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1. INTRODUCTION
From the beginning of 1960s, the theory of pseudo-differential operators has played a significant role

in several stimulating and profound investigations into linear PDE. Since the 1980s, this tool has also
provided various remarkable results in nonlinear PDE.

Treatments of pseudo-differential operators most frequently focus on operators with smooth coef-
ficients, but it would be also good to employ these operators with symbols of minimal smoothness,
which have many applications to diverse problems in PDE, from nonlinear problems to problems in
non-smooth domains (see [5, 8, 40, 41] and the references therein).

One of the major role of pseudo-differential operator is its usage in p-adic analysis and the modeling
of phenomena in the setting of p-adic field Qp. The theory of p-adic field Qp (as the completion of the
field Q with respect to specific norm which is called p-norm) has been initiated a few decades ago
for its motivations in various fields such as string theory, cluster networks and buildings, models in
geophysics, dynamic systems, Brownian motions in stochastic process, etc. (see for example [8, 20] and
the references therein). The pseudo-differential equations over p-adic fields have been investigated in
numerous results and can be found in the literature (see also [4, 10–12, 17, 19, 21–25, 27, 33, 36, 37,
42, 43, 46, 47]).

The Taibleson fractional operator is one of the most considerable operators which is obtained by
taking a certain symbol in the definition of pseudo-differential operator.

In Sections 3 and 4, motivated by the results of Albeverio et al. [6] and using the mentioned operator
we first deal with the following Cauchy problems, respectively

⎧
⎪⎨

⎪⎩

∂2u

∂t2
+ a

∂u

∂t
+ bDα

xu+ cu|u|2m = f(x, t), x ∈ Qp, a �= 0, t > 0,

u(x, 0) = φ(x), ut(x, 0) = g(x), x ∈ Qp, t = 0

(1.1)
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and
⎧
⎨

⎩

∂u

∂t
+ aDα

xu+ bu|u|2m = f(x, t), x ∈ Qp, t > 0,

u(x, 0) = φ(x), x ∈ Qp, t = 0 ,
(1.2)

where α > 0 and Dα
x is the Taibleson fractional operator introduced on the space of distributions [38].

In Section 5, replacing the Taibleson fractional operator Dα
x considered in problems as above by an

arbitrary pseudo-differential operator A with a symbol A satisfying the equality (4) in [3] we conclude
some results inspired by the proof of theorems relevant to the problems (1.1) and (1.2) in the vectorial
case of p-adic fields Qr

p. Finally, some computations are presented in an appendix at the end of paper.

Remark 1.1. We remind that a class of homogeneous semi-linear pseudo-differential equation
with certain coefficients for the first-order case has been previously considered (see [6], Section
6) while our comparable problem (1.2) is non-homogeneous with arbitrary constant coefficients.

2. PRELIMINARIES AND AUXILIARY FACTS

Let us recall here some basic facts needed in the sequel from [44]. Here and in what follows, we will
indicate by N,Z,Q and C the sets of natural, integer, rational and complex numbers, respectively, and
by p the prime numbers, p = 2, 3, 5, . . .. Also, Qp stands for the field of p-adic numbers which is the
completion of the field Q with the following p-adic norm | · |p : |0|p = 0; if an arbitrary rational number

x �= 0 is represented as x = pγ
m

n
uniquely, where γ = γ(x) ∈ Z and m,n are not divisible by p then

|x|p = p−γ . This norm satisfies the following properties:

(i) |x|p ≥ 0 for every x ∈ Qp, and |x|p = 0 if and only if x = 0;

(ii) |xy|p = |x|p|y|p for every x, y ∈ Qp;

(iii) |x+ y|p ≤ max{|x|p, |y|p}, for every x, y ∈ Qp, and when |x|p �= |y|p, we have |x+ y|p =
max{|x|p, |y|p}.

That is, the norm | · |p is non-Archimedean and the space (Qp, | · |p) is an ultrametric space.
Any p-adic number x ∈ Qp, x �= 0, is represented in the canonical form

x =

∞∑

j=γ

xjp
j , (2.1)

where γ = γ(x) ∈ Z, and xk = 0, 1, . . . , p − 1, x0 �= 0, k = 0, 1, . . . This series converges in the p-adic
norm | · |p to p−γ . The fractional part of a p-adic number x ∈ Qp defined by (2.1) is given by

{x}p =

⎧
⎨

⎩

0, if γ(x) ≥ 0 or x = 0,

pγ(x0 + x1p+ x2p
2 + · · ·+ x|γ|−1p

|γ|−1), if γ(x) < 0.
(2.2)

The additive character χp of the field Qp is defined by

χp(x) = e2πi{x}p , x ∈ Qp.

To construct the topology induced by | · |p in Qp we suppose that

Bγ(a) = {x ∈ Qp : |x− a|p ≤ pγ}, Sγ(a) = {x ∈ Qp : |x− a|p = pγ}
are ball and sphere of radius pγ with center at a, respectively. For simplicity, we also let Bγ(0) = Bγ and
Sγ(0) = Sγ . We remark that any point of the ball is its center, moreover, any two balls in Qp are either
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324 POURHADI, KHRENNIKOV

disjoint or one is contained in the other. Furthermore, all balls and spheres are open and closed sets in
Qp.

