.3.

3.2. Solving LVP with Orthogonal Bases

We can prove the following theorem.

Theorem 3.5. Given a lattice L = L(α1, . . . , αm) in K. Assume α1, . . . , αm is a norm-orthogonal
basis of the lattice L. Fix an integer j ≥ 2. There exists an algorithm to find a lattice vector vj ∈ L
satisfying

|vj|p = λj.

The algorithm takes O(m) many p-adic absolute value computations of elements of K.

Proof. Without loss of generality, we can assume

{|αi|p : i = 1, . . . ,m} = {ν1, . . . , νs} with ν1 > · · · > νs,

and

|αi|p = νi, i = 1, . . . , s.

For any v ∈ L, v �= 0, we can write

v =

m∑

i=1

aiαi
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with ai ∈ Zp. Since α1, . . . , αm is a norm-orthogonal basis, we have

|v|p = max
1≤i≤m

{|ai|p · |αi|p}.

For nonzero ai, we have |ai|p = p−k with k ∈ Z and k ≥ 0.
Then, obviously,

{logp |v|p : v ∈ L, v �= 0} = {logp νi − k : i = 1, . . . , s, k = 0, 1, 2, · · · }.

Consider the set of valuations

S = {logp νi − k : 0 ≤ k ≤ j − i, 1 ≤ i ≤ min(s, j)}.

Obviously, in decreasing order, the first number of the set S is logp ν1 = logp λ1, and the j-th number
is logp λj . If logp λj = logp νi − k, we can take the vector vj = pkαi.

The algorithm needs to compute the m many p-adic absolute values of the basis vectors. We ignore
the time of comparing.

3.3. Solving CVP with Orthogonal Bases

We can prove the following theorem.

Theorem 3.6. Let L = L(α1, . . . , αm) be a lattice in K. Let t ∈ K −L be a target vector with |t|p ≤
λ1. Let V (⊃ L) be a k-dimensional Qp-vector subspace of the field K. Let α1, . . . , αm, αm+1, . . . ,
αk(k ≥ m) be a norm-orthogonal basis of V . Suppose the target vector t ∈ V . There is an
algorithm to find a vector vi ∈ L such that |t− vi|p = μi, for each i = 1, 2, . . . , s. The algorithm
takes O(n) many p-adic absolute value computations of elements of K, where n is the degree of
K over Qp.

Proof. Write

t =

k∑

i=1

biαi, bi ∈ Qp, i = 1, . . . , k.

For any lattice vector

v =

m∑

i=1

aiαi ∈ L, ai ∈ Zp, i = 1, . . . ,m,

we have

|t− v|p = max{|bi − ai|p · |αi|p(1 ≤ i ≤ m), |bjαj |p(m+ 1 ≤ j ≤ k)}.

If bi �∈ Zp, then |bi − ai|p = |bi|p > 1. If bi ∈ Zp, then

{|bi − ai|p : ai ∈ Zp} = {0, p−c(c = 0, 1, 2, . . .)}.

Without loss of generality, we can assume bi �∈ Zp for 1 ≤ i ≤ l and bi ∈ Zp for l+ 1 ≤ i ≤ m, where
l is an integer with 0 ≤ l ≤ m. Thus,

{|t− v|p : v ∈ L} = {max{|bi|p · |αi|p(1 ≤ i ≤ l), |bjαj|p(m+ 1 ≤ j ≤ k),

p−cu · |αu|p(cu = 0, 1, 2, 3, . . . ,∞(l + 1 ≤ u ≤ m))}},

where we set p−∞ = 0.
Set

N = max{|bi|p · |αi|p(1 ≤ i ≤ l), |bjαj|p(m+ 1 ≤ j ≤ k)}.
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Since t �∈ L, we have N > 0. Obviously, μs = μmin = N . To obtain the value

max{N, p−cu · |αu|p(cu = 0, 1, 2, 3, . . . ,∞(l + 1 ≤ u ≤ m))},
we can only consider those indices l + 1 ≤ u ≤ m for which |αu|p > N . Denote du the largest non-
negative integer with

p−du · |αu|p > N.

Consider the set

T = {N, p−cu · |αu|p(cu = 0, 1, . . . , du with |αu|p > N(l + 1 ≤ u ≤ m))}.
Listing the number of the set T , in decreasing order, we get the values of the distance function
|t− v|p, v ∈ L, i.e. the s many positive real numbers μ1 > μ2 > μ3 > · · · > μs such that

{μ1, μ2, μ3, . . . , μs} = {|t− v|p : v ∈ L}.
And it is easy to find all vectors vi ∈ L such that |t− vi|p = μi, i = 1, 2, . . . , s.

Similar to Theorem 2.3, if there is no any norm-orthogonal basis, exponential time algorithms are
given in [2, 3].

