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1. INTRODUCTION AND MOTIVATION

Let K be the finite extension of the p-adic field Qp with ring of integers OK , and the unique maximal
ideal mK . We denote the units in OK by O∗

K . Let K̄ be the algebraic closure of K and m̄K be the integral
closure of mK in K̄. Let Cp be the p-adic completion of K̄ and denote mCp = {z ∈ Cp | |z|p < 1}.

In [6], Berger studied to what extent the torsion points Tors(F ) of a formal group F over OK

determines the formal group. He proved that if Tors(F1) ∩ Tors(F2) is infinite then F1 = F2. He further
asked the question, if D is a stable p-adic dynamical system, then:

“To what extent the preperiodic points Preper(D) determines D ?”

In this work, we have answered this question by proving our main Theorem 3.8 in Section 3. We
have also provided an alternate proof of it following some examples in Section 4. The proofs relies on the
following tools:

(a) The first proof uses the correspondence between Tors(F ) and Preper(D).

(b) The alternate proof uses the following two facts:

(i) Galois correspondence of a stable p-adic dynamical system D. Indeed, we proved that given
any stable p-adic dynamical system D over OK , there exists a σ ∈ Gal(K̄/K) and a stable
series w(x) ∈ D such that σ(x) = w(x), ∀ x ∈ Preper(D).

(ii) Rigidity of power series on open unit disk mCp . We say that a subset Z ⊂ mCp is Zariski
dense in mCp if every power series h(x) ∈ OK [[x]] that vanishes on Z is necessarily equal to
zero. A subset Z ⊂ mCp is Zariski dense in mCp if and only if it is infinite.
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2. p-ADIC DYNAMICAL SYSTEM AND SOME RESULTS

In this section, we recall some preliminaries, and prove some helpful results:

Definition 2.1. [5] A (discrete) dynamical system consists of a set Γ and a function γ : Γ → Γ.
Its dynamics is indeed the study of the behavior of the points in Γ by repeatedly applying γ on
the points of Γ, i.e., we study the iterates of γ. If we consider the nth iterate

γ◦n(x) = γ ◦ γ ◦ · · · ◦ γ(x)
︸ ︷︷ ︸

n iterates

,

then the orbit of x ∈ Γ is defined by Oγ(x) =
{

x, γ(x), γ◦2(x), γ◦3(x), · · ·
}

.

(i) The point x is called periodic of period n if γ◦n(x) = x for some n ≥ 1.

(ii) If γ(x) = x, then x is a fixed point.

(iii) A point x is preperiodic if some iterate γ◦i(x) is periodic i.e., there exists m,n such that
γ◦m(x) = γ◦n(x). In other words, x is preperiodic if its orbit Oγ(x) is finite.

Definition 2.2. [6] A stable p-adic dynamical system D over OK is a collection of p-adic power
series in OK [[x]] without constant term such that the power series commutes with each other
under formal composition. A power series f in D is called stable if f ′(0) is neither 0 nor a root of
1. We say that D ⊆ x · OK [[x]] is a stable p-adic dynamical system of finite height if the elements
of D commute with each other under composition, and if D contains a stable series f such that
f ′(0) ∈ mK and f(x) 
≡ 0 mod mK (i.e., f is of finite height) as well as a stable series u such that
u′(0) ∈ O×

K . The collection D can be made as large as possible in the sense that whenever a stable
power series commutes with any member of D, it belongs to D. Such a collection D is the main
object in p-adic dynamical systems [4].

Example 2.3. If F is a formal group law of finite height over OK , then the endomorphism ring
EndOK

(F ) of F is a stable p-adic dynamical system.

Proposition 2.4. For an invertible power series, preperiodic points are exactly the periodic points,
i.e., fixed points of iterates of u.

Proof. Let u(x) ∈ x · OK [[x]] be invertible. For any preperiodic point α of u(x), there exists natural
numbers m,n with m > n such that u◦m(α) = u◦n(α). Since u(x) is invertible, u◦(−n)(x) exists in
x · OK [[x]] and hence u◦(m−n)(α) = α.