The topological group (Qp,+) is locally compact commutative and thus there is an additive Haar
measure dx, which is positive and invariant under the translation, i.e., d(x+ a) = dx, a ∈ Qp. This
measure is unique by normalizing dx so that

∫

B0

dx = 1, d(ax+ b) = |a|pdx, a ∈ Q∗
p = Qp − {0}.

Regarding with the additive normalized character χp(x) on Qp we get
∫

Bγ

χp(ξx)dx = pγΩ(pγ |ξ|p),

where Ω(t) is the characteristic function of the segment [0, 1] ⊂ R, that is,

Ω(t) =

⎧
⎨

⎩

1, if t ∈ [0, 1],

0, if t > 1.

A complex-valued function in Qp is said to be a locally constant function if for any x ∈ Qp, there
exists an integer l(x) ∈ Z such that f(x+ y) = f(x), for every y ∈ Bl(x). We signify by E(Qp) the linear
space of such functions in Qp. By D(Qp) we mean the subspace of E(Qp) consisting of locally constant
functions with compact support (so-called test function). Moreover, indicate by D′(Qp) the set of all
linear functionals on D(Qp) (see also [44, VI.3]).

The Fourier transform of test function ϕ ∈ D(Qp) is given by

ϕ̂(ξ) = F [ϕ](ξ) =

∫

Qp

ϕ(x)χp(ξx)dx.

We have ϕ̂(ξ) ∈ D(Qp) and ϕ(x) = F−1[ϕ](ξ) =
∫

Qp
ϕ̂(ξ)χp(−ξx)dξ as the inverse Fourier transform.

Let L2(Qp) be the set of measurable C-valued functions f on Qp such that

‖f‖L2(Qp) =

(∫

Qp

|f(x)|2dx
) 1

2

< ∞

which is obviously a Hilbert space with the inner product

〈f, g〉 =
∫

Qp

f(x)g(x)dx, f, g ∈ L2(Qp),

and ‖f‖2L2(Qp)
= 〈f, f〉.

This yields a linear isomorphism taking D(Qp) onto D(Qp). It can be uniquely extended to a linear
isomorphism of L2(Qp). Moreover, the Plancherel equality holds

〈f, g〉 = 〈f̂ , ĝ〉, f, g ∈ L2(Qp).
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2.1. p-Adic Wavelet Bases

In the current section, we recall some facts concerning with the theory of p-adic wavelets which are
extensively utilized in several areas of application. In 1910, Haar [15] initially introduced the wavelet
basis by presenting an orthonormal basis in L2(R) including dyadic translations and dilations of a single
function:

ψH
jn(x) = 2−

j
2ψH(2−jx− n), x ∈ R, j, n ∈ Z (2.3)

where

ψH(x) = χ[0, 1
2
)(x)− χ[ 1

2
,1](x)

is called a Haar wavelet and χA denotes the characteristic function of a set A ⊂ R. The generalization
of Haar basis (2.3) has been studied in various results. In 2002, Kozyrev [18] initially introduced a basis
of complex-valued wavelets with compact support in L2(Qm

p ). This basis has some resemblance to the
Haar basis and takes the form below

ψk;jn(x) = p−
mj
2 χp(p

−1k · (pjx− n))Ω(|pjx− n|p), x ∈ Qm
p (2.4)

where k ∈ Jm
p := Jp × Jp × · · · × Jp

←−−−m−−−→
, Jp = {1, 2, . . . , p− 1}, j ∈ Z, and n can be taken as an element

of the m-direct product of factor group

Qp/Zp =

{ −1∑

i=a

nip
i

∣
∣
∣
∣ ni = 0, 1, . . . , p− 1, a ∈ Z−

}

and here, χp and Ω are the standard additive character of Qp and characteristic function of [0, 1],
respectively, as defined before.

2.2. p-Adic Pseudo-Differential Operators and Lizorkin Spaces

Introduced by V. S. Vladimirov [44], pseudo-differential operator A (on the field of p-adic numbers)
in an open set O ⊂ Qp is given by

(Aϕ)(x) =

∫

Qp

A(ξ, x)ϕ̂(ξ)χp(−ξx)dξ, x ∈ O (2.5)

which acts on C-valued functions ϕ(x) of p-adic arguments x ∈ O. Here we assume that functions ϕ(x)
are extended by zero from the set O on whole space Qp, and ϕ̂(ξ) are their Fourier transforms recalled
previously. The function A(ξ, x), ξ ∈ Qp, x ∈ O is called symbol of the operator A.

Consider the subspaces of the space of test functions D(Qp)

Ψ = Ψ(Qp) = {ψ ∈ D(Qp), ψ(0) = 0}, Φ = Φ(Qp) = {φ : φ = F [ψ], ψ ∈ Ψ}.

