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Abstract—In this two-part paper, we introduce a p-adic analytic analogue of Backelin and Krem-
nizer’s construction of the quantum flag variety of a semisimple algebraic group, when q is not a root
of unity and |q− 1| < 1. We then define a category of λ-twisted D-modules on this analytic quantum
flag variety. We show that when λ is regular and dominant and when the characteristic of the residue
field does not divide the order of the Weyl group, the global section functor gives an equivalence
of categories between the coherent λ-twisted D-modules and the category of finitely generated

modules over ̂Uλ
q , where the latter is a completion of the ad-finite part of the quantum group with

central character corresponding to λ. Along the way, we also show that Banach comodules over the

Banach completion ̂Oq(B) of the quantum coordinate algebra of the Borel can be naturally identified
with certain topologically integrable modules.
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1. INTRODUCTION

1.1. Background and Motivation

Let L be a complete discrete valuation field of mixed characteristic (0, p), with discrete valuation ring
R, uniformizer π and residue field k. We fix an element q ∈ R× and assume that q ≡ 1 (mod π) and that
q is not a root of unity. Ardakov and Wadsley have recently started an ongoing program aiming to develop
p-adic analytic analogues of D-modules in order to understand p-adic representation theory, see [2–5].
Their aim is to use p-adic analytic localisation results analogous to the classical theorem of Beilinson-
Bernstein [9] in order to better understand locally analytic representations of p-adic groups, which were
introduced by Schneider and Teitelbaum in a series of papers including [43–45]. There have also been
other approaches at using localisation techniques to understand locally analytic representations, notably
by Huyghe, Patel, Schmidt and Strauch [25, 38, 39, 41].

Let us briefly recall one of Ardakov and Wadsley’s main results. Let G be a simply connected split
semisimple algebraic group over R with R-Lie algebra g and let X be its flag scheme G/B. In [3], they
defined a family ( ̂Un,L)n≥0 of Banach completions of the enveloping algebra U(gL) of the L-Lie algebra

gL := g⊗R L. Moreover, for a weight λ, they introduced a family (̂Dλ
n,L)n≥0 of sheaves of completed

deformed twisted crystalline differential operators on X. Their theorem then states:

Theorem 1.1 ([3]). For any n ≥ 0 and for λ regular and dominant, the global section functor gives

an equivalence of categories between coherent sheaves of ̂Dλ
n,L-modules and finitely generated

̂Un,L-modules with central character corresponding to λ.

∗The text was submitted by the author in English.
**E-mail: nicolas.dupre@uni-due.de
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Our aim is to prove an analogue of the above Theorem when working with quantum groups, where
for simplicity we only treat the case n = 0 in this paper. The study of quantum groups in a p-adic
analytic setting was first proposed by Soibelman in [48], where he introduced quantum deformations
of the algebras of locally analytic functions on p-adic Lie groups and of the corresponding distribution
algebra. His ideas were also heavily influenced by the aforementioned work of Schneider and Teitelbaum.
This paper of Soibelman then inspired a short note of Lyubinin [35] and also a different approach for GL2

in [51]. Recently, there has also been a new approach at constructing p-adic analytic quantum groups
using Nichols algebra in [47]. However, besides these, not much work has been done in this area. In
[18], we constructed quantum analogues of the Arens-Michael envelope of gL and of the algebra of rigid
analytic functions on the analytification of GL, and proved that these were Fréchet-Stein algebras. We
also constructed several Banach completions of those algebras, and some of these objects feature in this
paper. Our hope is that more work will be done to pursue these efforts. The theory of quantum groups has
strong links with the representation theory of algebraic groups in positive characteristic. We expect that
a successful theory of p-adic analytic quantum groups would have similar links with the representation
theory of p-adic groups, and we view our work as a first effort towards developing such a theory.

Recently, there has also been some work hinting at noncommutative analogues of rigid analytic
geometry in [10]. In this light, we think that defining noncommutative analogues of analytic flag varieties
as we do in this paper is interesting in its own right. It would be interesting to compare our constructions
with their general framework.

1.2. Quantum Flag Varieties and Quantum D-Modules

The proof of Theorem 1.1 relied on the classical Beilinson-Bernstein theorem, and similarly we
will use a quantum group analogue of it due to Backelin and Kremnizer [8]1. We briefly recall their
constructions. Let Uq be the quantized enveloping algebra of gL. Let Oq be the quantized coordinate
algebra of GL, and let Oq(B) be the quotient Hopf algebra of Oq corresponding to a Borel subgroup of
GL. Backelin and Kremnizer then define the quantum flag variety to be the category MBq (Gq) of Oq(B)-
equivariant Oq-modules. Specifically, an object of this category is an Oq-module equipped with a right
Oq(B)-comodule structure such that Oq-action map is a comodule homomorphism. In this language,
the global section functor Γ is the functor of taking Oq(B)-coinvariants. They then define the ring of
quantum differential operators on GL to be the smash product algebra Dq = Oq#Uq, and a λ-twisted
D-module becomes an object M of the quantum flag variety equipped with an additional Dq-action such
that the Oq(B)-coaction and the action of the quantum Borel subalgebra U≥0

q ⊂ Uq ⊂ Dq ‘differ by λ’
(here λ is an element of the character group TP of the weight lattice). There is also a distinguished object
Dλ

q which represents global sections in the category of λ-twisted D-modules. The precise definitions are
made in Section 3. Their main theorem is that, when λ is regular and dominant, the global section
functor gives an equivalence of categories between λ-twisted D-modules and modules over Γ(Dλ

q ).

Nothing stops us from making completely analogous definitions using certain Banach completions
̂Oq , ̂Oq(B) and ̂Dq of these algebras (see section 1.3 below). That allows us to define what we call

the analytic quantum flag variety as the category ̂MBq (Gq) of ̂Oq(B)-equivariant Banach ̂Oq-modules,

meaning that the objects of this category are Banach ̂Oq-modules which are also Banach ̂Oq(B)-

comodules such that the ̂Oq-action map is a comodule homomorphism. We note that this category is
not abelian. Instead it fits into Schneiders’ framework of quasi-abelian categories [46]. In particular it
has a derived category and, under suitable conditions, we can right derive left exact functors. The global

section functor Γ here is also the functor of taking ̂Oq(B)-coinvariants, and we use this framework
of quasi-abelian categories to make sense of the cohomology of Γ. We can then define λ-twisted D-

modules to be objects M in ̂MBq (Gq) which are equipped with an additional ̂Dq-action such that

the ̂Oq(B)-coaction and the action of ̂

U≥0
q differ by λ. There is also a distinguished object ̂Dλ

q which
represents global sections. All the precise definitions will be made in the second part of the paper [19].

1We note that there exists a different approach to quantum D-modules and Beilinson-Bernstein by Tanisaki [49].
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1.3. General Strategy

Let us briefly outline the argument used by Ardakov and Wadsley in [3] to prove that one gets an
equivalence of categories in Theorem 1.1. We will employ essentially the same strategy.

1. They first work with integral versions of classical algebraic D-modules and show that large
enough twists of coherent D-modules are acyclic and generated by their global sections. Using

this, they then show that the category of coherent ̂Dλ
n,L-modules has a family of generators

obtained from taking certain twists of ̂Dλ
n,L. In particular those are π-adic completions of

algebraic D-modules.

2. The first step essentially reduces the problem to working with those coherent ̂Dλ
n,L-modules

which can be ‘uncompleted’. They then show that these are generated by their global sections.
This uses the classical Beilinson-Bernstein theorem.

3. Finally, they show that completions of acyclic coherent D-modules are also acyclic. This uses
technical facts about the cohomology of a projective limit of sheaves.

4. Once you know that coherent ̂Dλ
n,L-modules are acyclic and generated by their global sections,

the result follows from standard general facts.

In order to adapt this, we are first required to work with integral forms of quantum groups and the
corresponding integral quantum flag variety, see sections 2.2, 2.3 & 3.3. Specifically, there is an integral
form Aq of Oq which was first defined by Andersen, Polo and Wen [1]. By taking Bq to be its image
in the quotient Hopf algebra Oq(B), we are then able to define the category CR of Bq-equivariant Aq-
modules. We can also define an integral form D of the ring Dq, and use it to define λ-twisted D-modules
in CR (here λ is an element of TR

P , the character group over R of the weight lattice). These integral

forms allow us to define the Banach completions we mentioned above by simply setting ̂Oq := ̂Aq ⊗R L,
̂Oq(B) := ̂Bq ⊗R L and ̂Dq := ̂D⊗R L respectively.

Unlike in the first step above, we are not able to show that large enough twists of coherent D-modules
are acyclic and generated by global sections, but we manage to show it for those which are annihilated
by π. This turns out to be enough for the first two steps to work. We then have to develop the correct

tools from noncommutative algebraic geometry in the category ̂MBq (Gq) in order for the ideas used in
the third step to even make sense.

1.4. Čech Complexes

To have a version of step 3 above, we need to work with the right sort of complexes, computing the
cohomology of global sections, in order to apply the argument on the cohomology of a projective limit.
To do so, it is convenient to work with proj categories. Indeed, the classical flag variety is isomorphic
to Proj(O(G/N)), and Backelin-Kremnizer showed that MBq (Gq) is equivalent to Proj(Oq(G/N)) in
the sense of Artin-Zhang [6]. We show that the integral quantum flag variety enjoys the same property.
To obtain this result, one problem we ran into is that, while it is well-known that the algebra Oq is
Noetherian, it isn’t known in general whether its integral form Aq is also Noetherian (in type A, it is
known to be true from Polo’s appendix in [1]). That makes it non-trivial to define the objects which
should play the role of coherent modules. Thankfully, we were able to prove that the integral form of
Oq(G/N) is Noetherian, and using this we showed that the Noetherian objects in CR are precisely those
which are finitely generated over Aq, see Theorem 3.22. Once this obstacle is cleared, the proof that we
have a noncommutative projective scheme is essentially identical to the one in [8].

This result is essential because it allows us to define our promised complex which computes the
cohomology of global sections for these integral forms. We think of this as a Čech-like complex. Using
the Proj description of CR, one can in a suitable sense cover the category with analogues of the Weyl
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group translates of the big cell, see sections 3.9 & 3.10. The complexes are then obtained using general
constructions from Rosenberg [40]. In [19], we will see that after taking π-adic completions, the objects
of CR are then naturally sent to another intermediate category, which we will unoriginally call ̂CR

and which is in some sense an integral form of ̂MBq (Gq). We will use the Weyl group localisations
mentioned above to write down an analogue of our Čech-like complexes in this new integral category.

After extending scalars, this will give us a Čech-like complex in the category ̂MBq (Gq). This is the right
object in order to apply the arguments from step 3.

1.5. Main Results

At several stages of this paper, we work with Banach comodules over ̂Oq(B). We first give a more
explicit description of these objects. We begin by defining what we call topologically integrable modules

over a certain completion ̂U res(b) of U≥0
q , see section 4.3. Roughly, these are modules where the torus

acts topologically semisimply and the positive part acts locally topologically nilpotently. The definition
is partly inspired from work of Féaux de Lacroix [20], who developed a notion of semisimplicity for
topological Fréchet modules (note that we already used the notion of topological semisimplicity in our
previous work [18, Section 5]). Our first main result is then:

Theorem A. The category Comod(̂Oq(B)) of Banach right ̂Oq(B)-comodules is canonically

equivalent to the category of topologically integrable ̂U res(b)L-modules.

This result allows for a more intuitive understanding of what these comodules are, and also draws
further parallels between our constructions and standard notions that appear in p-adic representation
theory. We note that Banach comodules over a Banach coalgebra have also been studied in a more
general, categorical setting in [31].

Our next two results will be proved in [19] but we state them already. The first one states that the

cohomology of Γ in ̂MBq (Gq) can be computed using the Čech-like complexes described above:

Theorem B. For any M ∈ ̂MBq (Gq), the standard complex Č(M) computes RΓ(M).

As a consequence of this, we will obtain that Γ has finite cohomological dimension (something
which wasn’t obvious beforehand!). Both of these are essential in order to obtain a Beilinson-Bernstein
theorem, but we also think of them as interesting results in their own right. We view our analytic
quantum flag variety as being in some sense a noncommutative analytic space, and these results make
it feasible to work with it.

Finally, with all the above at hand, we are able to run the strategy from section 1.3 to obtain our
version of Beilinson-Bernstein localisation. Before stating it, we need to introduce a few more notions.

We call a D-module in ̂MBq (Gq) coherent if it is finitely generated over ̂Dq. Moreover, Uq contains a
subalgebra U fin

q , called its finite part, which is the subalgebra of elements on which the adjoint action of
Uq is locally finite. This has an integral form U fin ⊆ U which contains the centre of U , and given λ we

may form a quotient Uλ = U fin ⊗Z(U) Rλ. Completing, we obtain an algebra ̂Uλ
q = ̂Uλ ⊗R L which is a

Noetherian Banach algebra. Our Beilinson-Bernstein localisation then states:

Theorem C. Suppose λ ∈ T k
P is regular and dominant, and assume that p is a very good prime

for the root system of g. Then the functor Γ of global sections and the localisation functor Locλ
are quasi-inverse equivalences of categories between the category coh( ̂Dλ

Bq
(Gq)) of λ-twisted

coherent ̂Dq-modules on the analytic quantum flag variety and the category of finitely generated

modules over D := Γ(̂Dλ
q ). Moreover, there is a surjective algebra homomorphism ̂Uλ

q → D which
is an isomorphism whenever p does not divide the order of the Weyl group.
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See [19] for the definitions of the localisation functor Locλ and for the definition of the set T k
P , and see

section 3.15 for the meaning of very good primes. We simply note here that the condition that p does not
divide |W | is automatically satisfied if p is larger than the Coxeter number.

Thus, we may think of the above Theorem as saying that the category ̂MBq (Gq) is D-affine, and

moreover we can identify this category with the category of finitely generated ̂Uλ
q -modules under some

reasonable condition on p. We note that in order to just get D-affinity without any statement on global
sections, the condition on p can be weakened to say that it is a good prime, see [19] for the details.

1.6. Computation of Global Sections

We were made aware that there may be gaps in the proof of the computation of global sections in [8,
Proposition 4.8], see [50, Remark 5.4]. We simply point out here that these potential issues do not affect
our work as we never use their computation of global sections.

Firstly, in our proof of Theorem C, we will only use the D-affinity of quantum flag variety in order to
obtain the corresponding result for Banach completions. And indeed, the equivalence of categories given
by the global section functor from the category of λ-twisted D-modules on the quantum flag variety to
the category of modules over the global sections of Dλ

q in [8] does not require the full computation of
global sections. It does rely on a quantum analogue of the Beilinson-Bernstein ‘key lemma’, but that only
needs for there to be a map Uλ

q → Γ(Dλ
q ) in order to interpret global sections of D-modules as modules

over U fin
q . That way one obtains a splitting of some particular maps at the level of global sections which

can be used to prove that every D-module is acyclic and generated by its global sections, see the proof
of [8, Theorem 4.12]. But we do not need to know that Uλ

q → Γ(Dλ
q ) is an isomorphism for that part of

the Beilinson-Bernstein theorem to hold (this is also true classically).

Secondly, our computation of global sections via the homomorphism ̂Uλ
q → D in [19] does not use the

computation of global sections at the uncompleted level. Instead, our arguments go via reduction modulo
π, where q becomes 1 and the situation becomes non-quantum. Therefore, what we crucially need is
instead the computation of global sections of the sheaves of twisted crystalline differential operators on
the flag variety in positive characteristic, obtained in [12, Proposition 3.4.1].

1.7. Conventions and Notation

Unless explicitly stated otherwise, the term “module” will be used to mean left module, and
Noetherian rings are both left and right Noetherian. Also, all of our filtrations on modules or algebras
will be positive and exhaustive unless specified otherwise. Following [3, Def 2.7], an R-submodule W of
an L-vector space will be called a lattice if V = LW and W is π-adically separated, i.e

⋂

n≥0 π
nW = 0.

Given an R-module M , we denote by ̂M its π-adic completion and write ̂ML := ̂M ⊗R L.
Given an L-normed vector space X, we denote by X◦ its unit ball. Given a Banach algebra A, a

Banach A-module M will always be assumed to have action map of norm at most 1, i.e M◦ will always
be assumed to be an A◦-module.