4. A SIGNATURE SCHEME

We present our signature scheme as follows.
Key Generation: We first choose a totally ramified K of degree n over Qp, i.e., choose an Eisenstein
polynomial f(x) = xn + f1x

n−1 + . . .+ fn−1x+ fn ∈ Zp[x] satisfying |fn|p = p−1 and |fi|p < 1 for
1 ≤ i ≤ n− 1. Let θ be a root of f(x) = 0. Choose another ζ ∈ OK = Zp[θ] such that Zp[ζ] = Zp[θ].
It is easy to generate such a ζ , see Section 7.2. Then K = Qp(ζ). Let F (x) ∈ Zp[x] be the minimum
polynomial of ζ over Qp which is also monic and of degree n. Choosen non-negative integers ji ∈ Z such
that the ji (mod n)(1 ≤ i ≤ n) are distinct. Set αi = θji(1 ≤ i ≤ n). By Proposition 3.3, we see that
α1, . . . , αn are linearly independent over Qp, thus α1, . . . , αn is a norm-orthogonal basis. All elements
of OK should be expressed as polynomials in ζ of degree < n with coefficients in Zp and ζ is just a formal
symbol.

Choose a matrix A ∈ GLm(Zp), where m is a positive integer with m ≤ n. Put
⎛

⎜
⎜
⎜
⎝

β1
...

βm

⎞

⎟
⎟
⎟
⎠

= A

⎛

⎜
⎜
⎜
⎝

α1

...

αm

⎞

⎟
⎟
⎟
⎠

such that the m vectors β1, . . . , βm have the same length or have almost same lengths. In our
experiments, it is easy to generate such a matrix A, see Section 7.2. Notice that in practice coefficients
of the polynomials f and F , as well as the p-adic integers βi, αj are rational numbers represented by
irreducible fractions whose denominators are co-prime to p, see Section 7.1.

Set

L = Zp · β1 + . . .+ Zp · βm = Zp · α1 + . . .+ Zp · αm.

We need a hash function

H : {0, 1}∗ −→ W := {x : x ∈ K − L, |x|p = λ1},
where λ1 is the maximum value of the lengths of all vectors in L. In our experiments, it is easy to generate
an element of the set W , see Section 7.3.

This hash function can be implemented as follows. For the message M ∈ {0, 1}∗, compute seed =
SHA− 3(M), then use this seed to generate an element in W . That is, we use this seed as the coefficient
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sequence of a polynomial in ζ to yielding an element in the field K. Our experiment shows that this
element is in the set W with probability 1, see Section 7.3.

Public key is set to be: (F (x),H, (β1, . . . , βm)).
Private key is set to be: (f(x), (α1, . . . , αm, αm+1, . . . , αn)).

Signing algorithm: For any message M ∈ {0, 1}∗, choose a random number r of fixed length, say,
r ∈ {0, 1}256. Compute

t = H(M ‖ r).

Using the norm-orthogonal basis (α1, . . . , αm, αm+1, . . . , αn) and the secret polynomial f(x), Bob
computes a lattice vector v ∈ L which is the closest one to t. If the minimum value of the distance
from t to L is strictly less than λ1, then output the signature (r, v). If the minimum value of the distance
from t to L is equal to λ1, then choose a new r ∈ {0, 1}256 until the minimum value of the distance from
t to L is strictly less than λ1.
Verification algorithm: The signature is valid if and only if t = H(M ‖ r), v ∈ L and |t− v|p < λ1.

The correctness is obvious. For the efficiency, what needs to illustrate is how many random r’s can
yield a valid signature. We have not proven it in theory by now, but in our experiments, we always
generated a valid signature with just one r, see Section 7.3. Hence, our signature scheme is very efficient.

Remark. Notice that, if (r, v) is a true signature, then we must have |v|p = λ1. This is because t ∈ W ,
so |t|p = λ1; if |v|p < λ1, then we would have |t− v|p = λ1, a contradiction. Keeping the notation in the
proof of Theorem 3.6, if there is an index u with l+ 1 ≤ u ≤ m such that |buαu|p > N , then it holds that
the minimum distance from t to L is strictly less than |t|p.

Parameter selection. To attain the 128-bit security level, one should select n ≥ m and pm ≈ 2128.
This follows from the CVP algorithm given in [2, 3].

5. A PUBLIC-KEY CRYPTOSYSTEM

We first present an original public-key cryptosystem as follows.
Key Generation For the sake of clarity, we repeat the necessary notation. We first choose a totally
ramified K of degree n > 1 over Qp, i.e., choose an Eisenstein polynomial f(x) = xn + f1x

n−1 + . . .+

fn−1x+ fn ∈ Zp[x] satisfying |fn|p = p−1 and |fi|p < 1 for 1 ≤ i ≤ n− 1. Let θ be a root of f(x) = 0.
Choose another ζ ∈ OK = Zp[θ] such that Zp[ζ] = Zp[θ]. It is easy to generate such a ζ , see Section 7.2.
Then K = Qp(ζ). Let F (x) ∈ Zp[x] be the minimum polynomial of ζ over Qp which is also monic and of
degree n. Choose n non-negative integers ji ∈ Z such that the ji (mod n)(1 ≤ i ≤ n) are distinct. Set
αi = θji(1 ≤ i ≤ n). By Proposition 3.3, we see that α1, . . . , αn are linearly independent over Qp, thus
α1, . . . , αn is a norm-orthogonal basis.