Clearly, Ψ,Φ �= ∅. Following the fact that Fourier transform is a linear isomorphism D(Qp) into
D(Qp), we get Ψ,Φ ∈ D(Qp). The space Φ can be described by the following criterion: φ ∈ Φ if and
only if φ ∈ D(Qp) and

∫

Qp

φ(x)dx = 0.

The space Φ is called the p-adic Lizorkin space of test functions of the first kind which is a complete
space under the topology of the space D(Qp). Furthermore, The space Φ′ = Φ′(Qp) is said to be the
p-adic Lizorkin space of distributions of the first kind which is the topological dual space of Φ(Qp)
(see also [4]).

The Taibleson fractional operator Dα : ϕ → Dαϕ is defined as a convolution of the following func-
tions:

Dαϕ(x) = f−α(x) ∗ ϕ(x) = 〈f−α(x), ϕ(x − ξ)〉, ϕ ∈ Φ′(Qp), α ∈ C ,
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where the distribution fα ∈ Φ′(Qp) is called the Riesz kernel given by

fα(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

|x|α−1
p

Γp(α)
, if α �= 0, 1,

δ(x), if α = 0,

p−1 − 1

log p
log |x|p, if α = 1,

x ∈ Qp

and Γp(α) =
1−pα−1

1−p−α is the Γ-function (for more details see [44]).

The domain of Dα is given by

M(Dα) = {ϕ ∈ L2(Qp) |Dαϕ ∈ L2(Qp)}.

For the vectorial case we use the following notation:

Mn(D
α) = {ϕ ∈ L2(Qr

p) |Dαϕ ∈ L2(Qr
p)}.

Moreover, we remark that all the concepts mentioned untill now can be considered in the setting of Qr
p.

2.3. Julia Construction

Throughout this part, in order to present our main results we need to turn our attention into theory
of ODEs and recall some facts and details regarding with a class of ordinary differential equations of the
first order, so-called Abel’s equation of the second kind. The general form of this equation is

[g1(x)u+ g0(x)]ux = f2(x)u
2 + f1(x)u+ f0(x) (2.6)

where ux means ux = du
dx . Regarding with Abel’s equations of the first and second kinds, there are a few

papers in the literature devoting themselves to study this class of ODEs (see for example [35]). There are
some admissible functional transformations ([16, 32]) which can simplify (2.6) to a normal form. In 1933,
Julia [32, p. 27; type (b)] found an equality including the functional coefficients of Eq. (2.6) which can
lead us to the exact general solution of this equation. Based on the Julia construction, if the coefficients
of (2.6) enjoy the functional relation

g0(2f2 + (g1)x) = g1(f1 + (g0)x), g1 �= 0, (2.7)

then Eq. (2.6) has the general solution

g1u
2 + 2g0u

g1J
= 2

∫
f0
g1J

dx+ C, (2.8)

such that C is an integration constant and J the integrating factor J(x) = exp(2
∫ 2f2

g1
dx).

2.4. Adomian Decomposition Method (ADM)

Regarding with the tools utilized in our paper we now focus on a numerical method which will
provide a basis for further investigation. The standard Adomian decomposition method (ADM) has been
introduced at the beginning of 1980s [1, 2]. Comparing the performance of the Adomian decomposition
method and the Taylor series method shows that the ADM is reliable, efficient and easy to apply from a
computational aspect (see [45]). Moreover, the decomposition method supplies a fast convergent series
of simply computable components and removes massive computational work needed by Taylor series
method.

To describe this method for ODEs let us consider the differential equation

Lu+Ru+Nu = g , (2.9)
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where L is the highest order derivative which is assumed to be easily invertible, R is a linear differential
operator of order less than L, Nu represents the nonlinear terms, and g is the source term (or non-
homogeneity term). By employing the inverse operator L−1 to both sides of Eq. (2.9), and applying the
presumed conditions we get

u = L−1(Ru)− L−1Nu+ L−1g. (2.10)

By ADM we let

u =

∞∑

n=0

un and L−1Nu =

∞∑

n=0

An ,

where An are the Adomian polynomials which depend upon u0, u1, . . . , un determined by

An =

[
1

n!

dn

dλn
N(

n∑

i=0

λiui)

]

λ=0

.

That is, Eq. (2.10) takes the form:
∞∑

n=0

un = L−1g + L−1R(

∞∑

n=0

un)− L−1
∞∑

n=0

An. (2.11)

We set

u0 = L−1g,

un+1 = L−1Run − L−1An, n = 0, 1, 2, . . . .
(2.12)

Hence, the solution u of Eq. (2.9) can be determined by the series of recursive sequence un given as
(2.12).

In the following, for the convenience of computation we will write
∑

instead of
∑

k∈Jp,j∈Z,n∈Qp/Zp
.