In a Hopf algebra H , we use Sweedler’s notation for the comultiplication, i.e we write Δ(h) =
∑

h1 ⊗ h2. All our comodules will be right comodules unless stated otherwise.
Finally, while we talked about R-group schemes and their corresponding Lie algebras in this

introduction, quantum groups are defined purely in terms of the root system and are traditionally defined
starting from complex Lie algebras and algebraic groups, regardless of what the base field is. This is
the convention we follow as well. Hence we let g be a complex semisimple Lie algebra. We fix a Cartan
subalgebra h ⊆ g contained in a Borel subalgebra. We choose a positive root system and we denote the
simple roots by α1, . . . , αn. Let C = (aij) denote the Cartan matrix. We let G be the simply connected
semisimple algebraic group corresponding to g, and we let B be the Borel subgroup corresponding to the
positive root system, and let N ⊂ B be its unipotent radical. Let b = Lie(B) and = Lie(N). Let W be the
Weyl group of g, and let 〈 , 〉 denote the standard normalised W -invariant bilinear form on h∗. Let P ⊂ h∗

be the weight lattice and Q ⊂ P be the root lattice. Let TP denote the abelian group Hom
Z
(P,L×). We
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will use the additive notation for this group. Let d be the smallest natural number such that 〈μ, P 〉 ⊂ 1
dZ

for all μ ∈ P . Let di =
〈αi,αi〉

2 ∈ {1, 2, 3} and write qi := qdi .

We make the following two assumptions. First, we assume that q
1
d exists in R and that q

1
d ≡ 1

(mod π). Then for each λ ∈ P , we have an associated element in TP sending a given μ ∈ P to q〈λ,μ〉,
which we will also denote by λ. Secondly, we assume that p > 2 and, if g has a component of type G2,
we furthermore restrict to p > 3. This ensures that p does not divide any non-zero entry of the Cartan
matrix.

All the above algebraic groups and Lie algebras have k-forms, and we write Gk, gk, . . . etc to denote
them.

2. PRELIMINARIES ON QUANTUM GROUPS AND THEIR INTEGRAL FORMS

2.1. Quantized Enveloping Algebra

We begin by recalling basic facts about quantized enveloping algebras (see eg [15, Chapter I.6] for
more details). For n ∈ Z and t ∈ L, we write [n]t := tn−t−n

t−t−1 . We then set the quantum factorial numbers
to be given by [0]t! = 1 and [n]t! := [n]t[n− 1]t · · · [1]t for n ≥ 1. Then we set

[

n

i

]

t

:=
[n]t!

[i]t![n− i]t!

when n ≥ i ≥ 1.

Definition 2.1. The simply connected quantized enveloping algebra Uq(g) is defined to be the L-
algebra with generators Eα1 , . . . , Eαn , Fα1 , . . . , Fαn , Kλ, λ ∈ P , satisfying the following relations:

KλKμ = Kλ+μ, K0 = 1,

KλEαiK−λ = q〈λ,αi〉Eαi , KλFαiK−λ = q−〈λ,αi〉Fαi ,

[Eαi , Fαj ] = δij
Kαi −K−αi

qi − q−1
i

,

1−aij
∑

l=0

(−1)l
[

1− aij
l

]

qi

E
1−aij−l
αi EαjE

l
αi

= 0 (i �= j),

1−aij
∑

l=0

(−1)l
[

1− aij
l

]

qi

F
1−aij−l
αi FαjF

l
αi

= 0 (i �= j).

We will also abbreviate Uq(g) to Uq when no confusion can arise as to the choice of Lie algebra
g. We can define Borel and nilpotent subalgebras, namely U≥0

q is the subalgebra generated by all the
K ′s and the E′s, and U+

q is the subalgebra generated by all the E′s. Similarly, U−
q is defined to be the

subalgebra generated by all the F ′s. There is also a Cartan subalgebra given by U0
q := L[Kλ : λ ∈ P ],

which is isomorphic to the group algebra LP . There is an algebra automorphism ω of Uq defined by
ω(Eαi) = Fαi , ω(Fαi) = Eαi and ω(Kλ) = K−λ.

Recall that Uq is a Hopf algebra with operations given by

Δ(Kλ) = Kλ ⊗Kλ ε(Kλ) = 1 S(Kλ) = K−λ

Δ(Eαi) = Eαi ⊗ 1 +Kαi ⊗ Eαi ε(Eαi) = 0 S(Eαi) = −K−αiEαi

Δ(Fαi) = Fαi ⊗K−αi + 1⊗ Fαi ε(Fαi) = 0 S(Fαi) = −FαiKαi

for i = 1, . . . , n and all λ ∈ P . Then U≥0
q is a sub-Hopf algebra of Uq.

Also recall that there is a triangular decomposition

Uq
∼= U−

q ⊗L U0
q ⊗L U+

q
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and that U±
q have bases consisting of PBW type monomials. More specifically, if β1, . . . , βN are the

positive roots, ordered in a particular way, then there are elements Eβ1 , . . . , EβN
of U+

q such that the
set of all ordered monomials Em1

β1
· · ·EmN

βN
forms a basis for U+

q . We now let Fβj
:= ω(Eβj

) and the
corresponding monomials in the F ’s will form a basis of U−

q . The triangular decomposition immediately
gives a PBW type basis for Uq, namely it consists of monomials of the form

Mr,s,λ := F rKλE
s

where r, s ∈ Z

N
≥0. We recall that the height of such a monomial is defined to be

ht(Mr,s,λ) :=

N
∑

j=1

(rj + sj) ht(βj)

where ht(β) :=
∑n

i=1 ai for a positive root β =
∑

i aiαi. This gives rise to a positive filtration on Uq

defined by

FiUq := L-span{Mr,s,λ : ht(Mr,s,λ) ≤ i}.
This filtration can actually be extended to a multifiltration as follows. The associated graded algebra
U (1) = grUq can be seen to have the same presentation as Uq, with the exception that now all the E’s
commute with all the F ’s. Moreover it is isomorphic to Uq as a vector space. We can then make U (1) into
a Z

2N
≥0-filtered algebra, by assigning to each monomial Mr,s,λ the degree (r1, . . . , rN , s1, . . . , sN ) where

we impose the reverse lexicographic orderin ordering on Z

2N
≥0 . Denote the corresponding associated

graded algebra of U (1) by U (2N+1). This algebra is known to be q-commutative over L (see [17,
Proposition 10.1]). Here we say that an L-algebra A is q-commutative over a subalgebra B if it is
finitely generated over B, say by x1, . . . , xm, such that the xi normalise B and for all 1 ≤ i ≤ j ≤ m
there are nij ∈ 1

dZ such that xixj = qnijxjxi. We regord here a noncommutative analogue of Hilbert’s
basis theorem, which follows directly from [36, Theorem 1.2.10] and induction.

Lemma 2.2. If A is q-commutative over B and B is Noetherian, then so is A.

Hence we see that Uq is a Noetherian L-algebra.

2.2. Integral Forms of Uq

We now recall details about two integral forms that we will work with. First recall the notation:

E(s)
αi

:=
Es

αi

[s]qi !
, F (s)

αi
:=

F s
αi

[s]qi !
,

for any integer s ≥ 0. Then Lusztig’s integral formU res is defined to be the R-subalgebra of Uq generated

by Kλ (λ ∈ P ) and allE(r)
αi and F

(r)
αi for r ≥ 0 and 1 ≤ i ≤ n. Recall that for 1 ≤ i ≤ n, c, t ∈ Zwith t ≥ 0

we define
[

Kαi ; c

t

]

=

t
∏

j=1

Kαiq
c−j+1
i −K−1

αi
q
−(c−j+1)
i

qji − q−j
i

.

Then by [26, 11.1, p.238] we have that all such
[Kαi ;c

t

]

lie in U res. Also note that by [34, Theorem 6.7]
U res has a triangular decomposition and a PBW type basis, so that U res is free over R.

There is an R-subalgebra (U res)0 generated by all Kλ and all
[Kαi ;c

t

]

. We let U res(b) denote the R-

subalgebra of U res generated by (U res)0 and all E(r)
αi for r ≥ 0 and 1 ≤ i ≤ n. By [1, Lemma 1.1], for each

λ ∈ P there is a unique character ψλ : (U res)0 → R defined by

ψλ(Kμ) = q〈λ,μ〉 and ψλ

([

Kαi ; c

t

])

=

[

〈λ, α∨
i 〉+ c

t

]

qi

. (2.1)
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We will say these characters are of type 1.

Given a U res-module M and a character ψ as above of (U res)0, we write Mψ for the elements m ∈ M

such that um = ψ(u)m for all u ∈ (U res)0. We now recall the notion of integrable module from [1, 1.6]:

Definition 2.3. A U res-module M is said to be integrable of type 1 if it is a sum of weight spaces
which all correspond to a character of type 1 as described above and if in addition, for every
m ∈ M , there is r >> 0 such that m is killed by E(r) and F (r). Similarly we define a U res(b)-
module to be integrable of type 1 if it is the sum of its weight spaces corresponding to type 1

characters and for every m ∈ M , E(r)m = 0 for r >> 0.

Since all our characters will always be of type 1 we will often just say ‘integrable’ to mean ‘integrable
of type 1’.

The second integral form we will need is the De Concini-Kac integral form U . This is defined to
be the R-subalgebra of Uq generated by Eαi , Fαi(1 ≤ i ≤ n),Kλ(λ ∈ P ). This algebra has a similar
presentation to Uq. If we write [Kαi ;m] :=

[Kαi ;m
1

]

for m ∈ Z and 1 ≤ i ≤ n, then U is generated as an
R-algebra by Eαi , Fαi , [Kαi ; 0](1 ≤ i ≤ n),Kλ(λ ∈ P ) with the same relations as Uq except that the
commutator relation between Eαi and Fαj is replaced by the two relations

[Eαi , Fαj ] = δij [Kαi ; 0],

(qi − q−1
i )[Kαi ; 0] = Kαi −K−1

αi
.

Note that U is a Hopf R-algebra. For example we have the identity

Δ([Kαi ; 0]) = [Kαi ; 0]⊗Kαi +K−1
αi

⊗ [Kαi ; 0].

Note that we also have the equality

[Kαi ;m] = [Kαi ; 0]q
−m
i +Kαi [m]qi

for all m ∈ Z, and so U contains all [Kαi ;m].

We showed in [18, Section 4] that U has a triangular decomposition U ∼= U− ⊗R U0 ⊗R U+ where
U± is the R-subalgebra generated by the Eαi ’s, respectively Fαi ’s, and U0 is the R-subalgebra
generated by [Kαi ; 0](1 ≤ i ≤ n),Kλ(λ ∈ P ). Moreover [Kαi ;m] ∈ U0 for all m ∈ Z by the above. We
also showed that U± has a PBW basis, more specifically that the PBW monomials which form an L-
basis of U±

q are also an R-basis of U±.

Note that both of these integral forms are π-adically separated since U ⊂ U res and U res is free over
R. We finish by describing the relationship between the reduction modulo π of U and U res and classical
objects. We write Uk := U/πU and U res

k = U res/πU res.

Proposition 2.4. 1. ([16, Proposition 9.2.3]) The quotient k-algebra Uk/(K�1 − 1, . . . ,K�n − 1)
is isomorphic to U(gk).

2. ([34, 8.15]) The quotient U res
k /(K�1 − 1, . . . ,K�n − 1) is isomorphic to the hyperalgebra of

the group Gk .

2.3. Quantized Coordinate Rings and Their Integral Forms

We now recall the construction of the quantized coordinate algebra Oq . For any module M over an
L-Hopf algebra H , and for any f ∈ H∗ and v ∈ M , the matrix coefficient cMf,v ∈ H∗ is defined by

cMf,v(x) := f(xv) for x ∈ H.

Also recall from [26, Theorem 5.10] that for each λ ∈ P there is a unique irreducible representation of
type 1, V (λ), of Uq and that these form a complete list of such representations. The quantized coordinate
ring Oq is then defined to be the L-subalgebra of the Hopf dual U◦

q generated by the matrix coefficients
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of the modules V (λ) for λ ∈ P+. In fact, from [15, I.7-I.8], it is a finitely generated, Noetherian L-
algebra, and it is a sub-Hopf algebra of U◦

q . There is also a quantized coordinate algebra of the Borel
Oq(B). Since U≥0

q is a Hopf-subalgebra ofUq, the restriction maps yields a Hopf algebra homomorphism
Oq → (U≥0

q )◦ and we let Oq(B) denote its image.

We now recall how the integral forms of Oq and Oq(B) are defined. Let U res be Lusztig’s integral
form defined in above. Let J denote the set of ideals I in U res such that U res/I is a finite free R-module.
We now consider the set I consisting of ideals I ∈ J such that I ∩ (U res)0 contains a finite intersection
of ideals ker(ψλ). Note that for any R-module M , we may view HomR(U

res,M) as a U res-module via
(x · f)(y) = f(yx) for all x, y ∈ U res. In [1, Definition 1.10], a so-called induction functor from the trivial
subalgebra was defined. It takes any R-module M to the subrepresentation H(M) of HomR(U

res,M)

given by all elements in the sum the weight spaces in HomR(U
res,M) which are killed by all E(r)

αi and

F
(r)
αi for r >> 0. In other words H(M) is the largest integrable subrepresentation of HomR(U

res,M).
We then define the integral form of the quantized coordinate algebra to be Aq := H(R). By [1, Corollary
1.30], we have f ∈ H(M) if and only if f kills an ideal I ∈ I . In particular,

Aq = {f ∈ (U res)∗ : f |I = 0 for some I ∈ I }.

So Aq is a sub-Hopf algebra of (U res)◦ (see Definition A.1) and it may be viewed as the algebra of matrix
coefficients of finite free U res-modules of type 1. In particular the comultiplication on it makes it into a
(U res)◦-comodule and hence we may view it as a U res-module by Proposition A.4 (and that agrees with
the definition of the U res-action on H(R)). Moreover by [1, Theorem 1.33], Aq is free over R.

Next, we look at the Borel subalgebraU res(b) ofU res. Let I be the set of f ∈ Aq such that f |U res(b) = 0.
The Hopf algebra homomorphism Aq → U res(b)◦ given by restriction has kernel precisely I and so we
see that I is a Hopf ideal and that Bq := Aq/I ⊆ U res(b)◦ is a Hopf algebra. Similarly to the above,
[1] defined an induction functor from the trivial subalgebra to U res(b) in a completely analogous way:
if M is an R-module, we define H(M) to be the largest integrable submodule of HomR(U

res(b),M).
By [1, Proposition 2.7(ii) and (iii)] we have that Bq = H(R) and so it is integrable, and it is free as an
R-module.

2.4. The Categories of Comodules

We now recall how the category of Aq-comodules (respectively Bq-comodules) can be identified with
integrable U res-modules (respectively U res(b)-modules). We expect this to be well-known but we did not
find a suitable reference for it, so we provide proofs. To that end, we use general results about R-Hopf
algebras which we’ve written in the appendix.

Since Aq = H(R), it is integrable with the U res-module structure described above. Note that for any
R-module M there is a natural map M ⊗R Aq → H(M) ⊆ HomR(U

res,M) which is the composite of
the map M ⊗R Aq → M ⊗R (U res)∗, coming from the inclusion Aq ⊆ (U res)∗, and the map θM from
Corollary A.6. By abuse of notation we also denote this map by θM . For the Borel, we have again a map
θM : M ⊗R Bq → H(M) for any R-module M . Moreover we have again that f ∈ H(M) if and only if
f kills an ideal I of U res(b) such that U res(b)/I is finitely generated and I ∩ (U res)0 contains a finite
intersection of ideals ker(ψλ).

The next result immediately follows from the above:

Lemma 2.5. If M is torsion-free as an R-module then HomR(U
res,M)/H(M) and

HomR(U
res(b),M)/H(M) are torsion-free. In particular (U res)∗/Aq and U res(b)∗/Bq are torsion

free.

Proof. If πnf ∈ HomR(U
res,M) kills an ideal in I , then so does f as M is torsion-free. An analogous

argument applies to H(M). The last part follows by putting M = R.
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Since Aq and Bq are sub Hopf algebras of (U res)◦ and U res(b)◦ respectively, it follows that any
comodule over Aq (respectively Bq) is a comodule over (U res)◦ (respectively U res(b)◦). Thus we may
view comodules over Aq and Bq as locally finite modules over U res and U res(b) respectively. This defines
functors from the categories of Aq-comodules and Bq-comodules to the categories of locally finite U res-
modules and U res(b)-modules respectively.