Choose a positive integer m ≤ n. Choose a real number δ ≥ 0. All elements of OK should be
expressed as polynomials in ζ of degree < n with coefficients in Zp.

Choose a matrix A ∈ GLm(Zp). Put
⎛

⎜
⎜
⎜
⎝

β1
...

βm

⎞

⎟
⎟
⎟
⎠

= A

⎛

⎜
⎜
⎜
⎝

α1

...

αm

⎞

⎟
⎟
⎟
⎠

such that the m vectors β1, . . . , βm have the same length or have almost same lengths. In our
experiments, it is easy to generate such a matrix A, see Section 7.2. Notice that in practice coefficients
of the polynomials f and F , as well as the p-adic integers βi, αj are rational numbers represented by
irreducible fractions whose denominators are co-prime to p, see Section 7.1. Set

L = Zp · β1 + . . .+ Zp · βm = Zp · α1 + . . .+ Zp · αm.

Public key is set to be: (F (x), δ, (β1 , . . . , βm)).
Private key is set to be: (f(x), A, (α1, . . . , αn)).

p-ADIC NUMBERS, ULTRAMETRIC ANALYSIS AND APPLICATIONS Vol. 16 No. 1 2024



32 DENG et al.

Encryption: For any plaintext (a1, . . . , am) ∈ {0, 1, . . . , p− 1}m, Alice first chooses randomly r ∈ K

with |r|p < p−δ, computes the ciphertext

C = a1β1 + · · · + amβm + r ∈ K

and sends C to Bob.
Decryption: When Bob receives the ciphertext C, using Theorem 3.6 with the norm-orthogonal basis
(α1, . . . , αn), he computes a lattice vector v ∈ L which is the closest one to C. Write

v = b1α1 + . . . + bmαm, bi ∈ Zp,

then the plaintext is

(b1, . . . , bm) ·A−1 (mod p).

For the correctness, we can prove that:

Theorem 5.1. The decryption is correct if it holds that ji ≤ δn for 1 ≤ i ≤ m.

Proof. Since there is a lattice vector a1β1 + · · ·+ amβm such that |C − (a1β1 + · · ·+ amβm)|p < p−δ,
we have |C − v|p < p−δ. Write C = v + r′ with |r′|p < p−δ. We have

C = (a1, . . . , am) · A

⎛

⎜
⎜
⎜
⎝

α1

...

αm

⎞

⎟
⎟
⎟
⎠

+ r = (b1, . . . , bm) ·

⎛

⎜
⎜
⎜
⎝

α1

...

αm

⎞

⎟
⎟
⎟
⎠

+ r′.

Set

(c1, . . . , cm) = (a1, . . . , am) · A, ci ∈ Zp.

We have
∣
∣
∣
∣
∣

m∑

i=1

(ci − bi) · αi

∣
∣
∣
∣
∣
p

= |r′ − r|p ≤ max{|r|p, |r′|p} < p−δ.

Since α1, . . . , αm is a norm-orthogonal basis, we have
∣
∣
∣
∣
∣

m∑

i=1

(ci − bi) · αi

∣
∣
∣
∣
∣
p

= max
1≤i≤m

(|ci − bi|p · |αi|p) < p−δ.

Since

|αi|p = |θji |p = p−
ji
n ,

if there is some index 1 ≤ i ≤ m with ci − bi ∈ Z×
p , then we have

p−
ji
n < p−δ

i.e., δ < ji
n . So ci ≡ bi (mod p) for each 1 ≤ i ≤ m if we have ji ≤ δn for 1 ≤ i ≤ m.

For the efficiency, what needs to illustrate is how efficient to generate a random r ∈ K with |r|p < p−δ.
As δ becomes bigger, it is harder to generate such r. In Section 7, we present some experimental results.
How to choose the parameters n,m, δ and p, see Section 7.5.

Remark. Our scheme is similar in its algorithmic nature to GGH scheme [8] based on lattices in
Euclidean spaces and McEliece scheme [15], but the domains in which these operations take place are
vastly different. The main difference between our scheme and GGH scheme [8] is the choice of “error r",
in our scheme, r is an element of the field K, not just a vector as in the Euclidean case. This makes some
efficient attacks in the Euclidean case do not work at all for our scheme, see sections 6.4. and 6.5.
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6. HEURISTIC SECURITY ANALYSIS

Our scheme is similar to GGH scheme [8] and McEliece scheme [15], and these two schemes have
no security proof up to now. Our scheme is based on p-adic lattices which are depend strictly on p-adic
analysis, and much knowledge of p-adic analysis is unknown. The p-adic analysis has many difference
from the classical analysis and many notions and theories in p-adic analysis need to be redefined and
developed. So it may be impossible to give any formal security proof for our cryptosystems in the current
situation. Instead, we give some possible attacks to our schemes in this section.

6.1. Recovering a Uniformizer

Given a local field K, even a special local field, e.g., a totally ramified one, if we could find out
a uniformizer of K, then the above public-key cryptosystem and signature scheme would be broken
completely. This is because expressing elements of the public basis as polynomials in the uniformizer,
we can easily solve LVP and CVP by the algorithms given in sections 3.2 and 3.3.