3. CAUCHY PROBLEM FOR THE SEMI-LINEAR PSEUDO-DIFFERENTIAL EQUATION
OF THE SECOND ORDER

Let us focus on the Cauchy problem for a class of semi-linear pseudo-differential equation as follows:
⎧
⎪⎨

⎪⎩

∂2u

∂t2
+ a

∂u

∂t
+ bDα

xu+ cu|u|2m = f(x, t), x ∈ Qp, a �= 0, t > 0,

u(x, 0) = φ(x), ut(x, 0) = g(x), x ∈ Qp, t = 0

(3.1)

where α > 0 and Dα
x is the Taibleson fractional operator as introduced before. We also assume that f is

represented by the continuous components fk;jn based on wavelet functions ψk;jn.

Theorem 3.1. Let us consider φ ∈ M(Dα). Then the pseudo-differential equation as form of (3.1)
possesses a unique solution u ∈ U = C([0,∞),M(Dα)) ∩ C2([0,∞), L2(Qp)) of the form

u(x, t) =
∑

Rk;jn(t) exp

(

i

(∫ t

0

e−aRk;jn(s)+Mk;jn(0)

Rk;jn(s)
ds+ arg(〈φ,ψk;jn〉)

))

ψk;jn(x)

where

Rk;jn(t) =
2C0

a
+

∞∑

r=0

(r + 1)r−1

2rr!
(−a)rB

r
(−2C0)e

− (r+1)a
2

(B(−2C0)t+
t
3
+C1),

and B is the real root of the following cubic equation

B
3
+ pB + q = 0,
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such that

p = −μ2

3
+ ν, q = 2(

μ

3
)3 − μν

3
+ η, μ = −4, ν = 3− η, η = −4(H + F)

z + 2C0
,

F = −1

a
(−bpα(1−j)Rk;jn(t)− cp−mjRk;jn(t)

2m+1 + fk;jn(t)),

H = eτ
cos τ [|τ |sgn(τ)Si(τ)]− sin τ [Si(τ) + sin τ ]

8τ2Si2(τ)

(
sin τ

2|τ |sgn(τ)Si(τ)
+ 2

)

− 2F(τ)

where τ = ln | − aR(t) + 2C0|, and

C0 =
|〈g, ψk;jn〉| cos(arg(〈g, ψk;jn〉 · [〈φ,ψk;jn〉]−1))

B(−a|〈φ,ψk;jn〉|) +
1

3

+
1

2
a|〈φ,ψk;jn〉|,

C1 = −2

a
ln

∣
∣
∣
∣
2

a

|〈g, ψk;jn〉| cos(arg(〈g, ψk;jn〉 · [〈φ,ψk;jn〉]−1))

B(−a|〈φ,ψk;jn〉|) +
1

3

∣
∣
∣
∣,

Mk;jn(0) = ln

∣
∣
∣
∣
sin(arg(〈g, ψk;jn〉 · [〈φ,ψk;jn〉]−1))|〈g, ψk;jn〉|

|〈φ,ψk;jn〉|

∣
∣
∣
∣+ ln |〈φ,ψk;jn〉|+ a|〈φ,ψk;jn〉|.

Proof. Let us suppose that there exists u ∈ U of the form as given below

u(x, t) =
∑

uk;jn(t)ψk;jn(x). (3.2)

We intend to find an explicit form for u in terms of the wavelet functions {ψk;jn}. For any (k, j, n) by
u ∈ U, we obtain

∂2u

∂t2
+

∂u

∂t
=

∑
(u′′k;jn(t) + u′k;jn(t))ψk;jn(x), D

α
xu(x, t) =

∑
pα(1−j)uk;jn(t)ψk;jn(x). (3.3)

Now, considering Eq. (3.2) we get

|u|2 =
∑

|uk;jn(t)|2p−jΩ(|pjx− n|p) =⇒ u|u|2m =
∑

uk;jn(t)|uk;jn(t)|2mp−mjψk;jn(x).

From (3.1) it follows that
∑

[u′′k;jn(t) + au′k;jn(t) + bpα(1−j)uk;jn(t) + cp−mjuk;jn(t)|uk;jn(t)|2m − fk;jn(t)]ψk;jn(x) = 0,

that is,

u′′k;jn(t) + au′k;jn(t) + bpα(1−j)uk;jn(t) + cp−mjuk;jn(t)|uk;jn(t)|2m − fk;jn(t) = 0 ,

where fk;jn are continuous functions and

f(x, t) =
∑

fk;jn(t)ψk;jn(x), fk;jn(t) = 〈f(·, t), ψk;jn(·)〉, k ∈ Jp, j ∈ Z.

Now, using the polar coordinates let us denote uk;jn(t) = Rk;jn(t)e
iαk;jn(t), for αk;jn(t), Rk;jn(t) ∈

C2(R+,R), then we derive the following system of ODEs:
⎧
⎨

⎩

R′′
k;jn(t) + aR′

k;jn(t) := F (Rk;jn(t)) = −bpα(1−j)Rk;jn(t)− cp−mjRk;jn(t)
2m+1 + fk;jn(t),

R′
k;jn(t)α

′
k;jn(t) +Rk;jn(t)α

′′
k;jn(t) + aRk;jn(t)α

′
k;jn(t) = 0.
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From now on, to simplify the notations we drop all the indexes and variable t, that is,
⎧
⎨

⎩

R′′ + aR′ := F (R) = −bpα(1−j)R− cp−mjR2m+1 + f,

R′α′ +Rα′′ + aRα′ = 0.