Remark 2.6. The following observations will be useful in the next proof and also at several points
later on. Suppose that M is a Bq-comodule, with coaction ρM : M → M ⊗R Bq. Note that by the
axioms of comodules, the composite

(1⊗ ε) ◦ ρM = 1M

so that the map ρ splits and M is a direct summand of M ⊗R Bq as an R-module. Moreover, the
diagram

M M ⊗R Bq

M ⊗R Bq M ⊗R Bq ⊗R Bq

ρM

ρM id⊗Δ

ρM⊗id

commutes. But note that the map 1⊗Δ makes M ⊗R Bq into a Bq-comodule, so that the above
diagram and the splitting says that M identifies via ρM with a subcomodule of M ⊗R Bq where
the latter is given the comodule structure 1⊗Δ. Of course all of the above applies more generally
to a comodule over an arbitrary coalgebra.

Theorem 2.7. The category of Aq-comodules, respectively Bq-comodules, is isomorphic to the
category of integrable U res-modules, respectively U res(b)-modules.

Proof. We first show that the above functors are fully faithful. This is the exact same argument as in
Proposition A.7, using Lemma A.5 with A = U res, B = R and C = Aq for Aq-comodules and with
A = U res(b), B = R and C = Bq for Bq-comodules. For these to apply we need to show that (U res)∗/Aq

and U res(b)∗/Bq are torsion-free, but this is just the previous Lemma.

Next, the key fact we use is [1, Theorem 1.31(iii)]: for any R-module M the natural map θM : M ⊗R

Aq → HomR(U
res,M) is an isomorphism onto H(M). Now suppose that M is an integrable U res-

module. Then for allm ∈ M , the action mapϕM (m) : x �→ x ·m belongs toH(M). So by the above facts
the maps ϕM (m) all belong to the image of θM . By Lemma A.9 with C = Aq we conclude that M must
be an Aq-comodule. An analogous argument shows that integrable U res(b)-modules are Bq-comodules
using [1, Proposition 2.7(iv)], which states that the natural map θM : M ⊗R Bq → HomR(U

res(b),M)
is an isomorphism onto H(M).

Thus since the functors are fully faithful we are now reduced to showing that any Aq-comodule
(respectively Bq-comodule) is integrable when viewed as a U res-module (respectively U res(b)-module).
We prove it for Bq, the proof for Aq being entirely analogous. Suppose M is a Bq-comodule. Then by the
above remark the map ρ : M → M ⊗R Bq is an injective comodule homomorphism where the right hand
side is given the coaction map 1⊗Δ. In other words, in the language of U res(b)-modules, this is saying
the action on M ⊗R Bq is the tensor product of the trivial action on M with the usual action on Bq, i.e
for u ∈ U res(b) we have u(m⊗ f) = m⊗ uf for all m ∈ M and f ∈ Bq. Thus, since Bq is integrable, so
is M ⊗R Bq with that structure. But now the result follows since integrable modules are closed under
taking submodules by [1, Note added in proof p.59].
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2.5. Some Noetherianity Conditions

We record here some conditions under which we can lift the Noetherian property from the reduction
mod π of a ring to the ring itself. These will be useful later in the paper.

Proposition 2.8. 1. Suppose that A is an R-algebra such that A/πA is Noetherian. Then the
π-adic completion ̂A is also Noetherian.

2. Let n ≥ 1 and suppose that we have Z

n-graded R-algebra R = ⊕m∈ZnRm such that each
graded piece Rm is finitely generated over R. If R/πR is Noetherian, then R is graded
Noetherian.

Proof. (i) is just [11, Lemma 3.2.2]. For (ii) we use the same argument as in [33, Proposition II.2.3].
Specifically, consider the π-adic filtration onR. The associated graded ring is a quotient of the polynomial
algebra (R/πR)[t] (where t corresponds to the symbol of π), and so is Noetherian. We will consider
several graded R-submodules of R, equipped with the subspace filtration of the π-adic filtration.

Suppose we are given two graded ideals I ⊂ J with I �= J . Then we have gr I ⊂ grJ and it will
suffice to show that gr I �= gr J . Pick m ∈ Z

n such that Im �= Jm, and assume that gr Im = gr Jm.
Since Im and Jm are finitely generated over R, we will get a contradiction by Nakayama if we show that
Jm = Im + πJm.

By the Artin-Rees Lemma ([7, Theorem 10.11]) applied to Jm viewed as a submodule of Rm, the
subspace filtration of the π-adic filtration on Rm and the π-adic filtration on Jm have finite difference. So
there exists a d ∈ Z<0 such that for all j ∈ Jm with degree d(j) < d in the subspace filtration, j ∈ πJm.
Now let j ∈ Jm be arbitrary. We show by induction on d(j) that j ∈ Im + πJm, the cases d(j) < d being
already dealt with. Since gr Im = grJm, there exists i ∈ Im such that d(i− j) < d(j). But by induction
hypothesis this implies i− j ∈ Im + πJm, and hence we get j = i− (i− j) ∈ Im + πJm as required.

Corollary 2.9. The ring ̂Aq is Noetherian.

Proof. Since q ≡ 1 (mod π), the ring Aq/πAq coincides with the ring of regular functions on the group
Gk and hence is Noetherian. Therefore the result follows from part (i) of the Proposition.

3. THE QUANTUM FLAG VARIETY AND ITS INTEGRAL FORM

In this Section we review definitions and results from [8] and then adapt them to integral forms.

3.1. The Category MBq (Gq)

We first begin by recalling the definition of the quantum flag variety.

Definition 3.1. ([8, Definition 3.1]) A Bq-equivariant sheaf on Gq is a triple (F,α, β) where F is
an L-vector space, α : Oq ⊗ F → F is a left Oq-module action and β : F → F ⊗ Oq(B) is a right
Oq(B)-comodule action, such that α is an Oq(B)-comodule homomorphism where Oq ⊗F is given
the tensor Oq(B)-comodule structure. We denote by MBq (Gq) the category of Bq-equivariant
sheaves on Gq .

Remark 3.2. In the classical case q = 1, this category is equivalent to the category of B-
equivariant sheaves of OG-modules, which in turn is equivalent to the category of quasi-coherent
sheaves of OG/B-modules. So the category MBq (Gq) can be thought of as the quantum analogue
of the flag variety.

Obviously Oq is an object of this category. More generally we have a notion of line bundles. Any
element λ ∈ TP may be thought of as a character of the group algebra LP ∼= L[Kμ : μ ∈ P ], and we may
extend it to a character of U≥0

q by setting it to kill the E’s. This defines a one dimensional U≥0
q -module

Lλ. The ones among these which are integrable, and so Oq(B)-comodules, correspond to λ ∈ P , and
the coaction is 1 �→ 1⊗ λ.
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Definition 3.3. ([8, Definition 3.3]) We define a line bundle in MBq (Gq) to be an object of the form
Oq(λ) := Oq ⊗L L−λ for λ ∈ P , where the Oq-action is on the left factor and the Oq(B)-coaction is
the tensor one (or in the modules language this means we give it the tensor product U≥0

q -module
structure). More generally for a finite dimensional Oq(B)-comodule V we get that Oq ⊗L V , with
an analogous structure as above, is an element of MBq (Gq) and we may think of it as a vector
bundle.

Now that we have a flag variety, we turn to the notion of taking global sections.

Definition 3.4. ([8, Definition 3.4]) The global section functor Γ : MBq (Gq) → L-mod is defined to
be

Γ(M) := HomMBq (Gq)(Oq,M) = {m ∈ M : β(m) = m⊗ 1} =: MBq ,

which we call the Bq-invariants of M .

By [8, Lemma 3.8], the category MBq (Gq) has enough injectives, and so we can right derive the
global section functor. It was shown in [8, Section 3] that the category MBq (Gq) is equivalent to a Proj
category in the sense of Artin-Zhang [6]. That includes [8, Proposition 3.5] which states that the line
bundles are very ample in the sense that for any coherent module M , the twist M(λ) is Γ-acyclic and
generated by its global sections for λ >> 0.

3.2. Quantum D-Modules

Let H be a Hopf algebra over a commutative ring S, and let A be an S-algebra equipped with a
left H-module structure. We say that A is an H-module algebra if for all u ∈ H and all a, b ∈ A,
u(ab) =

∑

u1(a)u2(b). In that case, we may form the smash product algebra A#H . As an S-module,
this is just A⊗S H , but with multiplication given by

(a⊗ u) · (b⊗ v) =
∑

au1(b)⊗ u2v.

From now on we drop the tensor signs, and write au for a⊗ u. Note that the action u(a) of u ∈ H on
a ∈ A coincides with the adjoint action

∑

u1aS(u2) in A#H .
Now, recall that there is a left Uq-module algebra structure on Oq given by

u(a) =
∑

a2(u) · a1,

for u ∈ Uq and a ∈ Oq . By viewing Oq ⊆ U∗
q , this action amounts to the action u(a)(x) = a(xu) for

a ∈ Oq and u, x ∈ Uq. Following [8, Definition 4.1], we define the ring of quantum differential operators
on Gq to be the smash product algebra Dq = Oq#Uq. We will need the following result which was not
proved in [8]:

Proposition 3.5. The ring Dq is Noetherian.

Proof. Since Dq = Oq ⊗L Uq as a vector space, and since x · (yu) = (xy)u for all x, y ∈ Oq and all
u ∈ Uq, it follows that Dq is generated as an Oq-module by Uq. Recall our PBW filtration on Uq . We now
define an analogous filtration on Dq given by

FiDq = Oq · FiUq.

We claim this defines an algebra filtration. Indeed, suppose that for some i, j ≥ 0, we are given u ∈ FiUq

and v ∈ FjUq, and take x, y ∈ Oq. By definition of the Hopf algebra structure on Uq, we have that
Δ(u) ∈ Fi(Uq ⊗L Uq) ⊂ FiUq ⊗L FiUq where we give Uq ⊗L Uq the tensor filtration. Therefore, it follows
that

(xu)(yv) =
∑

(

xu1(y)
)(

u2v
)

∈ Fi+jDq

since the filtration on Uq is an algebra filtration. Hence Dq is a positively filtered L-algebra.
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It will therefore be enough to show that grDq is Noetherian. First, observe that F0Dq is generated
over Oq by the Kμ for μ ∈ P , which all commute. Moreover, for each generator xi of Oq, we have that

KμxiK−μ = Kμ(xi) ∈ q
1
d
Zxi

by definition of the Uq-action on Oq and since the xi’s are matrix coefficients with respect to weight
bases. Thus we see that the generators of F0Uq normalise Oq. Hence it follows from Lemma 2.2 that
F0Dq is Noetherian since Oq is Noetherian.

Next, we claim that the symbols Eαi and Fαj normalise F0Dq in grDq for all i, j. Indeed, we have
that they q-commute with the K’s and for x ∈ Oq, we have

Eαix− (KαixK−αi)Eαi = Eαi(x) ∈ Oq ⊆ F0Dq,

where KαixK−αi ∈ Oq by the above. Thus in grDq we have

Eαix = (KαixK−αi)Eαi ∈ F0Dq · Eαi

Similarly for the F ’s.
Finally we give to grDq an analogue of the Z

2N
≥0-filtration on grUq from section 2.1. More precisely,

we make grDq into a Z

2N
≥0-filtered F0Dq-algebra. First we impose the reverse lexicographic total

ordering on Z

2N
≥0 , and give a Z

2N
≥0-filtration on grDq by stating that a monomial

F r1
β1

· · ·F rN
βN

KλE
s1
β1

· · ·EsN
βN

has degree (r1, . . . , rN , s1, . . . , sN ). Then it follows that the corresponding associated multigraded
algebra is a q-commutative F0Dq-algebra. Hence the associated graded algebra of grDq is Noetherian
by Lemma 2.2, and so it must be that grDq is Noetherian.

Note that Dq is a Uq-module algebra via the adjoint action in Dq, or alternatively by tensoring the
above action on Oq with the adjoint action on Uq. Explicitly,

u · (a⊗ v) =
∑

u1.a⊗ u2vS(u3). (3.1)

We now are ready to define D-modules on the quantum flag variety:

Definition 3.6. ([8, Definition 4.2]) Let λ ∈ TP . A (Bq, λ)-equivariant Dq-module is a triple
(M,α, β) where M is an L-vector space, α : Dq ⊗M → M is a left Dq-module action and β : M →
M ⊗ Oq(B) is a right Oq(B)-comodule action. The map β induces a left U≥0

q -action on M which
we also denote by β. These actions must satisfy:

(i) The U≥0
q -actions on M ⊗ Lλ given by β ⊗ λ and α|

U≥0
q

⊗ 1 are equal.

(ii) The map α is U≥0
q -linear with respect to the β-action on M and the action (3.1) on Dq .

In other words M is an object of MBq (Gq) equipped with a U≥0
q -equivariant Dq-action with in

addition the condition (i).

We denote by Dλ
Bq

(Gq) the category of such Dq-modules. We have a forgetful functor Dλ
Bq

(Gq) →
MBq (Gq), which allows us to define a global section functor on Dλ

Bq
(Gq) given by Γ ◦ forget. We also

denote this functor by Γ.
Note that condition (i) above can be rephrased into saying that for M ∈ Dλ

Bq
(Gq) and m ∈ M ,

we have Eαm = β(Eα)m and Kμm = λ(μ)β(Kμ)m for all simple roots α and μ ∈ P . In particular
if m is a global section then by Bq-invariance we must have Eαm = 0 and Kμm = λ(μ)m. In other
words global sections consist of the highest weight vectors of weight λ. So we see that the Dq-
module homomorphisms Dq → M corresponding to global sections factor through the ideal DqI where
I = {Eαi ,Kμ − λ(Kμ) : 1 ≤ i ≤ n, μ ∈ P}.
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Based on the above, we define Dλ
q to be the quotient

Dλ
q = Dq/DqI

where I is as above. We can see thatDλ
q = Oq ⊗LMλ where Mλ is the Verma module of highest weightλ.

We saw that there is a surjection U fin
q → Mλ. Using this, we can view Mλ as an Oq(B)-comodule, or an

integrable U≥0
q -module, via the quotient of the adjoint action. This action is just the usual action twisted

by −λ and so with this U≥0
q -module structure it is isomorphic to Mλ ⊗ L−λ and has trivial highest

weight. Then, as an object of MBq (Gq), Dλ
q = Oq ⊗L Mλ with the tensor Oq(B)-coaction and with the

action of Oq on the left factor, where we view Mλ is an Oq(B)-comodule just as now. It’s moreover
in Dλ

Bq
(Gq): (i) follows from our discussion above of the fact that Mλ has trivial highest weight as an

Oq(B)-comodule, and (ii) simply follows from the fact that Dq is a U≥0
q -module algebra.

Then Dλ
q represents the global section functor, i.e. Γ(M) = HomDλ

Bq
(Gq)

(Dλ
q ,M) by the above. In

particular, Γ(Dλ
q ) is a ring. Also one can easily check that Dλ

q is the maximal quotient of Dq that lies in
Dλ

Bq
(Gq), where we take the quotient Dq-action and the quotient of the U≥0

q -action (3.1) on Dq .

Definition 3.7. Let Mλ be the Verma module with highest weight λ. Let Jλ = Ann
U

fin
q
(Mλ). We

write Uλ
q = U

fin
q /Jλ.

We finally recall the notion of regular and dominant weights in this context. By [26, Lemma 6.3] the
centre Z of Uq acts on any Verma module Mλ by a character χλ. Following [8, 2.1] we say that λ ∈ TP

is dominant if χλ �= χλ+μ for any 0 �= μ ∈ Q+, and that λ is regular dominant if for all μ ∈ P+ and
all weight γ �= μ of V (μ), where V (μ) denotes the simple Uq-module of highest weight μ, then we have
χλ+μ �= χλ+γ . When λ ∈ P this is equivalent to saying that it’s dominant, respectively regular dominant
in the classical sense.