However, as mentioned in [2, 3], uniformizers are just the second longest vectors in the p-adic lattice
OK , so recovering a uniformizer is a special LVP-instance in OK . Since there is no second algorithm
to compute it except the one mentioned in [2, 3], which is exponential in the dimension of the lattice, it
seems that it is hard to recover a uniformizer of a given local field.

6.2. Finding a Norm-Orthogonal Basis

Now, given a general basis of a vector space V over Qp and a norm on V , there is no any known
algorithm to find out a norm-orthogonal basis of V . Similarly, given a general basis of a p-adic lattice,
there is no any known algorithm to find out a norm-orthogonal basis of the lattice if it has. Notice that,
not all p-adic lattices necessarily have norm-orthogonal bases. It seems that a norm-orthogonal basis
of a p-adic lattice is hard to compute, and it is difficult to recover the private key from the public key in
our cryptographic schemes.

6.3. Solving CVP-Instances

Obviously, if we could efficiently solve the CVP-instances, then the above public-key cryptosystem
and signature scheme would be broken completely. If the CVP is hard under a random basis of a lattice,
then there is no apparent way to forge a true signature without solving the CVP-instances.

One may argue that it may be not necessary to solve the CVP problem to break the encryption
cryptosystem, since what we need to recover the plaintext is not (d1, . . . , dm) = (b1, . . . , bm) · A−1,

but just (d1, . . . , dm) mod p. Notice that the ciphertext C is closest to (d1, . . . , dm) ·

⎛

⎜
⎜
⎜
⎝

β1
...

βm

⎞

⎟
⎟
⎟
⎠

by the

decryption process. Given an m-dimensional p-adic lattice basis B and a target t, we define CVPp(B, t)
as the problem to recover (d1, . . . , dm) mod p, where (d1, . . . , dm) are the coefficients of some lattice
vector closest to t under the basis B. It is easy to show that given an oracle to solve CVPp(B, t),
we can find a very good approximation of the vector in L(B) closest to t, which means that even
to find the coefficients modulo p is very difficult. Roughly speaking, we can run the oracle to solve
CVPp(B, t) and get a returned solution (d̄1, . . . , d̄m). Then we know there exists (d1, . . . , dm) ∈ Zm

p

such that (d1, . . . , dm) ·B is a lattice vector closest to t, and (d1, . . . , dm) mod p = (d̄1, . . . , d̄m).
We can continue to run the oracle to solve CVPp(pB, t− (d̄1, . . . , d̄m)B) and get a returned solution
(d̃1, . . . , d̃m). Then we know there exists (d1, . . . , dm) ∈ Zm

p associated with a closest vector, such that

(d1, . . . , dm) mod p2 = (d̄1 + pd̃1, . . . , d̄m + pd̃1). Repeating the process several times, we can recover
(d1, . . . , dm) mod pk for k polynomial in m, which is enough to yield a lattice vector that is very close
to the target. Hence, to find the coefficients modulo p is still very difficult.
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6.4. Modulo p Attack

We look at a so-called Modulo p attack for the above public-key cryptosystem. It is similar to
Nguyen’s attack [19] for the GGH cryptosystem.

For the ciphertext

C = a1β1 + · · ·+ amβm + r

with |r|p < p−δ. Denote the ring of integers of K by OK , i.e., those elements x of K with |x|p ≤ 1. We
know OK = Zp[ζ]. We express C, β1, . . . , βm, r as polynomials of ζ with coefficients in Zp, then equating
the coefficients of 1, ζ, . . . , ζn−1 of the two sides of the above equation, we obtain a system of n linear
equations with coefficients in Zp. Write

r =

n−1∑

i=0

ri · ζ i, ri ∈ Zp.

If ζ would be a uniformizer of K, then since |ζ i|p = p−
i
n , we have

|r|p = max
0≤i≤n−1

(|ri|p · p−
i
n ).

Since |r|p < p−δ, we have

|ri|p < p
i−δn

n .

If i ≤ δn, then p | ri. Since the r′is are unknown, reducing the above system of linear equations modulo
p, we get a system of R linear equations over the finite field Fp, and the unknowns are just the plaintext
(a1, . . . , am), where R is the number of indices 0 ≤ i ≤ n− 1 with i ≤ δn. Assume the linear equations
are linearly independent over Fp, we can determine R unknowns as functions of other unknowns. We
have proved the following.

Proposition 6.1. If ζ would be a uniformizer of K, then the above Modulo p attack can at
most reduce the search space of plaintexts from pm to pm−R, where R is the number of indices
0 ≤ i ≤ n− 1 with i ≤ δn.

However, in general, ζ is not a uniformizer of K, so 1, ζ, . . . , ζn−1 is not an orthogonal basis, so the
above Modulo p attack fails. Further, we can let ζ be a unit of OK . Usually, the positive real number δ is
< 1. Otherwise, if δ ≥ 1, it is easily seen that, when writing r as a polynomial of ζ , the coefficients are all
divisible by p and the above Modulo p attack will apply.