If u is an invertible series over OK , then the preperiodic points of u are exactly the periodic points by
Proposition 2.4. Now we remember that: the only periodic points of u are roots of u◦p

m
(x)− x for some

m ∈ N. The full ring Zp acts on the invertible members of the dynamical system D. For, the series u◦p
m

converge to the identity in the appropriate topology, and thus the map Z → D by n �→ u◦n is continuous
when Z has the p-adic topology, so extends to Zp → D. It follows from this that if m ∈ Z and m = prn

with p � n, then the fixed points of u◦m are the fixed points of u◦p
r
. To be more precise, we consider the

following two lemmas:

Lemma 2.5. Let u be an invertible series in OK [[x]]. Then for every natural number n ≥ 0, for any
λ ∈ K̄ with v(λ) > 0, if λ is a fixed point of u, then λ is also a fixed point of u◦p

n
.

Proof. Note that u◦2(λ) = u(u(λ)) = u(λ) = λ. Thus by induction on n, the result follows.

Lemma 2.6. Let u be an invertible series in OK [[x]]. Then for every natural number n ≥ 0, for any
λ ∈ K̄ with v(λ) > 0, if λ is a fixed point of u, then λ is also a fixed point of u◦p

n
. More generally,

for z ∈ Zp, λ is also a fixed point of u◦z.
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Proof. We recall that the map Z → OK [[x]] by n �→ u◦n is continuous when Z has the p-adic topology
and OK [[x]] has (mK , x)-adic topology. This latter topology also has the property that if {Ui}, U are
invertible series in OK [[x]] with limit limi Ui = U ,then limi Ui(λ) = U(λ). That is, evaluation at λ is a
continuous map from OK [[x]] to {ξ ∈ K̄ : v(ξ) > 0}.

Now suppose that λ is a fixed point of u, and z ∈ Zp. There is a sequence of positive integers {zi} with
limit z, and so λ is a fixed point of each u◦zi , so that u◦z(λ) = u◦ limi zi(λ) = limi (u

◦zi(λ)) = limi λ = λ.

We define the following two sets:

Preper(u) =
⋃

n

{x ∈ OK |u◦pn(x) = x} = all preperiodic points of an invertible series u ∈ D

T (f) =
⋃

n

{x ∈ m̄K |f◦n(x) = 0} = all torsion points of a noninvertible series f ∈ D. (2.1)

We note the following interesting result, which says that Preper(D) is independent of choices of stable
series in D:

Proposition 2.7. [4] Let u, f ∈ D be invertible and noninvertible series, respectively. Then the set
of roots of iterates of f is equal to the set periodic points of u(x). That is, if T (f) denotes the set
of roots of iterates of f , then T (f) = Preper(u).

3. THE MAIN RESULTS

We start with a conjecture.

Conjecture 3.1. [7] If f and u are, respectively, two stable noninvertible and invertible power
series in a stable p-adic dynamical system D, then there exists a formal group F with coefficients
in OK , two endomorphisms fF and uF of F , and a nonzero power series h such that f ◦ h = h ◦ fF
and u ◦ h = h ◦ uF . We call h to be the isogeny from fF to f .

Remark 3.2. The conjecture 3.1 is proved in [7, Theorem. B] for K = Qp. This conjecture resembles
to that one given by Lubin in [4] while [1, 2] and [3] proved several results in the support of
Lubin’s conjecture, which says, if a noninvertible series commutes with an invertible series, there
is a formal group somehow in the background.

For the above formal groupF over OK , its endomorphism ring EndOK
(F ) is a stable p-adic dynamical

system. We denote by Tors(F ) =
⋃

n T (n, fF ), the torsion points of F , where T (n, fF ) = {α ∈ m̄K :
f◦n
F (α) = 0}. Then we have the following nice result:

Theorem 3.3. [6] If F1 and F2 are two formal groups over OK and if Tors(F1) ∩ Tors(F2)=infinite,
then F1 = F2.