First, from the second equation of the system, one can define α in terms of R. Indeed, if α is constant
then proof is complete, otherwise, setting M = α′ �= 0 we obtain

(R′ + aR)M +RM ′ = 0 =⇒ M ′

M
= −R′ + aR

R

=⇒ αk;jn(t) =

∫ t

0

e−as+Mk;jn(0)

Rk;jn(s)
ds+ αk;jn(0) , (3.4)

where αk;jn(0),Mk;jn(0) are constants with respect to their indexes.
Now, we focus on the non-homogeneous equation of the form

R′′ + aR′ = F (R). (3.5)

We remark that existence of the nonlinear term F (R) makes the process of finding the solution more
complicated. If c = 0 then we have a linear differential equation and it is easy to study. Besides, for this
case, motivation of the problem (3.1) is lost. However, here we utilize a novel technique for general case.
For arbitrary constant c, and a �= 0 suppose that

W = R′ =⇒ R′′ =
dR′

dt
=

dW

dt
= W

dW

dR

which turns (3.5) into the following

W
dW

dR
+ aW = F (R). (3.6)

This equation is called Abel equation of the second kind. If a = −1 then we say that the Abel equation is
in canonical form, otherwise, after long calculations (which can be seen in Apppendix) we find that

W =
1

2

(

z + 2C0

)(

B(z) +
1

3

)

where C0 is an arbitrary constant, z = −aR and B(z) is a real root of a certain cubic function (see Eqs.
(6.14)-(6.19) in Subsection 6.6.1 in Appendix). Since W = R′ we observe that

−2

a
ln

∣
∣
∣
∣R(t)− 2C0

a

∣
∣
∣
∣ =

∫ t

0
B(−aR(s))ds+

1

3
t+ C1. (3.7)

Now, let us impose the initial conditions in the obtained results to find the constants C0, C1.

u(x, 0) =
∑

Rk;jn(0)e
iαk;jn(0)ψk;jn(x) = ϕ(x), (3.8)

ut(x, 0) =
∑(

R′
k;jn(0) + iα′

k;jn(0)Rk;jn(0)

)

eiαk;jn(0)ψk;jn(x) = g(x). (3.9)

Suppose that

〈φ,ψk;jn〉 = |〈φ,ψk;jn〉|eiβk;jn , 〈g, ψk;jn〉 = |〈g, ψk;jn〉|eiγk;jn ,

where γk;jn − βk;jn �= kπ
2 , k = 0, 1, 2, 3, then following (3.8) we get

Rk;jn(0)e
iαk;jn(0) = 〈φ,ψk;jn〉 = |〈φ,ψk;jn〉|eiβk;jn

which shows that

Rk;jn(0) = |〈φ,ψk;jn〉|, αk;jn(0) = arg(〈φ,ψk;jn〉) = βk;jn. (3.10)
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On the other hand, based on (3.9) we see that

(R′
k;jn(0) + iα′

k;jn(0)Rk;jn(0))e
iαk;jn(0) = 〈g, ψk;jn〉 = |〈g, ψk;jn〉|eiγk;jn . (3.11)

This together with (6.24) and (3.10) yields

R′
k;jn(0) = |〈g, ψk;jn〉| cos(γk;jn − βk;jn) = Wk;jn(0)

=
1

2

(

− a|〈φ,ψk;jn〉|+ 2C0

)(

B(−a|〈φ,ψk;jn〉|) +
1

3

)

,

that is,

C0 =
|〈g, ψk;jn〉| cos(γk;jn − βk;jn)

B(−a|〈φ,ψk;jn〉|) +
1

3

+
1

2
a|〈φ,ψk;jn〉|. (3.12)

Moreover, for the constant C1 we derive that

C1 = −2

a
ln

∣
∣
∣
∣Rk;jn(0)−

2C0

a

∣
∣
∣
∣ = −2

a
ln

∣
∣
∣
∣
2

a

|〈g, ψk;jn〉| cos(γk;jn − βk;jn)

B(a|〈φ,ψk;jn〉|) +
1

3

∣
∣
∣
∣. (3.13)

Finally, for the last constant Mk;jn(0) defined in (3.4), with the help of (3.11) one can easily see that

Mk;jn(0) = ln |α′
k;jn(0)|+ ln |〈φ,ψk;jn〉|+ a|〈φ,ψk;jn〉|

= ln

∣
∣
∣
∣
sin(γk;jn − βk;jn)|〈g, ψk;jn〉|

|〈φ,ψk;jn〉|

∣
∣
∣
∣+ ln |〈φ,ψk;jn〉|+ a|〈φ,ψk;jn〉|.