6.5. Transcript Attacks to Our Signature

Given some pairs (message, signature), the authors in [5, 20] described successful transcript
attacks to GGH signature and NTRU signature. The basic observation in [5, 20] is that a list of
known pairs (message, signature) gives rise to the following learning problem, which they call the
hidden parallelepiped problem (HPP): given many random points uniformly distributed over an unknown
n-dimensional parallelepiped, recover the parallelepiped or an approximation thereof. They transform
the HPP into a multivariate optimization problem based on the fourth moment of one-dimensional
projections and this problem can be solved by a gradient descent.

However, these signatures are based on lattices in Euclidean spaces. The above attack depends
strictly on knowledge of classical analysis (real analysis and probability theory). Our p-adic lattices are
completely different from lattices in Euclidean spaces and they depend strictly on the p-adic analysis
(and p-adic probability theory). The p-adic analysis has many differences from the classical analysis
and many notions and theories in p-adic analysis need to be redefined and developed. So the transcript
attacks in [5, 20] are not suitable to p-adic lattices, at least the whole theory needs to be redeveloped.
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7. EXPERIMENTAL RESULTS

To verify the efficiency of our cryptosystems, we did some experiments on a personal laptop with
Windows 10 operation system, i5-10210U CPU and 8-GB memory. We report some experimental
results in this section.

7.1. General Strategies

Denote Z(p) := {x ∈ Q | |x|p ≤ 1}, i.e., the localization of Z at p. We can choose an Eisenstein
polynomial f(x) = xn + f1x

n−1 + . . .+ fn−1x+ fn ∈ Z(p)[x] satisfying |fn|p = p−1 and |fi|p < 1 for
1 ≤ i ≤ n− 1. Choose ζ ∈ Z(p)[θ] such that θ ∈ Z(p)[ζ]. Then F (x) ∈ Z(p)[x]. Choose the matrix A ∈
GLm(Z(p)). Let

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1

ζ
...

ζn−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

= B

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1

θ
...

θn−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

such that the matrix B is in GLm(Z(p)), then we have θ ∈ Z(p)[ζ]. Then all computations can be done
via polynomials in ζ of degree < n with coefficients in Z(p) and ζ is just a formal symbol. Note that
Z ⊂ Z(p) ⊂ Zp and Z is dense in Zp, so Z(p) is large enough to work with.

For a positive integer D, denote

C(D) =
{a

b
: a, b ∈ Z, |a| ≤ D, 0 < b ≤ D, p � b

}
⊂ Z(p).

In our experiments, when randomly choosing elements of K, we choose a polynomial of ζ with
coefficients in C(D) for some D > 0.

7.2. Generating the Keys

It is easy to generate the keys needed in our signature scheme and public-key cryptosystem. We
provide a relatively small example as follows.

For n = 200 and p = 2, we construct polynomials f(x) = x200 +
∑199

i=1 fi2x
i + 2 with fi ∈ {0, 1}.

The calculations are all in GP/PARI Version 2.13.0. For instance,

f(x) = x200 + 2x197 + 2x195 + 2x190 + 2x189 + 2x185 + 2x180 + 2x179 + 2x175

+ 2x174 + 2x171 + 2x167 + 2x163 + 2x161 + 2x158 + 2x157 + 2x153 + 2x152

+ 2x150 + 2x149 + 2x145 + 2x144 + 2x143 + 2x141 + 2x138 + 2x137 + 2x135

+ 2x132 + 2x131 + 2x126 + 2x122 + 2x120 + 2x116 + 2x115 + 2x114 + 2x113

+ 2x111 + 2x109 + 2x108 + 2x106 + 2x105 + 2x104 + 2x98 + 2x95 + 2x93

+ 2x90 + 2x88 + 2x87 + 2x85 + 2x83 + 2x82 + 2x81 + 2x79 + 2x73 + 2x72

+ 2x66 + 2x63 + 2x62 + 2x61 + 2x59 + 2x58 + 2x57 + 2x55 + 2x53

+ 2x52 + 2x51 + 2x49 + 2x48 + 2x44 + 2x42 + 2x38 + 2x36 + 2x35 + 2x34

+ 2x32 + 2x30 + 2x28 + 2x27 + 2x24 + 2x23 + 2x13 + 2x12 + 2x11 + 2x10

+ 2x9 + 2x8 + 2x7 + 2x6 + 2x5 + 2x3 + 2x+ 2.

Let ζ = 1 +
∑199

i=1B2,i+1θ
i with B2,i+1 ∈ {0, 1}. We use the function “random()" to construct ζ

in GP/PARI. Moreover, we get the matrix B and compute whether B ∈ GL200(Z(p)) or not. In this
example, we construct 20 ζ ’s and there are 9 ζ ’s satisfying Z(2)[ζ] = Z(2)[θ].
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In our experimental results, for a fixed f(x), the probability of Z(p)[ζ] = Z(p)[θ] is about 1− 1/p. Note
that we do not need to prove the probability. Our experimental results show that it is easy to construct
B such that Z(p)[ζ] = Z(p)[θ].