Theorem 3.8 ([8, Theorem 4.12]). Suppose that λ ∈ TP is regular and dominant. Then there is an
equivalence of categories

Γ : Dλ
Bq

(Gq) → Γ(Dλ
q )-mod.

whose quasi-inverse is given by the localisation functor Loc(M) = Dλ
q ⊗Γ(Dλ

q )
M .

The proof of this Theorem uses an analogue of the Beilinson-Bernstein ‘key lemma’ [8, Lemma 4.14]
and the fact that there is a natural map Uλ

q → Γ(Dλ
q ) (see the proof of [8, Proposition 4.8]).

3.3. An R-Form of MBq (Gq)

We now return to our integral forms Aq and Bq and make completely analogous definitions to the
previous section. Many of our constructions are similar to those of [8, Section 3]

Definition 3.9. The integral quantum flag variety is the category CR whose objects consist of
Aq-modules M which are equipped with a right Bq-comodule action M → M ⊗R Bq such that
the Aq-action map Aq ⊗R M → M is a comodule homomorphism where we give Aq ⊗R M the
tensor comodule structure. The morphisms are just the Aq-linear maps which are also comodule
homomorphisms.

There is an obvious functor

CR −→ MBq (Gq)

M �−→ ML := M ⊗R L
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to our quantum flag variety. Given M ∈ CR, we will write ρM (respectively ρML
) to denote the comodule

map on M (respectively ML).
Next, there are several adjunctions we need to describe. Namely we have

Aq-mod R-mod

CR Bq-comod

q

θ φ

p

where each arrow denotes a pair of functors. We write (θ∗, θ∗), (p∗, p∗), (q∗, q∗) and (φ∗, φ∗) where
each time the ‘lower star’ functors are the right adjoints and go in the direction of the arrows. The
functor θ∗ : Aq-mod → CR is given by N �→ N ⊗R Bq where Aq acts on θ∗(N) via the tensor action
and the Bq-coaction comes from the second factor, while θ∗ : CR → Aq-mod is just the forgetful
functor. The bijection making this an adjunction is as follows: let M ∈ CR and N ∈ Aq-mod, and let
ρ : M → M ⊗R Bq and ε : Bq → R be the comodule map and the counit of Bq respectively; given a
module homomorphism f : M → N , we construct a morphism g : M → N ⊗R Bq in CR by taking the
composite (f ⊗ id) ◦ ρ. Conversely, given a morphism g : M → N ⊗R Bq in CR, we construct a module
homomorphism f : M → N by taking the composite (id⊗ε) ◦ g.

Moreover the adjunction between CR and Bq-comod is given by p∗ = forgetful one way and the
functor p∗ : M �→ Aq ⊗R M the other way, where Aq acts on the first factor and the Bq-coaction is the
tensor coaction. The bijection is as follows: given a map f : Aq ⊗R M → N in CR we get a comodule
map M → N by taking m �→ f(1⊗m), and conversely given a comodule map g : M → N we get a map
Aq ⊗R M → N by post-composing 1⊗ g : Aq ⊗R M → Aq ⊗R N with the action map Aq ⊗R N → N .

Similarly q∗ = forgetful, q∗ : M �→ Aq ⊗R M , φ∗ = forgetful and φ∗ : M → M ⊗R Bq where the
coaction is on the second factor, all with similar bijections as in the above.

In particular, the maps M → θ∗θ∗(M) and M → φ∗φ∗(M) are both just the comodule map and so
are injective, since the comodule map has left inverse 1⊗ ε. Also note that since Aq and Bq are torsion-
free and so flat over R, all the functors are exact and so θ∗, p∗, q∗ and φ∗ all map injective objects to
injective objects.

Lemma 3.10. The categories CR and Bq-comod have enough injectives.

Proof. Let M ∈ CR and let I be an injective Aq-module such that there is an Aq-linear injection
M → I. By the above, the adjunction map M → θ∗θ∗(M) is injective, and so there is an injection

M → θ∗θ
∗(M) → θ∗(I).

But since θ∗ is the right adjoint of an exact functor we see that θ∗(I) = I ⊗R Bq is injective and we’re
done for CR. The proof for Bq-comod is entirely analogous working with φ instead of θ.

Now we can define the global sections functor Γ : CR → R-mod to be

Γ(M) := HomCR
(Aq,M) = {m ∈ M : ρ(m) = m⊗ 1} := MBq .

So in particular the above lemma shows that we can right derive this functor.

3.4. Proj Categories

Our first main aim is to show that our category CR is a noncommutative projective scheme in
the sense of Artin-Zhang [6, 2.3-2.4]. We quickly recall the definitions. Given a Z

n-graded ring R =
⊕m∈ZnRm, we say that a graded (left or right) R-module M is torsion if, for every m ∈ M , there exists
some k such that m is killed by R≥k := ⊕m1,...,mn≥kRm. Write R-mod to denote the category of graded
(left or right) R-modules. The full subcategory T(R) of torsion modules is a Serre subcategory of R-
mod, and we let Proj(R) := R-mod/T(R) denote the quotient category. Similarly we denote by proj(R)
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the quotient category of the category of finitely generated graded modules by the full subcategory of
finitely generated torsion modules.

Now suppose that we are equipped with a tuple (C,O, s1, . . . , sn) where C is an abelian category, O is
an object of C and s1, . . . , sn are pairwise commuting autoequivalences of C. For m ∈ Z

n and an object
M of C, we define twisting functors on C by

M(m) = sm1
1 · · · smn

n (M).

We let Γ denote the functor HomC(O,−) and we set Γ(M) = ⊕m∈NnΓ(M(m)). Note that Γ(O) is a
graded ring where the multiplication is defined as follows: for a ∈ Γ(O(m)) and b ∈ Γ(O(m′)), we set

a · b := s
m′

1
1 · · · sm′

n
n (a) ◦ b.

Similarly for each M in C, Γ(M) is a graded right Γ(O)-module. Finally, let C0 denote the full
subcategory of Noetherian objects in C. Then we have the following multigraded version of a result of
Artin and Zhang (see also [8, Proposition 2.1]):

Proposition 3.11. ([6, Theorem 4.5], [8, Remark 2.2]) Let (C,O, s1, . . . , sn) be a tuple as above, such
that the following hold:

1. O belongs to C0;

2. Γ(O) is a right Noetherian ring and Γ(M) is a finitely generated Γ(O)-module for each
object M of C0;

3. for eachM ∈ C0 there is an epimorphism ⊕l
i=1O(−mi) → M for some l ≥ 1 andm1, . . . ,ml ∈

N

n; and

4. given M,N ∈ C0 and an epimorphism M → N in C, the associated map Γ(M(m)) →
Γ(N(m)) is surjective for m >> 0.

Then Γ(O) is right Noetherian and C0 is equivalent to proj(Γ(O)) (working with graded right
modules). If, moreover, we assume that every object of C is a direct limit of objects in C0, then C

is equivalent to Proj(Γ(O)).

Note that in general the assignement M �→ Γ(M) defines a left exact functor from C to the category
of graded Γ(O)-modules. Now we return to the setting of the quantum R-flag variety.

Definition 3.12. We define the representation ring to be Rq := ⊕λ∈P+Γ(Aq(λ)) with the induced
ring structure from the multiplication in Aq.

Remark 3.13. We will apply the above setup to the category CR. Specifically we will set the
autoequivalences to be si(M) := M(�i). The above mentioned ring structure for Γ(Aq) is then
just the ring structure of Rop

q . So we will apply the above results, working with Rq, by replacing
every instance of the word ‘right’ by ‘left’.

Theorem 3.14. The category CR is equivalent to Proj(Rq) (this time working with left modules).

We now start preparing for the proof of this theorem.
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3.5. Line Bundles
We begin by proving results in CR analogous to standard facts about line bundles on the flag variety.

We will mostly just adapt arguments from [8, Section 3.4]. They apply essentially identically but we
repeat them nevertheless.

Note that we have a functor of taking Bq-invariants in Bq-comod, which we denote by Γ̃. This functor
is also left exact. Let Ind be the functor Γ ◦ p∗ : M �→ (Aq ⊗R M)Bq . Since Bq-comod is isomorphic to
the category of integrable U res(b)-modules of type 1 by Theorem 2.7, Ind is just the induction functor
M �→ (Aq ⊗R M)U

res(b) studied in [1]. This will be useful in the next result.

Proposition 3.15. 1. If I ∈ Bq-comod is injective, then p∗(I) is Γ-acyclic.

2. For any M ∈ Bq-comod and any i ≥ 0, RiInd(M) = RiΓ(p∗(M)).

3. For any M ∈ CR and any i ≥ 0, RiΓ̃(p∗(M)) ∼= RiΓ(M).

4. The functor Γ has cohomological dimension at most N = dimG/B.

Proof. 1. The adjunction map I → φ∗φ∗(I) = I ⊗R Bq is injective. So as I is injective, this embedding
splits. Therefore, as p∗ is additive and since the derived functors RiΓ commute with finite direct sums,
it suffices to show that p∗(I ⊗R Bq) is acyclic. To simplify notation a bit, we write J = φ∗(I). We

claim that we have an isomorphism p∗(φ∗(J))
∼=→ θ∗(q∗(J)). Indeed, as R-modules they both equal

Aq ⊗R I ⊗R Bq and the isomorphism is given by a⊗ i⊗ b �→
∑

a1 ⊗ i⊗ a2b, with inverse a⊗ i⊗ b �→
∑

a1 ⊗ i⊗ S(a2)b. These maps are easily checked to be both module and comodule homomorphisms.
Hence we have that

RiΓ(p∗(I ⊗R Bq)) ∼= RiΓ(θ∗(q
∗(J)))

= ExtiCR
(Aq, θ∗(q

∗(J)))

∼= ExtiAq
(θ∗(Aq), q

∗(J))

= ExtiAq
(Aq, q

∗(J)) = 0

for i > 0, as Aq is projective as an Aq-module. Here we used the fact that θ∗ is exact and preserves
injectives in the second isomorphism.

2. Pick an injective resolution M → I•. Then, by (i), p∗(M) → p∗(I•) is a Γ-acyclic resolution of
p∗(M), hence it computes the cohomology of Γ. The result now follows.

3. Pick an injective resolution M → I• in CR. Since p∗ preserves injectives, it follows that M → I•

is also an injective resolution in Bq-comod. The result follows.
4. Let M ∈ CR. Since p∗ maps injectives to injectives, any injective resolution of M in CR is also an

injective resolution of M in the category of Bq-comodules. Thus we see that RiΓ(M) ∼= RiΓ̃(p∗(M))
for all i ≥ 0 and it suffices to show that the right hand side vanishes for i ≥ N . To simplify notation we
will drop the p∗ when referring to an element of CR viewed only as a comodule.

Now, note that there is a Bq-comodule map M → p∗(M) = Aq ⊗R M given by m �→ 1⊗m. This
map has a splitting given by the Aq-action map, which is a comodule homomorphism by definition of
CR. So, as Bq-comodules, M is a direct summand of Aq ⊗R M . This in turn implies that RiΓ̃(M) is a
direct summand of RiΓ̃(p∗(M)). By 2 the latter equals RiInd(M). But it was proved in [1, Theorem 5.8]
that this induction functor has cohomological dimension at most N . So the result follows.

Definition 3.16. We let TR
P = {λ ∈ TP : λ((U res)0) ⊆ R×}, which is a subgroup of TP . Note that

for λ ∈ P , the associated element of TP belongs in TR
P . For each λ ∈ TR

P we have a rank 1 U res(b)-
module Rλ.

When λ ∈ P we may view it as a comodule with coaction 1 �→ 1⊗ λ. In that case, we let
Aq(λ) := p∗(R−λ), which we call a line bundle. More generally, for M ∈ CR, we will write M(λ)
for M ⊗R R−λ. By letting Aq act on the left factor and giving it the tensor Bq-coaction, this is
also an element of CR.
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Corollary 3.17. For all λ ∈ P and all i ≥ 0, RiΓ(Aq(λ)) is finitely generated as an R-module.
Moreover if λ ∈ P+ then RiΓ(Aq(λ)) = 0 for all i > 0.

Proof. By Proposition 3.15 (2), we have that RiΓ(Aq(λ)) = Ri Ind(R−λ). But it was proved in [1,
Theorem 5.8] that Ri Ind sends finitely generated R-modules to finitely generated R-modules, and in
[1, Corollary 5.7] that Ri Ind(R−λ) = 0 when λ ∈ P+ and i > 0.

3.6. Generators for CR

We now show results analogous to [8, Lemmas 3.13 & 3.16, Proposition 3.5]. The proofs are
essentially identical with the exception of part 2 of the Lemma below where a few small adjustments
are necessary to deal with torsion.

Suppose that M is a Bq-comodule or in other words an integrable U res(b)-module. We will write V
to denote the underlying R-module of M equipped with the trivial Bq-coaction.

Lemma 3.18. Let M be as above.

1. If M is in fact aAq-comodule, viewed as a Bq-comodule via restriction, then p∗(M) ∼= p∗(V )
in CR.

2. Suppose now that M is finitely generated over R, and moreover suppose that all the weight
spaces of M have weight of the form −λ where λ ∈ P+. Then

(a) M is acyclic with respect to the induction functor;

(b) there is an Aq-comodule which surjects onto M as a Bq-comodule.

Proof. 1. We have p∗(M) = Aq ⊗R M and p∗(V ) = Aq ⊗R V , which are the same as R-modules. The
isomorphism is given by the map a⊗m �→

∑

am2 ⊗m1 where m �→
∑

m1 ⊗m2 denotes the Aq-
coaction. It quite evidently is an Aq-module map, and it is straightforward to check that it is also a
Bq-comodule map. Thus this is a morphism in CR. Quite similarly we have a map going the other way
given by a⊗m �→

∑

aS(m2)⊗m1, which is also a morphism in CR by the Hopf algebra axioms. It also
follows from the Hopf algebra axioms that these two maps are inverse to each other, and so we have an
isomorphism.

2. Write M = ⊕λM−λ for the weight space decomposition of M , where λ ∈ P+ ranges through the
weights of M . Since M is finitely generated there are only finitely many weights, and we may list them
as −λ1,−λ2, . . . ,−λr so that −λr is maximal among them. Hence N := M−λr is a U res(b)-submodule.
We prove (a) by induction on r. Simply note that N is acyclic by [1, Corollary 5.7(ii)], and by taking the
long exact sequence associated to the short exact sequence

0 → N → M → M/N → 0

we see that M is also acyclic by induction hypothesis.
For (b), note that Ind(M) is finitely generated over R by [1, Proposition 3.2]. Hence the result will

follow if we show that the map Res Ind(M) → M coming from Frobenius reciprocity (see [1, Proposition
2.12]) is surjective. We prove this by induction on r. Suppose that r = 1 so that M is isomorphic to a
finite direct sum of modules all of the form R−λ or R−λ/π

nR−λ for some n ≥ 1. Then, it suffices to prove
the claim for these summands. But it is true for R−λ by [1, Proposition 3.3] and so it follows that it also
true for any R−λ/π

nR−λ since we have a commutative diagram

R−λ R−λ/π
nR−λ

Res Ind(R−λ) Res Ind(R−λ/π
nR−λ)
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Now for r > 1 we consider the commutative diagram

0 N M M/N 0

0 Res Ind(N) Res Ind(M) Res Ind(M/N) 0

in which both rows are exact by (a), and we conclude that Res Ind(M) → M is surjective by the
induction hypothesis and the Five Lemma.

Let coh(CR) denote the full subcategory of CR consisting of objects M which are finitely generated
as Aq-modules. We call elements of coh(CR) coherent modules.

Proposition 3.19. Let M ∈ coh(CR). Then there exists λ ∈ P+ such that for all μ ∈ λ+ P+, M(μ)
is generated by finitely many global sections. In particular there is finite direct sum of Aq(−λ)
surjecting onto M in CR.

Proof. Suppose m1, . . . ,mn generate M over Aq. Since M is a Bq-comodule i.e an integrable U res(b)-
module it is in particular locally finite. So if we let W denote the U res(b)-submodule they generate, then
we have that W is finitely generated over R. Moreover we have a surjection p∗(W ) → M in CR. We may
pick λ ∈ P such that W (λ) = W ⊗R−λ satisfies the conditions of Lemma 3.18 (2) and let N be an R-
finite Aq-comodule surjecting onto W (λ). Then p∗(N) surjects onto p∗(V (λ)) and hence onto M(λ).
By Lemma 3.18 (1) and since N is finite over R, we have that p∗(N) is generated as an Aq-module
by finitely many global sections, and these define a surjection Ar

q → p∗(N). Thus we have a surjection
Ar

q → M(λ) and twisting by −λ we get a surjection ⊕r
i=1Aq(−λ) → M as claimed. Of course the same

argument shows that M(μ) is generated by its global sections for any μ ∈ λ+ P+.