Definition 3.4. Let f(x) and g(x) be two noninvertible stable power series over OK without
constant term. We call a power series h(x) ∈ OK [[x]] an OK-isogeny of f(x) into g(x) if h ◦ f =
g ◦ h. If u(x) be any invertible series in OK [[x]] then u ◦ h is also an OK-isogeny of f .

Next we prove the following lemma.

Lemma 3.5. Let f(x) and g(x) be two noninvertible stable power series over OK each with finite
Weierstrass degree. Let h be an isogeny of f into g, then h maps T (f) into T (g). Moreover,
h : T (f) → T (g) is surjective.
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Proof. At first we will show that h(0) = 0. Since g(h(0)) = h(f(0)) = h(0), h(0) is a fixed point of g(x).
But g(x) being noninvertible can have 0 as its only fixed point and hence h(0) = 0.

Now let α ∈ Tn(f) ⊂ T (f), then g◦n(h(α)) = h(f◦n(α)) = h(0) = 0. This implies h(α) ∈ T (g).
This shows that h maps T (f) to T (g).

On the other hand, take any β ∈ Tm(g) ⊂ T (g) for some natural number m ∈ N and let α ∈ m̄K such
that h(α) = β. We need to show that α ∈ T (f). For, h(f◦m(α)) = g◦m(h(α)) = 0 implies f◦m(α) is a
root of h(x) which is also true for all n ≥ m. Since h(x) can have only finitely many roots in m̄K , we
must have

f◦n+ñ(α) = f◦n(α) for some n, ñ ∈ N.

This implies that f◦n(α) is a fixed point of f◦ñ(x). Since f◦ñ(x) is noninvertible, it has the only fixed
point 0 and hence f◦n(α) = 0. Thus α ∈ Tn(f) ⊂ T (f). Thus h is surjective.

Definition 3.6. We denote a stable p-adic dynamical system D by the package (D, f, u;F, fF , uF ;h),
where F is the background formal group of D with fF , uF noninvertible and invertible endomor-
phisms respectively, while u, f are invertible and noninvertible power series in D respectively,
along with an isogeny map h : fF → f as in Conjecture 3.1

Now we will prove the uniqueness of the formal group F in Conjecture 3.1.

Proposition 3.7. There exists a unique formal group F for each stable p-adic dynamical system
D in the Conjecture 3.1.

Proof. Let D be a stable p-adic dynamical system over OK consisting of a noninvertible series f and an
invertible series u. By Conjecture 3.1, there exists a formal group F over OK with endomorphisms fF ,
uF and an isogeny h from fF to f . We want to show that F is unique. If possible let there exists another
formal groupG over OK with endomorphisms fG, uG and an isogeny, say, h′ from fG to f . By Lemma 3.5,
we have the surjections h : T (fF ) → T (f) and h′ : T (fG) → T (f). Therefore for every α ∈ Preper(D)
there exists some β1 ∈ Tors(F ) and some β2 ∈ Tors(G) such that h(β1) = α = h′(β2). This shows that
both Tors(F ) and Tors(G) has infinitely many points in common and thus by the Theorem 3.3, we get
F = G.

We will now prove the main result of the paper.

Theorem 3.8. If (D1, f1, u1;F1, fF1 , uF1 ;h1) and (D2, f2, u2;F2, fF2 , uF2 ;h2) are two dynamical
systems over OK such that Preper(D1) ∩ Preper(D2) is infinite , then D1 = D2.

Proof. By Lemma 3.5, the isogenies hi defines surjective maps hi : T (fFi) → T (fi), i = 1, 2. Thus for
any βi ∈ T (fi) there exists an αi ∈ T (fFi) such that hi(αi) = βi. We note that Tors(F1) ∩ Tors(F2)
will have infinitely many points in common if Preper(D1) ∩ Preper(D2)=infinite, because the isogenies
hi maps T (fFi) into T (fi) by Lemma 3.5. But given that Preper(D1) ∩ Preper(D2) is infinite, and
hence Tors(F1) ∩ Tors(F2) is infinite. Therefore by Theorem 3.3, we conclude F1 = F2. Hence by the
uniqueness property of Proposition 3.7, we must have D1 = D2.