For m = 100, we construct a lattice L = ⊕i∈SZ2θ
i with rank 100, where S =

{0, 1, 6, 8, 9, 11, 14, 15, 17, 19, 20, 21, 22, 23, 25, 27, 28, 29, 30, 31, 32, 42, 43, 45, 47, 48,

49, 50, 51, 53, 54, 55, 61, 67, 70, 72, 75, 80, 82, 83, 84, 87, 89, 91, 96, 97, 98, 101, 104, 106

107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 119, 120, 124, 126, 127, 130, 131, 132,

137, 138, 139, 140, 147, 149, 150, 152, 154, 156, 158, 159, 161, 162, 163, 164, 165, 167,

170, 173, 177, 178, 180, 181, 183, 185, 187, 190, 191, 192, 194, 198}.

Let

ζ =1 + θ + θ6 + θ11 + θ14 + θ15 + θ21 + θ22 + θ27 + θ28 + θ30 + θ43 + θ48 + θ50

+ θ51 + θ55 + θ61 + θ70 + θ83 + θ84 + θ91 + θ97 + θ101 + θ104 + θ109 + θ112

+ θ117 + θ119 + θ120 + θ124 + θ126 + θ127 + θ130 + θ131 + θ138 + θ139 + θ150

+ θ154 + θ161 + θ167 + θ170 + θ177 + θ180 + θ187 + θ190 + θ191 + θ194 + θ198.

We have that Z(2)[ζ] = Z(2)[θ]. Moreover, let βi = ζ i−1, we can construct a matrix A ∈ GL100(Z(2))

and get a basis β1, . . . , β100 of L and all β1, . . . , β100 have length 1.

7.3. Generating a Valid Signature is Easy

Using the example in the previous section, for any element in W (see Section 4), we find that we can
always generate a valid signature with just one r. That is, for any generated t ∈ W in our experiments,
i.e., t ∈ K − L and |t|2 = λ1 = 1, we can always find a lattice vector v ∈ L such that |t− v|2 < 1. So it
is very easy to generate a valid signature for a legal user.

7.4. Generating Error Vectors in the Public-Key Cryptosystem

In our experiments, we choose r =
∑199

i=0 riζ
i, where the ri can be chosen randomly. For instance, we

assume ri ∈ {0, 1, 2, 3}. We choose randomly 1000 such r’s, the length distribution is as follows.

log2 |r|2 0 − 1
200 − 2

200 − 3
200 − 4

200 − 5
200 − 6

200 − 7
200 − 8

200 − 9
200 − 10

200

# of r’s 531 232 114 54 32 15 12 3 2 4 1

Thus, when we choose a suitable positive number δ, which depends on n, it is relatively easy to
generate an error vector r needed in our public-key cryptosystem when δ is small. Notice that by modulo
p attack, if δ is small, the schemes appear more secure. However, by Theorem 5.1, if δ is small, the size of
plaintext should be also small to ensure the correct decryption. Our experiments show that the scheme
can at least work well for short messages.
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7.5. Parameters Selection

The main parameters in our public-key cryptosystem are n,m, δ and p. We first look at the distribu-
tion of error vectors. An error vector r ∈ K is a polynomial in ζ of degree < n. We can think that r is a
random polynomial in the uniformizer θ of degree < n:

r = r0 + r1θ + r2θ
2 + . . .+ rn−1θ

n−1

with ri ∈ Zp for 0 ≤ i ≤ n− 1. Since

|r|p = max
0≤i≤n−1

{|ri|p · |θ|ip} = max
0≤i≤n−1

{|ri|p · p−
i
n },

we see that, |r|p = 1 if r0 ∈ Z×
p . So the probability of |r|p = 1 is p−1

p . If r0 ∈ pZp and r1 ∈ Z×
p , then we

have |r|p = p−
1
n . So the probability of |r|p = p−

1
n is 1

p · p−1
p . Similarly, the probability of |r|p = p−

i
n is

(
1

p

)i

· p− 1

p
for 0 ≤ i ≤ n− 1,

and the probability of |r|p ≤ p−1 is 1
pn .

For p = 2, we see from above, the probability of |r|2 = 2−
i
n is 1

2i+1 for 0 ≤ i ≤ n− 1, and the
probability of |r|2 ≤ 2−1 is 1

2n . This explains very well the experimental results in section 7.4.

When choosing an error vector r in K, if the allowable error probability is at most 1/10, i.e., to choose
one suitable r, we need to produce at most 10 r’s, then we suggest the parameters selected as follows. p
should be at most 7. Of course, if we can allow smaller error probability, we will have more free choice of
parameters.

For p = 2, δ = 0, 1/n, 2/n, the error probability is 1/2, 1/4, 1/8, respectively. Using the technique
in section 8.1, we can always assume m = n. We can encrypt messages of 1, 2, 3 bits, respectively. To
obtain a cryptographic security level at least 280, n should be at least 80.

For p = 3, δ = 0, 1/n, the error probability is 1/3, 1/9, respectively. m = n ≥ 50.
For p = 5, δ = 0, the error probability is 1/5. m = n ≥ 34.
For p = 7, δ = 0, the error probability is 1/7. m = n ≥ 28.