(3.14)

Therefore, the solution to problem (3.1) is given by

u(x, t) =
∑

Rk;jn(t) exp

(

i

(∫ t

0

e−aRk;jn(s)+Mk;jn(0)

Rk;jn(s)
ds + βk;jn

))

ψk;jn(x)

where Mk;jn(0) is defined by (3.14) and the functions Rk;jn are derived by solving the integral equation

−2

a
ln

∣
∣
∣
∣Rk;jn(t)−

2C0

a

∣
∣
∣
∣ =

∫ t

0
B(−aRk;jn(s))ds +

1

3
t+ C1 (3.15)

in which the constants C0, C1 are given by (3.12) and (3.13), respectively.
To complete the proof we must find a solution of Eq. (3.7) employing the ADM. Let us first rewrite

the equation as below

R(t) =
2C0

a
+ e−

a
2
( t
3
+C1) · exp

(

−
∫ t

0

a

2
B(−aR(s))ds

)

(3.16)

where the constants C0 and C1 are given by (3.12) and (3.13), respectively.
Following the Adomian decomposition method (ADM) we find that

R(t) =
2C0

a
+

∞∑

k=0

(k + 1)k−1

2kk!
(−a)kB

k
(−2C0)e

− (k+1)a
2

(B(−2C0)t+
t
3
+C1),

as desired solution of (3.7) (for more details see Subsection 6.6.2 in Appendix). This completes the proof.

Remark 3.2. Based on Appendix A, it is worth mentioning that during proof of Theorem 3.1 since
we deal with so many parameters and cases for the function B and besides f is unknown, it seems
unlikely to find an explicit and compact form for Rk;jn(t).
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4. CAUCHY PROBLEM FOR A FIRST ORDER SEMI-LINEAR PSEUDO-DIFFERENTIAL
EQUATION

In this section we consider a Cauchy problem for a class of first order semi-linear pseudo-differential
equation as form of below:

⎧
⎨

⎩

∂u

∂t
+ aDα

xu+ bu|u|2m = f(x, t), x ∈ Qp, t > 0,

u(x, 0) = φ(x), x ∈ Qp, t = 0 ,
(4.1)

where φ ∈ M(Dα) and f is represented by the continuous components fk;jn corresponding to the
wavelet basis ψk;jn.

Theorem 4.1. The pseudo-differential equation as form of (4.1) possesses a unique solution
u ∈ V = C([0,∞),M(Dα)) ∩ C1([0,∞), L2(Qp)) of the form

u(x, t) =
∑

k,j,n

([

|〈φ,ψk;jn〉|+
∞∑

r=0

(R
(r)
k;jn(t)−R

(r)
k;jn(0))

]

ei arg(〈φ,ψk;jn〉)
)

ψk;jn(x) , (4.2)

where

R
(0)
k;jn(t) = L−1fk;jn(t),

R
(r+1)
k;jn (t) = −apα(1−j)L−1R

(r)
k;jn(t)− bp−mjL−1A

(r)
k;jn(t), r = 0, 1, 2, . . . .

and A
(r)
k;jn are the associate Adomian polynomials.

Proof. Obeying the proof presented for Theorem 3.1, let us denote uk;jn(t) = Rk;jn(t)e
iαk;jn(t), for any

αk;jn(t), Rk;jn(t) belonging to C1(R+,R), then we arrive at the following system of ODEs:
⎧
⎨

⎩

R′
k;jn(t) + apα(1−j)Rk;jn(t) = −bp−mjRk;jn(t)

2m+1 + fk;jn(t),

α′
k;jn(t) = 0.

From the second equation as above we set αk;jn := αk;jn(t) as an arbitrary constant. For the conve-
nience, in the following we omit the index k; jn and the variable t. By L := d

dt we rewrite the first equation
as follows:

LR = −apα(1−j)R− bp−mjR2m+1 + f (4.3)

and then apply the integral operator L−1 to obtain

R = −apα(1−j)L−1R− bp−mjL−1R2m+1 + f0 (4.4)

where f0 stands for the terms arising from integrating the given term f and from utilizing the given
conditions, all are supposed to be specified.

Following the standard Adomian decomposition method (ADM) we give the solution R for the very
recent equation by the series

R =

∞∑

n=0

Rn,

and following (2.11), (2.12), equation (4.4) takes the form as follows
∞∑

n=0

Rn = f0 − apα(1−j)
∞∑

n=0

L−1Rn − bp−mj
∞∑

n=0

L−1An , (4.5)
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where the components Rn are specified by the following recursive sequence

R0 = L−1f = f0,

R1 = −apα(1−j)L−1R0 − bp−mjL−1A0 = −apα(1−j)L−1R0 − bp−mjL−1R2m+1
0 ,

R2 = −apα(1−j)L−1R1 − bp−mjL−1A1 = −apα(1−j)L−1R1 − b(2m+ 1)p−mjL−1R1R
2m
0

R3 = −apα(1−j)L−1R2 − bp−mjL−1A2

= −apα(1−j)L−1R2 − bp−mjL−1

[

(2m+ 1)R2R
2m
0 + (2m+ 1)(2m)

R2
1

2
R2m−1

0

]

...