4. ALTERNATIVE PROOF OF THEOREM 3.8

In this section we give another proof of the main Theorem 3.8 which deserved to be included because
of its beauty. We are indebted to the ideas of [6]. At first, we note the following beautiful result.

Theorem 4.1. [6] Given a formal group F over OK with torsion points Tors(F ), there is a stable
endomorphism uF of F and σ ∈ Gal(K̄/K) such that

σ(z) = uF (z) for all z ∈ Tors(F ).

Now we prove a similar result for a stable p-adic dynamical system.
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Theorem 4.2. Let D be a stable p-adic dynamical system, then there exists a stable power series
w(x) ∈ D and an σ ∈ Gal(K̄/K) such that

σ(z) = w(z), for all z ∈ Preper(D). (4.1)

Proof. By the Conjecture 3.1, if f and u are two stable noninvertible and invertible power series in D,
then there exists a formal group F with coefficients in OK , two endomorphisms fF and uF of F , and a
nonzero power series h such that f ◦ h = h ◦ fF and u ◦ h = h ◦ uF , where h is the isogeny from fF to
f .

By Lemma 3.5, h maps T (fF ) into T (f), and hence for every β ∈ Tors(F ), we get h(β) ∈ Preper(D).
Moreover, by Lemma 3.5, we see h : T (fF ) → T (f) is also surjective. Thus for every α ∈ Preper(D)
there exists some β ∈ Tors(F ) such that h(β) = α. From the Theorem 3.3, we have

σ(z) = uF (z) for all z ∈ Tors(F ). (4.2)

Now it remains to show that we can replace uF by an element w ∈ D in equation (3.1) such that
w /∈ EndOK

(F ). Applying the isogeny h both sides of equation (3.1) and using the relation u ◦h = h ◦uF
from Conjecture 3.1, we get

σ(z) = uF (z) for all z ∈ Tors(F ),

⇒ h(σ(z)) = (h ◦ uF )(z) for all z ∈ Tors(F ),

⇒ σ(h(z)) = u(h(z) for all z ∈ Tors(F ), (∵ σ(h(z)) = h(σ(z)) (4.3)

⇒ σ(z̃) = u(z̃), for all z̃ = h(z) ∈ Preper(D). (4.4)

The relation (4.4) follows from the relation (3.2) because h maps T (fF ) into T (f), by Lemma 3.5. Finally
denoting w(x) := u(x) ∈ Preper(D), we are done.

The following example describes a situation when we get a relation like (4.1).