7.6. A Toy Example

In order to illustrate the encryption and decryption of our public-key cryptosystem, we provide a
simple example in this subsection.

For n = 20 and p = 2, we choose an Eisenstein polynomial f(x) = x20 + 2x13 + 2x12 + 2x11 +
2x10 + 2x9 + 2x8 + 2x7 + 2x6 + 2x5 + 2x3 + 2x+ 2. Let θ be a root of f(x). Let ζ = 1 + θ + θ3, and
we can prove that Z2[ζ] = Z2[θ]. The minimal polynomial of ζ is

F (x) =x20 − 20x19 + 190x18 − 1120x17 + 4555x16 − 13470x15 + 29670x14

− 48500x13 + 54972x12 − 26650x11 − 57366x10 + 202684x9 − 378052x8

+ 504970x7 − 502444x6 + 370306x5 − 200173x4 + 79034x3 − 21942x2

+ 3548x − 167.

Choose m = 4, δ = 1
5 , α1 = 1, α2 = θ, α3 = θ3, α4 = θ4 and α5 = θ2 and αi = θi−1 for 6 ≤ i ≤ 20.

We also choose a matrix

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0

1 1 1 0

1 0 1 0

1 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,
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such that

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

β1

β2

β3

β4

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

= A

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

α1

α2

α3

α4

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Set

L = Z2 · β1 + . . . + Z2 · β4 = Z2 · α1 + . . .+ Z2 · α4.

By simple computation, β1 = 1 and β2 = ζ .

Denote c = 755873885678037304696930874820307, and we use {1, ζ, . . . , ζ19} to represent β3 and
β4 as follows.

β3 =− 27108923760453500594114368147861/c · ζ19

+ 521865611374523349857486121811703/c · ζ18

− 4760849839441657400327526846175084/c · ζ17

+ 26816406582145252327839682159453914/c · ζ16

− 103574920689378774115698374019031382/c · ζ15

+ 288537866250541205172041717367828630/c · ζ14

− 591666988994440980962096953798261066/c · ζ13

+ 880486236199407313977260487157615142/c · ζ12

− 847065367242050264224160859445656349/c · ζ11

+ 108784039738974345225480374806101259/c · ζ10

+ 1622622535668312013674731473089538162/c · ζ9

− 4291035648498285373550387869383382644/c · ζ8

+ 7094982023780788047526123629913039130/c · ζ7

− 8499558345651875542941790231225642428/c · ζ6

+ 7430432812182187849978710739691760199/c · ζ5

− 4649814507849649080544670183272509081/c · ζ4

+ 2064853893471783755461823390280876643/c · ζ3

− 649379287606029887924510269811865169/c · ζ2

+ 123558509986637049018722991077975950/c · ζ
− 5663239729863841192248147669379477/c,
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β4 = −14485353108585552555664586328940/c · ζ19

+ 282142360554280824676857770025148/c · ζ18

− 2604335662044401629564144838581234/c · ζ17

+ 14854085039919474501903159588121940/c · ζ16

− 58145345752844012352543292792092682/c · ζ15

+ 164358157674744212292212426862311214/c · ζ14

− 342605897386084548079649731170297612/c · ζ13

+ 520399035260841934352319686515883387/c · ζ12

− 519018682404601896574333009249126758/c · ζ11

+ 108673223779901487310589235888361376/c · ζ10

+ 890836547840047572823549831049505128/c · ζ9

− 2464539733980196316682341667727910069/c · ζ8

+ 4166799880982851676557591639445455750/c · ζ7

− 5096461474619379338821764808556998440/c · ζ6

+ 4561219484901653035247116656975063782/c · ζ5

− 2930760364594071396988494221887661812/c · ζ4

+ 1336303410742836395646485681855463078/c · ζ3

− 431029975161625093731859240266028328/c · ζ2

+ 85030353159786174819149798559520150/c · ζ
− 3439240388429674931731785244955445/c.

Public key is set to be: (F (x), δ = 1
5 , (β1, β2, β3, β4)).

Private key is set to be: (f(x), A, (α1, α2, . . . , α20)).

Encryption: For the plaintext (1, 1, 0, 1) ∈ {0, 1}4, Alice first chooses r = ζ19 + ζ18 + 3ζ16 + 2ζ15 +

3ζ14 + ζ13 + 3ζ12 + 2ζ10 + 3ζ9 + 2ζ7 + 2ζ6 + 3ζ4 + 3ζ3 + 1 ∈ K − L with 2−1 < |r|2 = 2−
1
4 < 2−δ,

computes the ciphertext

C = β1 + β2 + β4 + r ∈ K

as a polynomial in ζ and sends C to Bob.

Decryption: When Bob receives the ciphertext C, using the orthogonal basis (α1, . . . , α20), he com-
putes

C = 69459336θ19 + 364540020θ18 + 767255869θ17 + 1256425705θ16

+ 1777590726θ15 + 2234443481θ14 + 2483116382θ13 + 2472733089θ12

+ 2432903350θ11 + 2353654088θ10 + 2227615912θ9 + 2053804444θ8

+ 1840825085θ7 + 1611749655θ6 + 1408143327θ5 + 1291986471θ4

+ 1206618903θ3 + 936386258θ2 + 677258923θ + 239627447.