Rn+1 = −apα(1−j)L−1Rn − bp−mjL−1An, n ≥ 1,

(4.6)

and An are the associate Adomian polynomials.

Hence, the solution to problem (4.1) in terms of wavelet functions is given by

u(x, t) =
∑

k,j,n

( ∞∑

r=0

Rr(t)e
iαk;jn

)

ψk;jn(x) , (4.7)

where

R0(t) = L−1f(t) = f0(t) + C, C = const.,

R1(t) = −apα(1−j)L−1R0(t)− bp−mjL−1R2m+1
0 (t),

R2(t) = −apα(1−j)L−1R1(t)− b(2m+ 1)p−mjL−1R1(t)R
2m
0 (t)

R3(t) = −apα(1−j)L−1R2(t)− bp−mjL−1

[

(2m+ 1)R2(t)R
2m
0 (t) +m(2m+ 1)R2

1(t)R
2m−1
0 (t)

]

...

Rn+1(t) = −apα(1−j)L−1Rn(t)− bp−mjL−1An(t), n ≥ 1.

Relying on the initial condition and considering a unique integration constant C without loss of
generality one can see that

φ(x) =
∑

k,j

(

f0(0) + C +
∞∑

r=1

Rr(0)

)

eiαk;jnψk;jn(x)

=⇒
(

f0(0) + C +

∞∑

r=1

Rr(0)

)

eiαk;jn = 〈φ,ψk;jn〉 := |〈φ,ψk;jn〉|eiβk;jn

which easily shows that

αk;jn = βk;jn, C = |〈φ,ψk;jn〉| −
∞∑

r=0

Rr(0).

This completes the proof.

5. PROBLEMS (1.1)–(1.2) FOR p-ADIC PSEUDO-DIFFERENTIAL OPERATOR A IN Qr
p

During this section, we replace the fractional operator Dα
x with the p-adic pseudo-differential

operator A satisfying the condition (5.1) of the following criterion, then study the solutions of new
problems in vectorial p-adic field Qr

p by a brief discussion and same reasoning. Note that Dα is such
operator which fulfills (5.1).
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Theorem 5.1 ([3]). Let A be a pseudo-differential operator (2.5) with a symbol A ∈ E(Qr
p\{0}).

Then the Haar wavelet function (2.4) is an eigenfunction of A, i.e.,

Aψk;jn(x) = A(−pj−1k)ψk;jn(x) ⇐⇒ A(pj(−p−1k + η)) = A(−pj−1k), ∀η ∈ Zr
p (5.1)

where k ∈ Jr
p , j ∈ Z, and n belongs to the r-direct product of factor group Qp/Zp.

Let us mention the subjected problems as follows.

⎧
⎪⎨

⎪⎩

∂2u

∂t2
+ a

∂u

∂t
+ bAxu+ cu|u|2m = f(x, t), x ∈ Qr

p, a �= 0, t > 0,

u(x, 0) = φ(x), ut(x, 0) = g(x), x ∈ Qr
p, t = 0

(5.2)

and
⎧
⎨

⎩

∂u

∂t
+ aAxu+ bu|u|2m = f(x, t), x ∈ Qr

p, t > 0,

u(x, 0) = φ(x), x ∈ Qr
p, t = 0 ,

(5.3)

where α > 0 and Ax is a p-adic pseudo-differential operator satisfying the condition (5.1). Moreover,
φ ∈ Mr(D

α) and f is represented by the continuous components fk;jn corresponding to the wavelet
basis ψk;jn.

In order to simplify the notation we consider
∑

instead of
∑

k∈Jr
p ,j∈Z,n∈(Qp/Zp)r

.

Theorem 5.2. The pseudo-differential equation as form of (5.2) possesses a unique solution
u ∈ Ur = C([0,∞),Mr(D

α)) ∩ C2([0,∞), L2(Qr
p)) of the form

u(x, t) =
∑

Rk;jn(t) exp

[

i

(∫ t

0

−e−as

Rk;jn(s)

(

σ

∫ s

0
Rk;jn(θ)e

aθdθ + sin(γk;jn − βk;jn)|〈g, ψk;jn〉|
)

ds

+ arg(〈φ,ψk;jn〉)
)]

ψk;jn(x) ,

where σ := −b ImA(−pj−1k) and

Rk;jn(t) =
2C0

a
+

∞∑

s=0

(s+ 1)s−1

2ss!
(−a)sB

s
(−2C0)e

− (s+1)a
2

(B(−2C0)t+
t
3
+C1),

and C0, C1, B are same as given in Theorem 3.1 .

Proof. Inspired by the proof of Theorem 3.1 we suppose that there exists u ∈ Ur given as (3.2).
Substituting u in terms of the wavelet functions {ψk;jn} into (5.2) we get
∑

[u′′k;jn(t) + au′k;jn(t) + bA(−pj−1k)uk;jn(t) + cp−mjuk;jn(t)|uk;jn(t)|2m − fk;jn(t)]ψk;jn(x) = 0,

that is,

u′′k;jn(t) + au′k;jn(t) + bA(−pj−1k)uk;jn(t) + cp−mjuk;jn(t)|uk;jn(t)|2m − fk;jn(t) = 0

such that

f(x, t) =
∑

fk;jn(t)ψk;jn(x), fk;jn(t) = 〈f(·, t), ψk;jn(·)〉, k ∈ Jr
p , j ∈ Z.