In the next section we repeatedly use a general construction, which we record here:

Lemma 3.20. Let M ∈ CR and let m1, . . . ,mi ∈ M for some i ≥ 1. Then there is a unique minimal
coherent submodule P of M such that m1, . . . ,mi ∈ P .

Proof. Let N be the U res(b)-submodule of M generated by m1, . . . ,mi. Then N is R-finite and we let P
be the Aq-submodule of M generated by N . Since the Aq-action on M is a comodule homomorphism it
follows that P is a subcomodule of M and it is in coh(CR) as N is finite over R. Moreover, any coherent
submodule of M which contains m1, . . . ,mi must also contain N , and so must contain P .

3.7. Coherent Modules

Since we do not know whether Aq is Noetherian or not, it is not clear yet that coh(CR) is a well-
behaved category. This is what we turn to next. We first need to establish:

Lemma 3.21. The ring Rq is graded Noetherian.

Proof. Since q
1
d ≡ 1 (mod π), the U res ⊗R k-representation Γ(Aq(λ))⊗R k is just the global sections

of the usual line bundle Lλ on the flag variety Gk/Bk over k for any λ ∈ P+ by [1, 3.11], noting that Lλ

has no higher cohomology by the classical Kempf vanishing theorem (see e.g. [27, Proposition II.4.5]).
Hence we see that the ring Rq/πRq is isomorphic to the ring of regular functions on the basic affine
space Gk/Nk, and so is Noetherian. Moreover the graded pieces Γ(Aq(λ)) are all finitely generated over
R by Corollary 3.17. Thus the result follows from Proposition 2.8 (2).

Theorem 3.22. The modules in CR which are finitely generated as Aq-modules coincide exactly
with the Noetherian objects.
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Proof. We prove this result in several steps. First we claim that Aq satisfies ACC in the category
coh(CR). Indeed, assume we have a chain

M1 ⊆ M2 ⊆ M3 ⊆ · · ·
of coherent submodules of Aq. Recall the functor Γ from 3.4. By Noetherianity of Rq = Γ(Aq) and by left
exactness of Γ, we get that there is some m ≥ 1 such that for all n ≥ m, Γ(Mn) = Γ(Mm). In particular
we get that Γ(Mn(λ)) = Γ(Mm(λ)) for all λ ∈ P+. Fix any n ≥ m. Then by Proposition 3.19, we may
pick λ >> 0 such that both Mn(λ) and Mm(λ) are generated by their global sections. But then the above
equality of global sections implies that Mn(λ) = Mm(λ) and hence after untwisting that Mn = Mm.

Next, we claim that Aq satisfies ACC in CR. Indeed, suppose we have a chain

M1 ⊂ M2 ⊂ M3 ⊂ · · ·
of subobjects of Aq with Mi �= Mi+1 for every i ≥ 1. Then we may pick m1 ∈ M1 and mi ∈ Mi \Mi−1

for every i ≥ 2. By Lemma 3.20, for each i ≥ 1 we may consider the smallest coherent submodule Pi of
Mi which contains m1, . . . ,mi. Note that Pi ⊂ Pi+1 by the proof of Lemma 3.20. But mi ∈ Pi for every
i, so that we get a strict ascending chain

P1 ⊂ P2 ⊂ P3 ⊂ · · ·
of coherent submodules of Aq, which is a contradiction by our first step.

Thus we have proved that Aq is a Noetherian object. It is then immediate that every line bundle
Aq(λ) is also a Noetherian object. But by Proposition 3.19, this implies that every coherent module is
a Noetherian object. Finally, for the converse, the above argument that Aq satisfies ACC in CR also
shows that Noetherian objects are finitely generated over Aq. Indeed, if M is not finitely generated, pick
m1 ∈ M and let P1 be the smallest coherent submodule of M containing m1, given by Lemma 3.20.
Since M is not coherent we have that M �= P1. So we can pick m2 ∈ M such that m2 /∈ P1. Then we
may apply Lemma 3.20 again and set P2 to be the smallest coherent submodule of M containing m1,m2.
By construction, P1 ⊂ P2 is a strict inclusion. AsM is not coherent, we may pickm3 ∈ M \P2. Carrying
on, we get a strict ascending chain

P1 ⊂ P2 ⊂ P3 ⊂ · · ·
so that M is not a Noetherian object.

This in particular shows that coh(CR) is an abelian category. This has a few consequences.

Proposition 3.23. Let M ∈ coh(CR). Then:

1. there exists λ ∈ P+ such that for all μ ∈ λ+ P+, M(μ) is acyclic; and

2. (Serre finiteness) for all i ≥ 0, RiΓ(M) is finitely generated as an R-module.

Proof. (1) By Proposition 3.19 and the above Theorem, we may find a resolution of M of the form

F• : FN
fN→ · · · f2→ F1

f1→ M → 0

where the Fi are finite direct sums of line bundles. Pick λ ∈ P sufficiently large such that all the line
bundles in F•(λ) are of the form Aq(μ) for μ ∈ P+. Then by Corollary 3.17, all the Fi(λ) are Γ-acyclic.
Let K0 = M(λ) and Kj = ker fj(λ) for 1 ≤ j ≤ N . Then we have a short exact sequence

0 → Kj → Fj(λ)
fj(λ)→ Kj−1 → 0

for every 1 ≤ j ≤ N , and the long exact sequence yields isomorphisms RiΓ(Kj−1) ∼= Ri+1Γ(Kj) for all
i ≥ 1. Thus, by using Proposition 3.15 (4), we obtain

RiΓ(M(λ)) ∼= Ri+1Γ(K1) ∼= · · · ∼= Ri+NΓ(KN ) = 0

for all i ≥ 1 as required. Again the same argument works by replacing λ by any μ ∈ λ+ P+.
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(2) The proof we give is completely analogous to the proof in [24, Theorem III.5.2]. First note that
by Proposition 3.15 (4) we have RiΓ(M) = 0 for all i > N and so we may assume that i ≤ N . We will
prove the result by downwards induction on i, the cases i > N being already covered.

By Proposition 3.19 there is a surjection f :
⊕n

j=1Aq(−λj) → M in CR, where each λj ∈ P+. This
gives a short exact sequence

0 → K →
n

⊕

j=1

Aq(−λj) → M → 0

Applying the long exact sequence, we obtain

· · · →
n

⊕

j=1

RiΓ(Aq(−λj)) → RiΓ(M) → Ri+1Γ(K) → · · ·

By the induction hypothesis applied to K (which we may apply by the above Theorem), we get that
Ri+1Γ(K) is finitely generated. Now by Corollary 3.17 and since R is Noetherian, we see that RiΓ(M)
is finitely generated over R as well.

One of our main aims will be to establish a D-modules version of part 1. of the Proposition. Before
we get to that, we can now finally fulfill our promise:

Proof of Theorem 3.14. Note that every object of CR is a direct limit of object of coh(CR). Indeed, it
suffices to show that every element of any M ∈ CR is contained in a coherent submodule. But this is
given by Lemma 3.20.

So we just have to check all conditions 1-4 from Proposition 3.11. Condition 1 is just Theorem 3.22,
2 follows from the fact that Γ(Aq) = R and from Proposition 3.23 (2), and 3 follows from Proposition
3.19. Finally, condition 4 is easily deduced from Theorem 3.22 and Proposition 3.23 (1). Indeed, suppose
M → N is a surjection between coherent modules in CR and let K denote its kernel. For λ >> 0, we
know that K(λ) is Γ-acyclic, and so the corresponding map Γ(M(λ)) → Γ(N(λ)) is surjective.

3.8. Weyl Group Translates of the Big Cell

We now introduce certain localisations of Aq from Joseph (see [28, 3.1-3.3] and [29, 9.1.10]). For
each fundamental weight �i, consider the highest weight representation V (�i) of Uq. It contains a free
R-lattice M := Ind(R�i)

∗ that is a U res-module. In fact M is a cyclic module generated by a highest
weight vector v ∈ V (�i) (see [1, Proposition 3.3]). Let f ∈ M∗ be the corresponding dual vector. Let
c�i := cMf,v ∈ Aq be the corresponding matrix coefficient. Joseph showed in loc. cit. that these commute
and we may define for any μ =

∑

i ni�i ∈ P+ the element cμ =
∏

i c
ni
�i

∈ Aq. Moreover, for any μ ∈ P+,

cμ = c
V (μ)
fμ,vμ

is the matrix coefficient of the highest weight representation V (μ) ofUq. In fact it is the matrix
coefficient of a U res-lattice inside V (μ), namely Ind(R−μ)

∗.

Recall that Aq is a U res-module algebra via the action u · f =
∑

f2(u)f1. If we identify Aq with a
submodule of HomR(U

res, R), this action is given by

(u · f)(x) = f(xu)

for all u, x ∈ U res and all f ∈ Aq. Therefore, identifying cμ with the matrix coefficient corresponding to

a highest weight vector as above, we see that u · cμ = μ(u)cμ for any u ∈ (U res)0 and E
(r)
αi · cμ = 0 for

any i and any r ≥ 1. Thus in the Bq-comodule language, we have Δ(cμ) = cμ ⊗ μ ∈ Aq ⊗Bq. So we
see that cμ ∈ Γ(Aq(μ)).

Recall now that Γ(Aq(μ)) = IndR−μ is an integrable U res-module. The elements of it can all be
identified as certain functions in HomR(U

res, R), and the module structure is given by

(u · f)(x) = f(S(u)x)
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for all u, x ∈ U res and all f ∈ Γ(Aq(μ)). With respect to this action, the element cμ has weight −μ and
so is a lowest weight vector, since the module Γ(Aq(μ)) is a free R-lattice inside V (−w0μ) and satisfies
the Weyl character formula by [1, Corollary 3.3]. In particular we see that Γ(Aq(μ)) has a unique (up
to scalars) extreme w-weight vector cwμ of weight −wμ for any Weyl group element w ∈ W , which we
may choose to equal

cwμ = E(r1)
αi1

· · ·E(rs)
αis

· cμ
where w = si1 · · · sis and where the exponents rj are defined by rs = 〈μ, α∨

is〉 and rj = 〈sij+1 · · · sisμ, α∨
ij
〉

for j ≤ s− 1. Then Joseph [29, 9.1.10] showed that cwλcwμ = cw(λ+μ) for every w ∈ W and every
λ, μ ∈ P+. Therefore, for every w ∈ W , the set

Sw := {cwμ : μ ∈ P+}
is multiplicatively closed in Aq. Moreover we still have cwμ ∈ Γ(Aq(μ)), so that we may view Sw as a
multiplicatively closed subset of Rq. Joseph showed in loc. cit. that Sw is an Ore set in both Oq and its
representation ring, but in fact his proof works equally well withAq and in Rq (see also [33, III.2]). Hence
we have:

Lemma 3.24. For every w ∈ W , Sw is an Ore set in Aq and in Rq.

So we may define localisations Aq,w := S−1
w Aq for each Weyl group element. By viewing Aq ⊗Bq

as a left Aq-module via the comultiplication Δ, the comodule map Aq → Aq ⊗Bq, which by abuse of
notation we also denote by Δ, is an Aq-module map, and its localisation gives a map

Δw : Aq,w → Aq,w ⊗R Bq

which defines a Bq-comodule structure: for f ∈ Aq and s ∈ Sw such that Δ(s) = s⊗ λ, Δw sends s−1f

to (s−1 ⊗−λ) ·Δ(f). Moreover the Aq,w-module structure on Aq,w ⊗R Bq is defined by Δw.
More generally, if M ∈ CR with comodule map ρ : M → M ⊗R Bq then, by the axioms for CR, ρ is

an Aq-module map where we view M ⊗R Bq as an Aq-module via Δ, and its localisation gives rise to a
map

ρw : S−1
w M → S−1

w M ⊗R Bq

which will be Aq,w-linear where Aq,w acts on S−1
w M ⊗R Bq via the map Δw.

Definition 3.25. We define C w
R to be the category of B-equivariant Aq,w-modules. Specifically,

the objects consist of Aq,w-modules M which are equipped with a right Bq-comodule action
M → M ⊗R Bq such that the Aq,w-action map Aq,w ⊗R M → M is a comodule homomorphism
where we give Aq,w ⊗R M the tensor comodule structure. The morphisms are just the Aq,w-linear
maps which are also comodule homomorphisms.

The above discussion shows that there is a localisation functor f∗
w : CR → C w

R which sends a module
M to its localisation S−1

w M as an Aq-module, and it has a right adjoint (fw)∗ given by the forgetful
functor. Both of these are exact and they make C w

R into a localisation of CR in the sense of Gabriel i.e a
quotient of CR by a localising subcategory (see [21, Chapter III.2]).

3.9. Čech Complexes

We saw that CR is equivalent to Proj(Rq) and that we may equally localise any graded Rq-module at
the set Sw for any w ∈ W . Since the set Sw contains elements of arbitrarily large degree in Rq, we see
that the localisation functor Rq-mod → S−1

w Rq-mod factors through Proj(Rq) and makes S−1
w Rq-mod

into a localisation of Proj(Rq).
We have a global section functor on C w

R which corresponds to taking Bq-invariants. This is of course
the same as the composite Γ ◦ (fw)∗. Now via the proj construction we see that global sections on CR

correspond to projection onto the degree 0 in Proj(Rq). So we see that the global section functor on
S−1
w Rq-mod is the functor of taking the degree 0 part of the graded module, which is exact! We then get:
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Lemma 3.26. The categories S−1
w Rq-mod and C w

R have enough injectives, and they are naturally
equivalent to each other as localisations of CR. Hence the global section functor on C w

R is exact
and objects of C w

R are acyclic when viewed in CR.

Proof. By [21, Corollary III.3.2] the first part follows from Lemma 3.10 and the fact that both categories
are localisations of CR. By the above discussion, if the two categories are equivalent then global sections
is exact. To prove that S−1

w Rq-mod and C w
R are equivalent, we just need to show that M ∈ CR has

localisation zero if and only if Γ(M) has localisation zero.
Clearly ifM ∈ CR has localisation zero, then so does Γ(M). Conversely if Γ(M) has localisation zero,

we show that Γ(S−1
w M) = 0, which implies that S−1

w M = 0. Indeed suppose s ∈ Sw, m ∈ M such that
Δ(s) = s⊗ μ and s−1m ∈ Γ(S−1

w M(λ)) for some λ. Then

ρ(m) = ρ(s(s−1m)) = (s⊗ μ)ρ(s−1m) = (s⊗ μ)(s−1m⊗ λ) = m⊗ (λ+ μ)

so that m ∈ Γ(M(λ+ μ)). By assumption there exists t ∈ Sw such that tm = 0. But then that means
that the image of m in S−1

w M is zero and so s−1m = 0. Thus we see that Γ(S−1
w M) = 0 as required.

Finally, let M ∈ C w
R and M → I• be an injective resolution of M in C w

R . Note that since (fw)∗
preserves injectives as it is the right adjoint to an exact functor, we have that (fw)∗(I•) is an injec-
tive resolution of (fw)∗(M) in CR, and applying global sections and taking cohomology we obtain
RiΓ((fw)∗(M)) = 0 for all i > 0 since Γ ◦ (fw)∗ is exact.

We think of C w
R as being an analogue of the w-translate of the big cell on the flag variety, and the

above lemma tells us that it is in some sense affine. Now to such a situation Rosenberg [40, Sections 1
& 2] (see also [33, section III.3]) explained how to write down an analogue of the Čech complex which
allows us to compute the cohomology of the functor Γ. Write W = {w1, . . . , wm}, let J = {1, . . . ,m}
and for each i ∈ J let σi := (fwi)∗ ◦ f∗

wi
. Moreover for any i = (i1, . . . , in) ∈ Jn, let σi = σi1 ◦ · · · ◦ σin .