By Theorem 3.6, he computes a lattice vector v = α1 + α2 + α3 + α4 which is the closest one to C.
The plaintext is

(1, 1, 1, 1) ·A−1 ≡ (1, 1, 0, 1) (mod 2).
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8. IMPROVEMENTS TO THE PUBLIC-KEY SCHEME

In this section, we present some improvements to increase the efficiency of the public-key encryption
scheme.

8.1. Expanding the Plaintext

Note that we require ji ≤ δn for 1 ≤ i ≤ m for which the decryption is correct, see Theorem 5.1.
Usually, the number of indices ji(1 ≤ i ≤ n) such that ji ≤ δn is small, so we can only encrypt short
messages.

For simplicity, let us suppose the first l(< m) indices ji(1 ≤ i ≤ l) satisfying ji ≤ δn. Checking
carefully the proof of Theorem 5.1, if we let the transform matrix A between the public basis and
private basis have the property that those last m− l elements of the first l columns of A−1 are divisible
by p (i.e., let A−1 = (bij) where the (i, j)-element of A−1 is bij , then we require bij ≡ 0 (mod p) for
l+ 1 ≤ i ≤ m and 1 ≤ j ≤ l), then the decryption algorithm can correctly recover the first l components
of the plaintext. Of course, this will decrease partially the randomness of the transform matrix A (i.e., we
prespecify l(m− l) elements of A−1). However, the advantage is that we can expand the plaintext via a
random padding as follows.

We revise the original cryptosystem a bit. In the key generation, after generating ji’s and δ, denote by
I the set of indices ji with ji ≤ δn. Alice additionally chooses a set Z ⊆ I and sends the size l = #Z to
Bob. Then Alice can permute the set of αi’s such that {α1, · · · , αl} = {θji|ji ∈ Z} and generate public
key as before.

In the encryption algorithm, the plaintext becomes (a1, . . . , al) ∈ {0, 1, . . . , p− 1}l. For any plaintext
(a1, . . . , al), Bob firstly extends it into

(a1, . . . , am) ∈ {0, 1, . . . , p− 1}m

with random al+1, . . . , am, then encrypts it as before. In the decryption algorithm, Alice just accepts the
first l components of the recovered vector.

8.2. The Coefficient Explosion Problem

For the open basis (β1, . . . , βm), since we finally perform a modulo p operation in the decryption
procedure, it is obvious that we can publish (β1, . . . , βm) (mod p) only. This can solve the problem of
coefficient explosion in the open basis (β1, . . . , βm). For example, in the section 7.6, we can publish the
open basis as follows.

(β1, β2, β3, β4) (mod 2) = (1, ζ, ζ19 + ζ18 + ζ11 + ζ10 + ζ5 + ζ4 + ζ3 + ζ2 + 1, ζ12 + ζ8 + 1).

Another problem is the coefficient explosion of the open field polynomial F (x) of K. For the private
field polynomial f(x), we can choose small numbers as coefficients of f(x). But, in general, F (x) will
have large coefficients. The example in the section 7.6 yields this phenomenon.

For an element r ∈ K, we use the method in section 2.2 to compute |r|p. I.e.,

|r|p = |NK/Qp
(r)|1/np ,

and NK/Qp
(r) is the determinant of the n× n-matrix M of the multiplication-by-r linear map. That is,

multiply every element in the set {1, ζ, . . . , ζn−1} by r, write the results as Zp-linear combinations of
1, ζ, . . . , ζn−1. For a random r, the probability of |r|p ≤ p−1 is 1/pn, see section 7.5. So it is impossible
to get a r with |r|p ≤ p−1. Hence, computing the determinant of the n× n-matrix M = (cij), for any
element in M , we can drop the part divisible by pn. That is, we can only compute the determinant of the
n× n-matrix M = (cij (mod pn)) without affect the final answer. Therefore, we can only publish F (x)
(mod pn).

Furthermore, for example, if we choose p = 2, δ = 2/n, we can drop the parts divisible by 23. We can
only publish F (x) (mod 23).

Therefore, using this technique, we solve perfectly the coefficient explosion problem in the public key
and norm computation.
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9. CONCLUSION

LVP and CVP in local fields may have further applications in cryptography and other areas. In
this paper, we just mention one possibility. The signature scheme and the public-key cryptosystem
constructed in this paper are just an illustration. LVP and CVP in local fields are new computationally
difficult mathematical problems, it is worth for further study and there is much work to do.

For example, is there a p-adic analogue of the Gram-Schmidt orthogonalization process in Euclidean
spaces? Notice that the Gram-Schmidt orthogonalization is only for an l2-norm, not for any norm. We
suspect that there is a p-adic orthogonalization process for the norm defined in this paper. Is there a
p-adic analogue of the LLL algorithm for lattices in Euclidean spaces? Is there a p-adic analogue of the
Minkowski’s theorems for lattices in Euclidean spaces [24]? More importantly, we do not know whether
the LVP and CVP are NP-hard, if so, how to do complexity reduction. We believe that there are many
other problems to study.
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