Example 4.3. Let f(x) ∈ x ·OK [[x]] be a noninvertible and irreducible polynomial of degree 5 with
set of zeros Θ := {r1, r2, r3, r4, r5} such that the extension K(Θ) := K(r1, r2, r3, r4, r5) is Galois
with Galois group say, Gal(K(Θ)/K). Any τ ∈ Gal(K(Θ)/K) permutes the elements of Θ. Define
some w(x) ∈ x ·OK [[x]] by w(x) = x+ s(x)f(x) for some s(x) ∈ OK [[x]]. We claim there exist some
τ ∈ Gal(K(Θ)/K) so that τ(ri) = w(ri) for all ri ∈ Θ.
Case I: Suppose w(x) fixes one of ri, then g(x)− x has root ri, and so f(x) | (w(x)− x). In this
case w(ri) = ri for every i = 1, 2, 3, 4, 5, which implies w(x) induces the identity permutation on
the set Θ, that is, for τ = Id ∈ Gal(K(Θ)/K) we have τ(z) = w(z) for all z ∈ Θ.
Case II: Suppose w(x) do not fix any of ri, i = 1, 2, 3, 4, 5. Since the splitting field of f(x) is of
degree 5, either w induces a permutation (r1r2r3r4r5) or a permutation (r1r2r3)(r4r5). If w induces
the permutation (r1r2r3)(r4r5), then w◦2 induces the permutation of type (r1r2r3)(r4)(r5). This
shows r4 and r5 are the fixed points and the permutation is not identity. So by the argument
of Case I, this can not happen. Hence w induces the 5-cycle (r1r2r3r4r5). Therefore by repeated
composition of w each r1, r2, r3, r4, r5 can be expressed as a polynomial in r1. In other words, the
splitting field is K(Θ) = K[r1] of degree 5. Now we claim that w induces the same permutation
as a power of τ . Without loss of generality, choose the notation such that τ = (r1r2r3r4r5). Now
we have the following subcases:
(i) if w(r1) = r2 then τ(w(r1)) = τ(r2) ⇒ w(τ(r1)) = r3 ⇒ w(r2) = r3. Applying τ on both sides of
w(r2) = r3, we get w(r3) = r4. Once again, applying τ on w(r3) = r4, we get w(r4) = r5. So indeed
w induces τ .
(ii) if w(r1) = r3, similarly, w induces τ2.
(iii) if w(r1) = r4, similarly, w induces τ3.
(iv) if w(r1) = r5, similarly, w induces τ4.
Finally, since there is a continuous surjection Gal(K̄/K) � Gal(K(Θ)/K), for the given τ there
exist a σ ∈ Gal(K̄/K) such that σ|K(Θ) = τ so that σ|K(Θ)(ri) = w(ri) for all ri ∈ Θ.

Lemma 4.4. Let D be stable p-adic dynamical system over OK and I(x) ∈ x · OK [[x]]. If I(z) ∈
Preper(D) for infinitely many z, then I ∈ D.
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Proof. Since h maps T (fF ) into T (f) by Lemma 3.5, Theorem 4.2 implies there is a σ ∈ Gal(K̄/K)
and a w ∈ D such that σ(z) = w(z) ∀ z ∈ Preper(D). If z ∈ Preper(D), then we have

σ(I(z)) = w(I(z)). (4.5)

Since Preper(D) is stable under the action of Gal(K̄/K), for all z ∈ Preper(D)

σ(I(z)) = I(σ(z)) = I(w(z))

⇒ σ(I(z)) = I(w(z)) (4.6)

From equations (4.5) and (3.3), we have w(I(z)) = I(w(z)) ∀ z ∈ Preper(D). But since Preper(D) is
infinite, by Zariski dense property, we get w ◦ I = I ◦ w. This shows I ∈ D.

Alternative proof of Theorem 3.8. By Theorem 4.2, there exists an element σ ∈ Gal(K̄/K) and a
stable power series w in D1 such that

σ(z) = w(z) ∀ z ∈ Preper(D1).

The set Z := Preper(D1) ∩ Preper(D2) is stable under the action of Gal(K̄/K), and hence for all z ∈ Z,
we have σ(z) ∈ Z. Therefore w(z) ∈ Z because σ(z) = w(z) ∀ z ∈ Preper(D1). Since Z ⊂ Preper(D2)
is infinite, by the Lemma 4.4, we get w ∈ D2. This forces to conclude D1 = D2.

We have produced the following two situations towards justification of the Theorem 3.8.

Example 4.5. We establish our argument rather contrapositively. We claim that there can
not be two “different” stable p-adic dynamical systems D1 and D2 over OK satisfying the
statement of Theorem 3.8. For, if D1 
= D2 satisfies Preper(D1) ∩ Preper(D2)=infinite. Then there
exists two noninvertible series f1(x), f2(x) respectively D1, D2 such that f1 ◦ f2 
= f2 ◦ f1. But
since Preper(D1) ∩ Preper(D2) is infinite, both f1 − f2 vanishes on the infinite set Preper(D1) ∩
Preper(D2). Thus by Zariski dense property, we have f1 = f2 and hence f1 ◦ f2 = f◦2

1 = f2 ◦ f1,
which is a contradiction. Thus our claim is established.