Then by [40, 1.2 & 1.3] we may write down a complex

Caug : idCR
→

⊕

i∈J
σi →

⊕

i∈J2

σi →
⊕

i∈J3

σi → · · ·

where the maps are given as follows. Denote the adjunction morphism idCR
→ σi by ηi. Then for any

i ∈ Jn and any 1 ≤ j ≤ n, there is a natural transformation

ξjn : σi1 ◦ · · · ◦ σin → ⊕i∈Jσi1 ◦ · · · ◦ σij−1 ◦ σi ◦ σij ◦ · · · ◦ σin
given by ξjn = ⊕i∈Jσi1 · · · σij−1ηiσij · · · σin . The differential in the complex is then given by taking the

alternating sum (over all j) of these ξjn.
We may post-compose Caug with the functor of taking global sections to obtain a complex Čaug called

the augmented standard complex of Γ. We may also consider the complex

C :
⊕

i∈J
σi →

⊕

i∈J2

σi →
⊕

i∈J3

σi → · · ·

and Č = Γ ◦ C, which we call the standard complex. We then have:

Proposition 3.27. For any M ∈ CR, the complex Caug(M) is exact. Moreover, for i ≥ 0, the i-th
cohomology of the complex Č(M) is isomorphic to RiΓ(M).

Proof. By [40, Proposition 1.4 & Theorem 2.2] and by the Lemma, it will follow if we prove that the
categories Cwi

R cover the category CR, meaning that a morphism g in CR is an isomorphism if and
only if f∗

wi
(g) is an isomorphism for all i ∈ J . This is equivalent to saying that M ∈ CR is zero if and

only if all its localisations are zero. Working with proj categories instead, suppose M is a graded Rq-
module such that S−1

w M = 0 for all w. Pick m ∈ M . Then for all i ∈ J , there exists μi ∈ P+ such that
cwiμim = 0. Let μ =

∑

i μi. Then for all w ∈ W , cwμm = 0. But then it follows from the Lemma below
that Γ(Aq(λ+ μ))m = 0 for all λ >> 0. Since m was arbitrary this implies that M is torsion and so zero
in Proj(Rq).
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Lemma 3.28. Let μ ∈ P+. Then for λ >> 0 we have
∑

w∈W
Γ(Aq(λ))cwμ = Γ(Aq(λ+ μ)).

Proof. This is proved in [33, Lemma III.3.3] but we reproduce it here. Clearly the left hand side is
included in the right hand side, and both sides are finitely generated as R-modules, so by Nakayama
it’s enough to show that the equality holds modulo π, i.e. that

∑

w∈W
H0(λ)cwμ = H0(λ+ μ)

where H0(λ) denotes the global sections of the line bundle L(λ) on the flag variety Gk/Bk. We are then
in a classical situation, and the equality will follow from the classical fact that the Weyl group translates
of the big cell cover the flag variety of Gk . The equality was proved over C in [30, Lemma 11]. The
argument is the same here in positive characteristic, but for completeness we sketch it.

Firstly, since both sides are finite dimensional over k, to show equality is to show that the dimensions
are equal, and so it will suffice to prove that the equality holds after passing to the algebraic closure of k.
So without loss of generality, we may assume that k = k̄. Moreover, for any λ′ and μ′, the natural map
H0(λ′)⊗H0(μ′) → H0(λ′ + μ′) is surjective (see [27, Proposition 14.20]). Thus we may assume that
λ = nμ for n >> 0.

Now, consider the Weyl module V = V (−w0μ) = H0(μ)∗ and let v ∈ V have weight −w0μ. Then
the flag variety Gk/Bk maps onto the Gk-orbit of the line kv in the projective space P(V ). If we take the
homogeneous cone above this, its algebra of regular functions is a quotient of S(V ∗), and in fact is the
commutative graded ring A = ⊕n≥0H

0(nμ) (see [27, Proposition 14.22]). The fact that the Weyl group
translates of the big cell cover the flag variety now implies that the radical of the ideal of A generated by
the elements cwμ is in fact the irrelevant ideal A>0. This says that the ideal they generate contains all
H0(mμ) for m large enough, as required.

3.10. Base Change

As an immediate application of the Čech complex, we show how the cohomology of Γ behaves under
base change to the field L.

Proposition 3.29. For any M ∈ CR and any i ≥ 0, we have RiΓ(ML) = RiΓ(M)⊗R L.

Proof. Let M ∈ CR and first assume that i = 0. By the universal property of tensor products, we have a
commutative diagram

M M ⊗R L

MBq MBq ⊗R L

g

f

of R-modules with injective vertical arrows, and we have to show that Im(f) = (ML)
Bq . It will be

enough show that (ML)
Bq ⊆ Im(f), the other inclusion being clear.

Pick m ∈ (ML)
Bq . Then there is some a ≥ 0 such that πam ∈ Im(g), i.e πam = m′ ⊗ 1 for some

m′ ∈ M . Now, given that ρML
(m) = m⊗ 1, and since ρML

= ρM ⊗R L, we see that ρM (m′)−m′ ⊗ 1 ∈
M ⊗R Bq is π-torsion. Hence, there is some b ≥ 0 such that ρM (πbm′) = πbm′ ⊗ 1, and thus we get
that πa+bm ∈ Im(f). The result now follows since Im(f) is an L-vector space.

For i > 0, using Proposition 3.26, the case i = 0 and the fact that −⊗R L is exact, we see that
RiΓ(M)⊗R L is the i-th Čech cohomology group of M ⊗R L. By [8, Proposition 4.5] this group is
equal to RiΓ(M ⊗R L).
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3.11. The Ring D

Recall the notation and the definitions from 3.2. We now define an R-form of the ring of quantum
differential operators. For u ∈ U , a ∈ Aq, i ≥ 0, we have u(a) =

∑

a2(u) · a1 ∈ Aq since U ⊂ U res.
From this, we can immediately see that Aq is a left U-module algebra. Hence we may form the smash
product D = Aq#U . Note that D is π-torsion free as it is equal to Aq ⊗R U as an R-module, thus it
follows that it is a lattice in Dq .

Proposition 3.30. The algebra D/πD is Noetherian. Hence so is ̂D.

Proof. By the above remarks we see that Dk := D/πD is the smash product algebra of Aq/πAq
∼=

O(Gk) and Uk. We will see in [19] that Uk
∼= U(gk)⊗k k(P/2Q), and so Dk is a finite module over

the smash product O(Gk)#U(gk). The latter is isomorphic to the ring D(Gk) of crystalline differential
operators on the affine variety Gk and hence is Noetherian. Thus Dk is Noetherian as required. The last
part follows from Proposition 2.8.

3.12. D-Modules

We now turn to an R-version of the category Dλ
Bq

(Gq). We first introduce the following notation: we

let U≥0 = U ∩ U≥0
q . It is the R-subalgebra of U generated by all Eαi , all Kμ (μ ∈ P ) and all [Kαi ; 0]qi .

Note that U≥0 is a subalgebra of U res(b). Moreover, note that the action (3.1) restricts to an action of
U res on D making it into a U res-module algebra. This is because the adjoint action of U res preserves U .

Definition 3.31. Let λ ∈ TR
P . We let Dλ be the category whose objects are triples (M,α, β) where

M is an R-module, α : D⊗R M → M is a left D-module action and β : M → M ⊗R Bq is a right
Bq-comodule action. The map β induces a left U res(b)-action on M which we also denote by β.
These actions must satisfy:

(i) The U≥0-actions on M ⊗R Rλ given by β ⊗ λ and α|U≥0 ⊗ 1 are equal.

(ii) The map α is U res(b)-linear with respect to the β-action on M and the action (3.1) on D.

We will write coh(Dλ) to denote the full subcategory of Dλ consisting of finitely generated D-
modules.

There is of course a forgetful functor forget : Dλ → CR, and given an object M ∈ Dλ we let its global
sections equal Γ(M) where we viewM as an object of CR. By abuse of notation we also denote this global
section functor by Γ. Also the functor M �→ ML described earlier restricts to a functor Dλ → Dλ

Bq
(Gq).

Note again that condition (i) above can be rephrased into saying that for M ∈ Dλ and m ∈ M , we
have Eαm = β(Eα)m, Kμm = λ(Kμ)β(Kμ)m, and

[Kα; 0]m = (λ([Kα; 0])β(Kα) + λ(K−1
α )β([Kα; 0]))m

for all simple roots α and μ ∈ P . In particular if m is a global section then by Bq-invariance we
must have Eαm = 0, [Kα; 0]m = λ([Kα; 0])m and Kμm = λ(Kμ)m. In other words global sections
consist of the highest weight vectors of weight λ. So we see that the D-module homomorphisms
D → M corresponding to global sections factor through the quotient Dλ = D/I where I is the left ideal
generated by

{Eαi ,Kμ − λ(Kμ), [Kαi ; 0] − λ([Kαi ; 0]) : 1 ≤ i ≤ n, μ ∈ P}.

Our aim now is to show that Dλ ∈ Dλ.
Recall the notation from 2.2. Note that we may define a Verma module Mλ forU , namely it is the cyclic

U-module with generator vλ and relations Eαivλ = 0, Kμvλ = λ(μ)vλ and [Kαi ; 0]vλ = λ([Kαi ; 0])vλ.
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By the triangular decomposition for U and the PBW basis for U− (see [18, Sections 4.5-4.6]), we see
that Mλ is a free R-module with basis given by the monomials

F r1
β1

· · ·F rN
βN

vλ

and so we also see that it is a lattice in the Verma module Mλ for Uq. In fact it is the image of U under
the canonical surjection Uq → Mλ. Recall that the quotient of the adjoint action of U≥0

q gave rise to an
integrable module structure on Mλ. Since the adjoint action of U res(b) preserves U (see [50, Lemma
1.2]), we immediately get:

Lemma 3.32. The above adjoint U res(b)-action on Mλ preserves Mλ, making it into a Bq-
comodule.

Now since Dλ = Aq ⊗R Mλ as an R-module, we identify it with p∗(Mλ) ∈ CR. Just as for Dλ
q , we

then have that Dλ is in fact an object of Dλ, and our previous discussion shows that it represents the
global section functor on Dλ, i.e

Γ(M) = HomDλ(Dλ,M)

for all M ∈ Dλ.

3.13. Cohomology of the Induction Functor mod π

We will need to investigate the cohomology of Mk := M/πM for M ∈ Bq-comod for the induction
functor Ind : Bq-comod → Aq-comod defined in [1]. Note that Mk is in fact a Bq/πBq

∼= O(Bk)-
comodule, and the global section functor applied to p∗(Mk) coincides with the functor of taking O(Bk)-
coinvariants in O(Gk)⊗k Mk, i.e. with the classical induction functor IndGk

Bk
Mk (c.f. [1, Proposition

3.7]). We will compare the cohomology groups Ri Ind(Mk) and Ri IndGk
Bk

(Mk).

By [1, 2.17-2.19], if M is a Bq-comodule that is free as an R-module then it has a resolution

0 → M → Q0 → Q1 → · · ·
in the category of Bq-comodules, which is R-split and such that each Qi is R-free and acyclic. This
is called the standard resolution of M . This construction is completely canonical, so that Mk also
has similarly such a resolution in the category of Bq/πBq-comodules, which we also call the standard
resolution of Mk.

Lemma 3.33. Suppose M ∈ CR is free as an R-module. Then there is a canonical isomorphism
RiInd(Mk) ∼= RiIndGk

Bk
(Mk) for all i ≥ 0.

Proof. Since each Qi is free, we have a short exact sequence

0 −→ Qi
·π−→ Qi −→ Qi ⊗R k −→ 0.

Applying the long exact sequence and using the fact that Qi is acyclic, we immediately obtain that
Qi ⊗R k is also acyclic. Now since the standard resolution is split exact, it follows from the above that

0 → Mk → Q0 ⊗R k → Q1 ⊗R k → · · ·

is an acyclic resolution of Mk whose cohomology therefore computes R Ind(Mk). On the other hand this
resolution coincides with the standard resolution of Mk by [1, page 24, after equation (6)], so computes
R IndGk

Bk
(Mk) by [1, Proposition 3.7].
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This will be useful because RInd(Mk) ∼= RΓ(p∗(Mk)) by Proposition 3.15 (2). We now apply the
above to Verma modules, viewed as Bq-comodules via the adjoint action of U res(b). First we recall some
well-known generalities.

Recall from [26, I.5.8 & Proposition I.5.12] that if N is a representation of Bk, then there is a
corresponding Gk-equivariant sheaf L(N) on the flag variety Xk := Gk/Bk such that Ri IndGk

Bk
N is

canonically isomorphic to the sheaf cohomology H i(Xk,L(N)) for each i ≥ 0. Moreover, the sheaf
Dλ

Xk
of crystalline λ-twisted differential operators on Xk, for λ ∈ h∗k, is the Gk-equivariant sheaf

corresponding to the Verma module M(λ) = U(gk)/(x− λ(x) : x ∈ bk) viewed as a Bk-representation
via the adjoint action (c.f. [37, pages 12& 20] in characteristic 0, see also [12, 3.1.3] in positive
characteristic). Thus we see that the sheaf cohomology of Dλ

Xk
coincides with R IndGk

Bk
(M(λ)).

Definition 3.34. We set

T k
P := {γ ∈ TR

P : γ(Kμ) ≡ 1 (mod π) for all μ ∈ P}.

This is a subgroup of TR
P containing P . Note that any λ ∈ T k

P induces an element of h∗k which we
also denote by λ. Hence the corresponding Verma module Mλ satisfies (Mλ)k ∼= M(λ).

Finally recall that the object Dλ ∈ CR is given by Dλ = p∗(Mλ) and so similarly Dλ
k = p∗((Mλ)k).

Thus we have RΓ(Dλ
k)

∼= R Ind((Mλ)k). Putting everything together, we get by the Lemma:

Proposition 3.35. Let λ ∈ T k
P . Then the cohomology of Dλ

k with respect to Γ coincides with the
classical sheaf cohomology of twisted differential operators on the flag variety, i.e. there is a
canonical isomorphism RiΓ(Dλ

k)
∼= H i(Xk,D

λ
Xk

) for every i ≥ 0.

The above will allow us to compute the global sections of Dλ
k . But first we need to mention some

restrictions on the prime p.

Definition 3.36. Recall that the prime p is said to be bad for an irreducible root system Φ if

• p = 2 when Φ = Bl, Cl or Dl;

• p = 2 or 3 when Φ = E6, E7, F4 or G2; and

• p = 2, 3 or 5 when Φ = E8.

We say that p is bad for Uq if it is bad for some irreducible component of the associated root
system, and we say that p is good if it is not bad. Finally, we say that p is very good for Uq if it is a
good and no irredicuible component of the root system is of type Amp−1 for some integer m ≥ 1.

Corollary 3.37. Let λ ∈ T k
P and assume that p is a very good prime. Then Dλ

k is Γ-acyclic and
Γ(Dλ

k)
∼= U(gk)χλ

, where χλ is the corresponding character of the Harish-Chandra centre of U(gk).

Proof. This follows from the Proposition and [12, Proposition 3.4.1] (this is where the restrictions on p
are required).
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3.14. Twists of Coherent D-Modules

Observe that for μ ∈ TR
P and M ∈ Dλ, the left D-action on M(μ) makes M(μ) into an element of

Dλ+μ. We investigate those twists.

Proposition 3.38. Let μ ∈ P+ and λ ∈ T k
P . Assume that p is a good prime. Then

RiΓ(Dλ(μ)k) = 0

for all i > 0.

Proof. We have Dλ(μ)k = p∗((Mλ)k ⊗k k−μ). Using [27, II.4.1.(2)], we see that the corresponding Gk-
equivariant sheaf on the flag variety Xk is Dλ

Xk
⊗OXk

L(μ). Thus we are reduced to showing that

H i
(

Xk,D
λ
Xk

⊗OXk
L(μ)

)

= 0 (3.2)

for all i > 0.
Now consider the filtration on Dλ

Xk
by degree of differential operators, which naturally induces a

filtration on Dλ
Xk

⊗OXk
L(μ) by

Fi

(

Dλ
Xk

⊗OXk
L(μ)

)

= Fi(D
λ
Xk

)⊗OXk
L(μ).

Let τ : T ∗Xk → Xk be the cotangent bundle. Since L(μ) is locally free, the corresponding associated
graded is

gr
(

Dλ
Xk

⊗OXk
L(μ)

)

∼= gr(Dλ
Xk

)⊗OXk
L(μ) ∼= τ∗OT ∗Xk

⊗OXk
L(μ).

Next, by [22, 0.5.4.10],

τ∗OT ∗Xk
⊗OXk

L(μ) ∼= τ∗
(

OT ∗Xk
⊗OT∗Xk

τ∗L(μ)
)

∼= τ∗τ
∗L(μ).

Moreover, because τ is an affine morphism, we get from [23, Cor. I.3.3] that

H i (Xk, τ∗τ
∗L(μ)) ∼= H i (T ∗Xk, τ

∗L(μ))

for all i ≥ 0. Finally, under the assumption that p is a good prime, it was shown in [32, Theorem 2] that
H i (T ∗Xk, τ

∗L(μ)) = 0 for all i > 0.

Putting everything together, we have obtained that gr
(

Dλ
Xk

⊗OXk
L(μ)

)

is Γ-acyclic. Now, since

Xk is Noetherian, cohomology commutes with direct limits by [24, Proposition III.2.9], and so

each homogeneous component gri
(

Dλ
Xk

⊗OXk
L(μ)

)

is Γ-acyclic, and hence each filtered piece

Fi

(

Dλ
Xk

⊗OXk
L(μ)

)

is Γ-acyclic as well. Therefore (3.2) holds as required since Dλ
Xk

⊗OXk
L(μ) is

the direct limit of the Fi

(

Dλ
Xk

⊗OXk
L(μ)

)

.

Corollary 3.39. Assume p is a good prime. Then for μ ∈ P+ and for any n ≥ 1, we have that
Dλ(μ)/πnDλ(μ) is Γ-acyclic.

Proof. We proceed by induction on n. The case n = 1 is just the previous Proposition. Now for n ≥ 1,
we have a short exact sequence

0 → Dλ(μ)/πDλ(μ) → Dλ(μ)/πn+1Dλ(μ) → Dλ(μ)/πnDλ(μ) → 0

where by the Proposition and by induction hypothesis, the two side terms are acyclic. Hence by the long
exact sequence the middle term is acyclic.

As a consequence of this we can obtain a D-modules version of Proposition 3.19 which will be useful
to us later. We first need a lemma:
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Lemma 3.40. Let M ∈ coh(Dλ). Then there is an Aq-submodule N of M such that N ∈ coh(CR)
and N generates M as a D-module.

Proof. Let m1, . . . ,mn be a generating set for M as a D-module. Viewing M as an object of CR, we
simply let N be the smallest coherent submodule of M containing m1, . . . ,mn, as given by Lemma 3.20.

Theorem 3.41. Let M ∈ coh(Dλ). Then M(μ) is generated by finitely many global sections for
μ >> 0. Moreover, if πM = 0 and if p is a good prime, then M(μ) is also Γ-acyclic for μ >> 0.

Proof. Let N ∈ coh(CR) be as in the previous lemma. Note that M(μ) ∈ coh(Dλ+μ
n ) for any μ. By

Proposition 3.19 we see that N(μ) is generated by finitely many global sections for μ >> 0. Since M is
generated by N as a D-module, the first claim follows.

Now assume πM = 0. Fix any μ1 such that M(μ1) is generated by its global sections. Then we have
a surjection (Dλ+μ1)a → M(μ1) which in fact factors through a surjection f1 : (D

λ+μ1

k )a → M(μ1).
Let K = ker f1. Note that K ∈ coh(Dλ+μ1) by Proposition 3.30 and that πK = 0. So by the above
argument applied to K, we can find μ2 >> 0 and a surjection f2 : (D

λ+μ1+μ2

k )b → K(μ2). Carrying on
we obtain μ1, . . . , μN ∈ P+ and a resolution in coh(Dλ+μ)

FN
fN→ · · · f2→ F1

f1→ M(μ) → 0

where μ =
∑N

j=1 μi and for 1 ≤ i ≤ N , Fi is a direct sum of finitely many copies of modules of the form

D
λ+μ1+...+μi

k (μi+1 + . . .+μN ). Note that all theFi are Γ-acyclic by Proposition 3.38. WriteK0 = M(μ)
and Ki = ker fi for 1 ≤ i ≤ N . Then for each 1 ≤ i ≤ N we have a short exact sequence

0 → Ki → Fi → Ki−1 → 0

Since Fi is acyclic the long exact sequence implies that RjΓ(Ki−1) ∼= Rj+1Γ(Ki) for all j ≥ 1. Thus we
obtain

RjΓ(M(μ)) ∼= Rj+1Γ(K1) ∼= Rj+2Γ(K2) ∼= . . . ∼= Rj+NΓ(KN ) = 0

for any j ≥ 1 as required.

Remark 3.42. We expect the above result to hold for all modules, not just for those killed by π.

4. BANACH ̂Oq(B)-COMODULES

In this Section, we define various categories of comodules over certain π-adically complete or Banach
coalgebras. In doing so, we will often use techniques to do with topologies on tensor products, and so
we begin by establishing the necessary facts on this topic.

4.1. Completed Tensor Products and Banach Hopf Algebras

Recall from [42, Section 17B] that given two seminorms p and p′ on the vector spaces V and W
respectively, the tensor product seminorm p⊗ p′ on V ⊗L W is defined in the following way: for
x ∈ V ⊗L W , we have

p⊗ p′(x) := inf
{

max
1≤i≤r

p(vi) · p′(wi) : x =

r
∑

i=1

vi ⊗ wi, vi ∈ V,wi ∈ W
}

.

If V and W are locally convex spaces, then we will always only consider the projective tensor topology
on V ⊗L W , i.e the topology obtained via these tensor product seminorms. One can then construct the
Hausdorff completion V ̂⊗LW of this space, which we call the completed tensor product of V and W .
Note that this construction is functorial, so that two continuous linear maps f : V → W and g : X → Y
induce a continuous linear map f ̂⊗g : V ̂⊗LX → W ̂⊗LY . In general, if V and W are Hausdorff, so is
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V ⊗L W . When V and W are Banach spaces, so is V ̂⊗LW , and ̂⊗L is a monoidal structure on the
category of L-Banach spaces.

Given an L-vector space V and an R-lattice V ◦ ⊂ V , we may define a norm on V called the gauge
norm, given by

||v||gauge = inf
a∈L

v∈aV ◦

|a| .

This infimum simply equals |πn| where n ∈ Z is the largest integer such that v ∈ πnV ◦, hence the
topology induced by the gauge norm is the topology induced by the π-adic filtration on V ◦. Recall then
that if V is a normed L-vector space, then its norm is equivalent to the gauge norm associated to the
unit ball V ◦, see [42, Lemma 2.2]. Hence, without loss of generality, we will always assume that our
normed vector spaces are equipped with the π-adic norm induced from their unit balls. Moreover, recall
that given two normed L-vector spaces V and W with unit balls V ◦ and W ◦, the unit ball of V ⊗L W
equipped with the tensor product norm as above is V ◦ ⊗R W ◦, see [13, Lemma 2.2]. This is a fact we
will often use without further mention.

Recall that a bounded linear map f : X → Y between two L-locally convex spaces is called strict if
it induces a topological isomorphism

f̂ : X/ ker f → Im f.

The following result says that strict maps behave well under tensor products:

Lemma 4.1. Suppose that V is a vector subspace of a locally convex space W equipped with the
subspace topology and let U be any other locally convex space. Then

1. the canonical maps V ⊗L U → W ⊗L U andU ⊗L V → U ⊗LW are strict embeddings where
we give the left hand side the tensor product topology;

2. the canonical maps V ̂⊗LU → W ̂⊗LU and U ̂⊗LV → U ̂⊗LW are strict embeddings;

3. the functor of taking tensor product with U , in the category of locally convex spaces,
preserves strict surjections.

Proof. (i) The map V ⊗L U → W ⊗L U is clearly injective and by [42, Proposition 17.4.iii] we see that
it is isometric, hence an isomorphism onto its image.

(ii) This follows from (i) and [14, 1.1.9 Cor 6].
(iii) This follows immediately from the proof of [10, Appendix A, Lemma A.34].

Remark 4.2. From now on, given any U, V,W as in the Lemma, we shall not distinguish between
V ̂⊗LU and the subspace of W ̂⊗LU isomorphic to it.

Next we turn to Banach coalgebras and Hopf algebras.

Definition 4.3. An L-Banach coalgebra is a coalgebra object in the monoidal category of L-
Banach spaces. In other words it is a Banach space C equipped with continuous linear maps
Δ : C → C ̂⊗LC and ε : C → L which satisfy the usual axioms:

(Δ̂⊗ idC) ◦Δ = (idC ̂⊗Δ) ◦Δ, (idC ̂⊗ε) ◦Δ = (ε̂⊗ idC) ◦Δ = idC .

A morphism of coalgebras f : C → D is a continuous linear map such that εD ◦ f = εC and
(f ̂⊗f) ◦ΔC = ΔD ◦ f .

Given a Banach coalgebra C as above, a Banach C-comodule is a Banach space M equipped
with a continuous linear map ρM : M → M̂⊗LC, which satisfies:

(idM ̂⊗Δ) ◦ ρM = (ρM̂⊗ idC) ◦ ρM, (idM ̂⊗ε) ◦ ρM = idM .

A morphism of comodules f : M → N is then a continous linear map such that ρN ◦ f = ρM ◦
(f ̂⊗ idC). We denote by Comod(C) the category of Banach C-comodules.
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An L-Banach Hopf algebra is an L-Banach algebra H which is also a coalgebra such that Δ
and ε are algebra homomorphisms, and furthemore H is equipped with a continuous linear map
S : H → H , which satisfies

m ◦ (S ̂⊗ idH) ◦Δ = ι ◦ ε = m ◦ (idH ̂⊗S) ◦Δ
where m : H ̂⊗LH → H and ι : L → H denote the multiplication map and the unit in H respec-
tively. A morphism of Hopf algebras f : H → S is then a continuous algebra homomorphism
which is also a morphism of coalgebras, such that SD ◦ f = f ◦ SH .

We showed in [18, Proposition 3.3] that for any two R-modules M and N , there is a canonical
isomorphism of Banach spaces ̂ML̂⊗L

̂NL
∼= ( ̂M ⊗R N)L. In particular this implies that if H is an R-

Hopf algebra, then ̂HL is a Banach Hopf algebra. Indeed, the maps ε and S extend to the completion,
and the comultiplication gives rise to a map ̂Δ : ̂HL → ( ̂H ⊗R H)L ∼= ̂HL̂⊗L

̂HL. These satisfy the Hopf
algebra axioms since they do on the dense subset HL. So in particular we see that ̂Oq := ̂Aq ⊗R L and
̂Oq(B) := ̂Bq ⊗R L are Banach Hopf algebras.

4.2. ̂Bq-Comodules

We now define a suitable version of comodules over ̂Bq.

Notation 1. Given two R-modules M and N , we write M ̂⊗RN to denote the π-adic completion
̂M ⊗R N of M ⊗R N . This construction satisfies the usual associativity and additivity properties

of tensor products, and is functorial.

Definition 4.4. A ̂Bq-comodule is a π-adically complete R-module M equipped with a map
ρ : M → M̂⊗RBq such that

(ρ̂⊗1) ◦ ρ = (1̂⊗Δ) ◦ ρ, and (1̂⊗ε) ◦ ρ = 1M.

A morphism of ̂Bq-comodules is an R-module map f : M → N such that (f ̂⊗1) ◦ ρM = ρN ◦ f . We
denote the set of comodule morphisms M → N by Hom

̂Bq
(M,N).

Lemma 4.5. Suppose that M is a ̂Bq-comodule. Then M/πnM is a Bq-comodule for every n ≥ 1.

Hence M is a ̂U res(b)-module and, moreover, if ρn denotes the Bq-comodule map on M/πnM and

ρ denotes the ̂Bq-comodule map on M, then ρ = lim←− ρn.

Proof. There are isomorphisms

(M̂⊗RBq)/π
n(M̂⊗RBq) ∼= (M⊗R Bq)/π

n(M⊗R Bq) ∼= (M/πnM)⊗R Bq,

and hence ρ : M → M̂⊗RBq induces a map

ρn : M/πnM → (M/πnM)⊗R Bq

for every n ≥ 1. The comodule axioms are satisfied since they are obtained by reducing the equalities

(ρ̂⊗1) ◦ ρ = (1̂⊗Δ) ◦ ρ, and (1̂⊗ε) ◦ ρ = 1M

modulo πn. Hence M/πnM is a U res(b)-module and even a U res(b)/πnU res(b)-module, and the
structures are compatible with the maps M/πn+1M → M/πnM. Taking inverse limits we see that M

is a ̂U res(b)-module. The last part is immediate since lim←− ρn = ρ̂ = ρ as M is π-adically complete.

Corollary 4.6. For any two ̂Bq-comodulesM andN, there is a canonical isomorphism Hom
̂Bq
(M,N)

∼= lim←−HomBq(M/πnM,N/πnN). Moreover every ̂Bq-comodule homomorphism is ̂U res(b)-linear.
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Proof. Given a ̂Bq-comodule homomorphism f : M → N, the induced map fn : M/πnM → N/πnN
is a Bq-comodule map for every n ≥ 1: since f is a comodule homomorphism we have that ρN ◦ f =

ρM ◦ (f ̂⊗1), which gives that fn is a comodule homomorphism by reducing modulo πn. Moreover the

maps fn uniquely determine f since f = lim←− fn. Hence this implies that f is ̂U res(b)-linear since the
maps fn are all U res(b)-linear. All this defines an injective map

Hom
̂Bq
(M,N) → lim←−HomBq(M/πnM,N/πnN)

and we need to check that it is surjective. But given an inverse system of maps fn : M/πnM → N/πnN,
passing to the inverse limit gives rise to a map f : M → N which is a comodule homomorphism since
the axioms are satisfied modulo πn for every n ≥ 1.

4.3. Topologically Integrable ̂U res(b)-Module

We now start preparing for an equivalent notion to the notion of ̂Bq-comodules. Note that by Lemma

4.5, if M is a ̂Bq-comodule, then M/πnM is an integrable U res(b)-module. We want an analogous notion
of integrable modules at this π-adically complete level.

Definition 4.7. Let M be a π-adically complete ̂U res(b)-module. Given λ ∈ P , we define the λ-
weight space Mλ to be the corresponding weight space of M viewing it as a U res(b)-module. We

say that M is topologically integrable as a ̂U res(b)-module if:

1. M is topologically (U res)0-semisimple, i.e for every m ∈ M there exists a family (mλ)λ∈P such
that mλ ∈ Mλ and

∑

λ∈P mλ converges to m in M ; and

2. for every i the action of Eαi on M is locally topologically nilpotent, i.e for every m ∈ Mλ the

sequence E
(r)
αi ·m → 0 as r → ∞.

Proposition 4.8. Let M be a U res(b)-module and let M be a ̂U res(b)-module. Then:

1. if M is topologically integrable, then it has a canonical ̂Bq-comodule structure; and

2. if M is integrable, then ̂M is a topologically integrable ̂U res(b)-module.

Proof. For 1., note that it follows immediately from the definition of topologically integrable ̂U res(b)-
module that M/πnM is integrable as a U res(b)-module for every n ≥ 1. So there are comodule maps

ρn : M/πnM → M/πnM⊗R Bq
∼= (M⊗R Bq)/π

n(M⊗R Bq)

for every n ≥ 1, which are compatible with the maps M/πa+1M → M/πaM. Taking inverse limits gives
a map

ρ : M → M̂⊗RBq

which gives a comodule structure to M: the comodule axioms hold modulo πn for every n ≥ 1 so hold
for ρ. The module structure arising from ρ agrees by definition with the initial module structure on M.

For 2., let m ∈ ̂M . Then there exists m0,m1, . . . in M such that

m =
∞
∑

i=0

πimi.

Now, as M is integrable, we can find ascending chain of finite subsets Sj ⊆ P such that mj =
∑

λ∈Sj
mj,λ for some mj,λ ∈ Mλ. Let S =

⋃

j≥0 Sj . For each λ ∈ S, let

n(λ) = inf{j : λ ∈ Sj}.
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Then set

mλ =
∑

j≥n(λ)

πjmj,λ ∈ πn(λ)
̂Mλ.

Since each set Sj is finite, each set {λ : n(λ) < j} is also finite and so
∑

λ∈S mλ converges to m.