Example 4.6. Consider the noninvertible series fF (x) = 3x+ x3 over Z3, where Z3 is the ring
of integers of the 3-adic field Q3. It is an endomorphism of a 1-dimensional Lubin-Tate formal
group F over Z3. Our idea is to recoordinatize the endomorphism fF and to form its condensation
(

fF

(

x
1

p−1

))p−1
. Let us define a map h(x) = x2 so that h ◦ fF = f ◦ h, and hence h is an isogeny

from fF to f . Consider a stable p-adic dynamical system D1 over Z3 consisting of the noninvert-

ible series f(x) :=
(

fF

(

x
1
2

))2
= 9x+ 6x2 + x3 and the invertible series u(x) = 4x+ x2. It can be

checked that f ◦ u = u ◦ f . Here Θ1 := {0,+
√
−3,−

√
−3} ⊂ T (fF ) and Θ2 := {0,−3,−3} ⊂ T (f)

are sets of zeros of fF and f , respectively. We must note that according to construction (2.1), the
elements in T (fF ) or T (f) might not belong to Q3 but over some algebraic extension. Indeed, here√
−3 /∈ Q3. We only have to make sure that the isogeny h maps the zeros of fF into the zeros of f .

In fact, here the isogeny h takes Θ1 to Θ2 because h(0) = 0, h(
√
−3) = 3, h(−

√
−3) = 3. Clearly

f(x) can not be an endomorphism of the formal group F (not even any formal group) because it
has repeated root. So the choiceD1 is nontrivial with background formal groupF and compatible
with respect to the statement of the Theorem 3.8, in other word, the dynamical systems in our
theorem exists.

The more difficult is to find another stable p-adic dynamical system D2 satisfying same criteria
as D1. We earnestly hope that any example satisfying the statement to that of Theorem 3.3 would
lead us to find D2. However, we can create an easier D2 as follows.

For, let us consider another Lubin-Tate formal group G over Z3 with noninvertible en-
domorphism gG satisfying gG(x) ≡ 32x (mod degree 2) and gG(x) ≡ x3

2
(mod 3Z3). Such a

non-invertible endomorphism is gG(x) = 9x+ 30x3 + 27x5 + 9x7 + x9 which commutes with an
invertible endomorphism uG(x) = 5x+ 5x2 + x5 such that gG(G(x, y)) = G(gG(x), gG(y)) and
uG(G(x, y)) = G(uG(x), uG(y)). We have formed the condensation g(x) = 81x+ 540x2 + 1386x3 +
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1782x4 + 1287x5 + 546x6 + 135x7 + 18x8 + x9 of the endomorphism gG(x) by the isogeny h2(x) =
x2 such that h2 ◦ gG = g ◦ h2 and h2 maps the zeros of gG into the zeros of g. Further, g has double
roots −3 and hence it can not be an endomorphism of any formal group. We have created an
invertible series ũ(x) = 25x+ 50x2 + 35x3 + 10x4 + x5 such that g ◦ ũ = ũ ◦ g. Thus we construct
D2 as a stable p-adic dynamical system consisting of the invertible series ũ and the noninvertible
series g, whose background formal group is G.

Finally, since Preper(D1) and Preper(D2) are independent of choices of stable series in D1

and D2 respectively, we can take Preper(D1) = Preper(u) and Preper(D2) = T (g). But, u ∈ D1

commutes with g ∈ D2 and hence Preper(D1) ∩ Preper(D2) is infinite. On the other hand, fF
commutes with uG and hence Tors(F ) ∩ Tors(G) is infinite, which implies F = G. The uniqueness
property in Propsition 3.7 says D1 = D2, and this is indeed true by our construction.

Remark 4.7. The existence of the stable p-adic dynamical systems D1 and D2 in the above
Example 4.6 supports the Conjecture 3.1.

Remark 4.8. The Theorem 3.3 deals with the category of stable p-adic dynamical systems which
are endomorphisms of formal groups while the main Theorem 3.8 of this paper deals with and
classifies larger category of stable p-adic dynamical systems.
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