Finally, write m =
∑

j≥0 π
jmj again, and pick N ∈ N. Since M is integrable, for every 0 ≤ j < N ,

E
(r)
αi mj = 0 for r >> 0. So there exists R > 0 such that for all r > R and for any 0 ≤ j < N , E(r)

αi mj =
0. Then we have

E(r)
αi

m =
∑

j≥N

πjE(r)
αi

mj ∈ πN
̂M

for r > R. So E
(r)
αi m → 0 as r → ∞ as required.

We aim to show a converse to Proposition 4.8 (1). Similarly to the uncompleted situation, it
boils down to showing that closed submodules of topologically integrable modules are topologically
integrable. We are only able to do this for torsion-free modules, but this is sufficient for our needs.

Definition 4.9. A Banach ̂U res(b)L-module M is called topologically integrable if its unit ball M◦ is

a topologically integrable ̂U res(b)-module.

Note that topologically integrable ̂U res(b)L-modules are automatically topologically semisimple as

Banach ̂(U res)0L-modules, in the sense of [18, Section 5.1]. Thus we have:

Theorem 4.10 ([18, Theorem 5.1]). Suppose that M is a topologically integrable ̂U res(b)L-module.
Then for each m ∈ M, there exists a unique family (mλ)λ∈P with mλ ∈ Mλ such that

∑

λ∈P mλ

converges to m. Moreover, if m ∈ N where N is a closed U0
q -invariant subspace, then each mλ ∈ N.

4.4. An Equivalence of Categories

We now use above results to obtain a description of the category of Banach ̂Oq(B)-comodules.

Proposition 4.11. Let M be a π-torsion free ̂Bq-comodule. Then M is a topologically integrable
̂U res(b)-module.

Proof. We have the comodule map M → M̂⊗RBq which is a split injection. As it is split, we must have

πn(M̂⊗RBq) ∩ ρ(M) = πnρ(M) = ρ(πnM)

so that ρ is in fact an isometry with respect to the π-adic norms. Moreover, ρ is a comodule homomor-

phism if we give M̂⊗RBq the comodule map 1̂⊗Δ, c.f. Remark 2.6. Hence this gives rise to a ̂U res(b)L-

linear isometry ML → ML̂⊗L
̂Oq(B) by Corollary 4.6.

Note that M̂⊗RBq is the π-adic completion of M⊗R Bq , which is a Bq-comodule via 1⊗Δ. Since
Bq-comodules are integrable U res(b)-modules by Theorem 2.7, it follows from Proposition 4.8 (2) that

M̂⊗RBq is topologically integrable, hence so is ML̂⊗L
̂Oq(B). Now we identify M with its image in

M̂⊗RBq = (ML̂⊗L
̂Oq(B))◦. Since the map was an isometry we also have M = ML ∩M̂⊗RBq. Pick

m ∈ M. Then inside ML̂⊗L
̂Oq(B) we automatically have m =

∑

λ∈P mλ and E
(r)
αi m → 0 as r → ∞. So

we just need to check that each mλ ∈ M. However by Theorem 4.10, the mλ are uniquely determined

by m and must belong to ML since it is complete hence closed in ML̂⊗L
̂Oq(B). On the other hand,

since M̂⊗RBq is topologically integrable and m ∈ M ⊂ M̂⊗RBq we must have mλ ∈ M̂⊗RBq for all λ.
Therefore each mλ ∈ (M̂⊗RBq) ∩ML = M as required.
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Note that by Proposition 4.8 (1) there is a canonical functor between the category of topologically

integrable ̂U res(b)-modules and ̂Bq-comodules. Indeed, given a module map f : M → N its restriction
modulo πn is a module map between two integrable U res(b)-modules by definition, hence is a comodule

homomorphism. Passing to the inverse limit, f is a ̂Bq-comodule homomorphism.

Corollary 4.12. The canonical functor between the category of topologically integrable ̂U res(b)-

modules and the category of ̂Bq-comodules restricts to an equivalence of categories between the
full subcategories of π-torsion free objects.

Proof. By Proposition 4.11, the restriction of the functor to the torsion-free modules is essentially
surjective. It is evidently faithful. Moreover, it is full by Corollary 4.6.

If M is a topologically integrable ̂U res(b)L-module then we may apply the above functor to its unit

ball and extend scalars to construct a functor to Comod(̂Oq(B)). This gives our promised Theorem A:

Proof of Theorem A. By the proof of the above Corollary, this functor is full and faithful so that we just

need to show that it is essentially surjective. Now suppose that N is a Banach ̂Oq(B)-comodule. Then

there is a split injection ρ : N → N̂⊗L
̂Oq(B) which is therefore strict by the Lemma below. Moreover ρ

is a comodule homomorphism where we give the right hand side the comodule map 1̂⊗̂Δ. Hence N is

topologically isomorphic to a subcomodule M of N̂⊗L
̂Oq(B), where M is equipped with the subspace

topology. We note that since 1̂⊗̂Δ has norm ≤ 1, so does its restriction to M, and so it preserves unit

balls. Thus we see that M◦ is a ̂Bq-comodule, and therefore is a topologically integrable ̂U res(b)-module
by Proposition 4.11. So we have that M is in the image of our functor.

Lemma 4.13. If X and Y are two L-Banach spaces and f : X → Y is a split continuous linear
map, then f is strict.

Proof. Suppose the splitting is given by g : Y → X. Then we have

||x||X = ||g(f(x))||X ≤ ||g|| ||f(x)||Y

for all x ∈ X. This implies that f is strict by [14, Lemma 1.1.9/2].

Appendix

APPENDIX A. HOPF DUALS OF R-HOPF ALGEBRAS AND THEIR COMODULES

We wish to establish some duality facts to do with Hopf algebras over R which are well known
when working over fields but for which we couldn’t find references for Hopf algebras over more general
commutative rings. Most of our proofs work using the usual arguments but one has to be a bit careful
when dealing with torsion.
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1. Hopf Duals Over R
For the entirety of this Section, H will denote a fixed Hopf R-algebra. For our purposes, it will be

enough to work in the case where H is torsion-free. First we wish to define a notion of Hopf dual. Since
H has no torsion, it embeds as a sub-Hopf algebra of HL = H ⊗R L. We will define the Hopf dual to be
a sub-Hopf algebra of (HL)

◦. Let J denote the set of ideal I in H such that H/I is a finitely generated R-
module. Moreover, denote by J′ the set of ideals I in H such that H/I is free of finite rank. Finally, write
H∗ for HomR(H,R). Note that H∗ is always torsion-free since R is a domain: if πf = 0 then πf(u) = 0
for all u ∈ H and so f(u) = 0 for all u.

Definition A.1. We define the Hopf dual of H to be

H◦ := {f ∈ H∗ : f |I = 0 for some I ∈ J}.
By the above H◦ is torsion-free.

If n ≥ 0 and x ∈ H we have for any f ∈ H∗ that f(x) = 0 if and only if f(πnx) = 0. Thus if
0 �= f ∈ H◦ then f |I = 0 for some I ∈ J where H/I is not torsion. Moreover we then have f |IL∩H = 0
and so by replacing I with IL ∩H we may in addition assume that H/I is torsion-free. Since R is a PID
this shows that

H◦ = {f ∈ H∗ : f |I = 0 for some I ∈ J′}.
Moreover by extending scalars we may identify H◦ with an R-submodule of H◦

L. From this it follows by
the standard arguments that H◦ is the algebra of matrix coefficients of H-modules which are free of finite
rank over R. Since this collection of H-modules is closed under taking tensor products, direct sums and
duals, and we can take dual bases, we have proved

Lemma A.2. H◦ is an sub-Hopf R-algebra of H◦
L. In particular the algebra maps on H◦ are just

the dual maps of the coalgebra maps on H and vice-versa.

Remark A.3. Some of the above arguments were implicit in Lusztig’s work, see [34, 7.1].

2. H◦-Comodules as H-Modules
We now wish to establish some correspondence between comodules over H◦ and certain H-modules.

We call an H-module M locally finite if for all m ∈ M , Hm is finitely generated over R.

Proposition A.4. Every H◦-comodule has a canonical structure of a locally finite H-module
with respect to which every comodule homomorphism is an H-modules homomorphism. In
other words there is a canonical faithful embedding of categories between the category of H◦-
comodules and the category of locally finite H-modules.

Proof. This is just the usual argument. If M is an H◦-comodule with coaction ρ : M → M ⊗R H◦,
write ρ(m) =

∑

m1 ⊗m2. Then we set

u ·m =
∑

m2(u)m1

for all u ∈ H . It follows from the comodule axioms that this gives a well defined module structure, i.e that
1 ·m = m and that u · (u′ ·m) = (uu′) ·m for all u, u′ ∈ H and all m ∈ M . Moreover by definition of the
module structure, H ·m is finitely generated over R for all m ∈ M . Finally it follows from the definition
of the action that any comodule homomorphism is also a module homomorphism.

Next, we want to show that the functor we just defined is full, i.e that every H-module map between
two H◦-comodules is a comodule homomorphism. We first need a technical result. Suppose M is a
locally finite H-module. Note that we have an R-module injection φM : M → HomR(H,M) given by
φM (m)(u) = um for all u ∈ H and m ∈ M . Moreover we have a map

θM : M ⊗R H◦ → HomR(H,M)

given by θM (m⊗ f)(u) = f(u)m. When the H-module structure on M arises from an H◦-comodule
structure then we have φM = θM ◦ ρ. Therefore we can use this expression for φM as an alternative
definition of the module structure on M . We claim that the map θM is injective. More generally we have
the following
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Lemma A.5. Let A and B be R-modules, A∗ = HomR(A,R) and suppose C is any R-submodule
of A∗ such that A∗/C has no π-torsion. Let M be any R-module and set

θM,C : HomR(B,M)⊗R C → HomR(A⊗R B,M)

to be defined by θM,C(g ⊗ f)(x⊗ y) = f(x)g(y). Then the map θM,C is injective.

Proof. Suppose that 0 �= u =
∑s

i=1 gi ⊗ fi ∈ HomR(B,M)⊗R C. TheR-submoduleN of HomR(B,M)
generated by the gi is finitely generated, so since R is a PID we can pick a generating set
n1, . . . , nl, t1, . . . , tm for N such that n1, . . . , nl are torsion-free while t1, . . . , tm are π-torsion, and

N =

l
⊕

i=1

Rni ⊕
m
⊕

j=1

Rtj.

For each 1 ≤ j ≤ m, let aj be the positive integer such that Rtj ∼= R/πajR.
Now, to show that θM,C(u) �= 0 it suffices to show that the restriction of θM,C to the span of the

ni ⊗ fj and tk ⊗ fj is injective. So suppose we are given

v =
∑

rijni ⊗ fj +
∑

r′kjtk ⊗ fj ∈ ker θM,C .

Evaluating at x⊗ y we get
∑

i,j rijfj(x)ni(y) +
∑

k,j r
′
kjfj(x)tk(y) = 0 for all x ∈ A and y ∈ B. In

particular we have
∑

i,j rijfj(x)ni +
∑

k,j r
′
kjfj(x)tk = 0 for any fixed x ∈ A. Since we have a direct

sum decomposition of N it follows that
∑

j

rijfj(x) = 0 and
∑

j

r′kjfj(x) ∈ πakR

for all x ∈ A and all 1 ≤ i ≤ l and 1 ≤ k ≤ m. In particular, for all k,
∑

j r
′
kjfj = πakgk for some gk ∈ C

since A∗/C has no π-torsion.
Therefore we have

∑

j

rijfj = 0 and
∑

j

r′kjfj ∈ πakC,

and hence

ni ⊗
∑

j

rijfj = 0 = tk ⊗
∑

j

r′kjfj

for all i, k, and so v = 0 as required.

Corollary A.6. Let M be an R-module.

1. The map θM : M ⊗R H◦ → HomR(H,M) is injective.

2. The map M ⊗R H◦ ⊗R H◦ → HomR(H ⊗R H,M) sending m⊗ f ⊗ g to x⊗ y �→ f(x)g(y)m
is injective.

Proof. Let A = H and C = H◦. From the definition of H◦ it follows that A∗/C is torsion-free. Then
(i) follows immediately from the Lemma by putting B = R. For (ii) note that this map is simply the
composite

M ⊗R H◦ ⊗R H◦ HomR(H,M)⊗R H◦ HomR(H ⊗R H,M)
θM⊗1 �

where �(f ⊗ g)(x⊗ y) = g(y)f(x). The map θM ⊗ 1 is injective by (i) and because H◦ is flat while the
map � is injective by putting B = H in the Lemma.

We can now deduce the result we were aiming for.
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Proposition A.7. The functor associating any H◦-comodule to the corresponding H-module is a
fully faithful embedding.

Proof. From what we have done already we just need to show that any H-module map f : M → N
between two H◦-comodules is a comodule homomorphism. Write ρM and ρN for the coactions on M
and N respectively, and pick m ∈ M and u ∈ H . Then we know that um =

∑

m2(u)m1 and we have
uf(m) =

∑

m2(u)f(m1) since f is a module homomorphism. On the other hand by definition of the
action on N we have uf(m) =

∑

f(m)2(u)f(m)1. To show that f is a comodule map we need to show
that

∑

f(m1)⊗m2 =
∑

f(m)1 ⊗ f(m)2

or in other words that ρN ◦ f = (f ⊗ 1) ◦ ρM .
Write ρ̃1 = ρN ◦ f and ρ̃2 = (f ⊗ 1) ◦ ρM . Moreover recall the map φ : M → HomR(H,M) given by

φ(m)(u) = um. Then let

φ̃ = φ ◦ f : M → HomR(H,N)

so that φ̃(m)(u) = uf(m). Then by definition φ̃ = θN ◦ ρ̃1. On the other hand by our above observation
we see that φ̃ = θN ◦ ρ̃2. Since θN is injective the result follows.

From now on, if M is a locally finite H-module we will say that it is an H◦-comodule to mean that
its H-module structure arises from an H◦-comodule structure.

In order for the above functor to be an isomorphism of categories we therefore just need to show
that it is surjective. This may not be true in general, however we can write a very simple necessary and
sufficient condition for an isomorphism of categories to hold. Suppose M is a locally finite H-module
and let φM : M → HomR(H,M) be given by φM (m)(x) = x ·m. We have the map θM : M ⊗R H◦ as
before.

Proposition A.8. A locally finite H-module M is an H◦-comodule if and only if φM (m) belongs
to the image of θM for all m ∈ M .

Proof. If M is a comodule with coaction ρ, then by our observation preceding Lemma A.5 we have
φM = θM ◦ ρ where φM comes from the induced H-module structure, and the result is clear. Conversely
assume φM (m) belongs to the image of θM for all m ∈ M . Fix m ∈ M . Then there exists m1, . . . ,mn ∈
M and f1, . . . , fn ∈ H◦ such that for all x ∈ H , x ·m =

∑n
i=1 fi(x)mi and we define

ρ(m) =
n
∑

i=1

mi ⊗ fi,

i.e ρ(m) is the unique element of M ⊗R H◦ such that θM (ρ(m)) = φM (m). We now have to check that
this satisfies the comodule axioms. By definition, the counit on H◦ is defined by ε(f) = f(1) and so

(1⊗ ε) ◦ ρ(m) =

n
∑

i=1

fi(1)mi = 1 ·m = m

as required. Finally we aim to show that the following diagram commutes:

M M ⊗R H◦

M ⊗R H◦ M ⊗R H◦ ⊗R H◦

ρ

ρ 1⊗Δ

ρ⊗1

By Corollary A.6 (2), the natural map M ⊗R H◦ ⊗R H◦ → HomR(H ⊗R H,M) is injective. Hence it
suffices to show that (1⊗Δ) ◦ ρ(m) and (ρ⊗ 1) ◦ ρ(m) act in the same way on H ⊗R H for all m ∈ M .
But the former sends x⊗ y to (xy) ·m while the latter sends x⊗ y to x · (y ·m) for any x, y ∈ H , which
are clearly equal.
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Since Lemma A.5 was quite general, the same argument as in the above proof shows the following

Lemma A.9. Suppose M is a locally finite H-module and let C be a subcoalgebra of H◦ such
that H∗/C is torsion-free. If φM (m) belongs to the image of θM,C for all m ∈ M then M is a
C-comodule.
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