Now, representing uk;jn(t) by the polar coordinates let us denote uk;jn(t) = Rk;jn(t)e
iαk;jn(t), for

αk;jn(t), Rk;jn(t) ∈ C2(R+,R), and A(−pj−1k) = ReA(−pj−1k)+ i ImA(−pj−1k), then we derive the
following system of ODEs:
⎧
⎨

⎩

R′′
k;jn(t) + aR′

k;jn(t) := F (Rk;jn(t)) = −bReA(−pj−1k)Rk;jn(t)− cp−mjRk;jn(t)
2m+1 + fk;jn(t),

R′
k;jn(t)α

′
k;jn(t) +Rk;jn(t)α

′′
k;jn(t) + aRk;jn(t)α

′
k;jn(t) + b ImA(−pj−1k)Rk;jn(t) = 0
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Simplifying the notations we rewrite the system as follows:
⎧
⎨

⎩

R′′ + aR′ := F (R) = −bA(−pj−1k)R − cp−mjR2m+1 + f,

R′α′ +Rα′′ + aRα′ + b ImA(−pj−1k)R = 0.

First, from the second equation of the system, one can define α in terms of R. Setting M = α′ �= 0 we
immediately arrive at

M ′ +
(R′ + aR)

R
M = σ := −b ImA(−pj−1k)

=⇒ αk;jn(t) =

∫ t

0

−e−as

Rk;jn(s)

(

σ

∫ s

0
Rk;jn(θ)e

aθdθ +Mk;jn(0)

)

ds+ αk;jn(0)

(5.4)

where αk;jn(0),Mk;jn(0) are integration constants with respect to their indexes. For the equation

R′′ + aR′ = F (R)

one can follow the proof of Theorem 3.1 and use the Adomian decomposition method (ADM) to find that

R(t) =
2C0

a
+

∞∑

s=0

(s+ 1)s−1

2ss!
(−a)sB

s
(−2C0)e

− (s+1)a
2

(B(−2C0)t+
t
3
+C1)

where the constants C0, C1 are defined by (3.12)-(3.13). Moreover, taking account on the proof of
Theorem 3.1 we see

Rk;jn(0) = |〈φ,ψk;jn〉|, αk;jn(0) = arg(〈φ,ψk;jn〉),
Mk;jn(0) = Rk;jn(0)α

′
k;jn(0) = sin(γk;jn − βk;jn)|〈g, ψk;jn〉|.

(5.5)

Consequently, we get

u(x, t) =
∑

Rk;jn(t) exp

[

i

(∫ t

0

−e−as

Rk;jn(s)

(

σ

∫ s

0
Rk;jn(θ)e

aθdθ + sin(γk;jn − βk;jn)|〈g, ψk;jn〉|
)

ds

+ arg(〈φ,ψk;jn〉)
)]

ψk;jn(x)

as desired.

Theorem 5.3. The pseudo-differential equation as form of (5.3) possesses a unique solution
u ∈ Vr = C([0,∞),Mr(D

α)) ∩ C1([0,∞), L2(Qr
p)) of the form

u(x, t) =
∑

([

|〈φ,ψk;jn〉|+
∞∑

s=0

(

R
(s)
k;jn(t)−R

(s)
k;jn(0)

)]

ei(−σt+arg(〈φ,ψk;jn〉))
)

ψk;jn(x) , (5.6)

where

R
(0)
k;jn(t) = L−1fk;jn(t),

R
(s+1)
k;jn (t) = −aReA(−pj−1k)L−1R

(s)
k;jn(t)− bp−mjL−1A

(s)
k;jn(t), s = 0, 1, 2, . . . .

and σ := −a ImA(−pj−1k) and A
(s)
k;jn are the associate Adomian polynomials.

Proof. Let us first denote uk;jn(t) = Rk;jn(t)e
iαk;jn(t), for any αk;jn(t),Rk;jn(t) belonging toC1(R+,R),

then we get the following system of ODEs:
⎧
⎨

⎩

R′
k;jn(t) + aReA(−pj−1k)Rk;jn(t) = −bp−mjRk;jn(t)

2m+1 + fk;jn(t),

α′
k;jn(t) + a ImA(−pj−1k) = 0.
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First, from the second equation we find that αk;jn(t) = −σt+αk;jn(0). For the convenience of notations,
in the following we cancel the index k; jn and the variable t. By L := d

dt we first rewrite the first equation
as follows:

LR = −aReA(−pj−1k)R− bp−mjR2m+1 + f (5.7)

and then utilize the integral operator L−1 to derive

R = −aReA(−pj−1k)L−1R− bp−mjL−1R2m+1 + f0 (5.8)

where f0 stands for the terms arising from integrating the given term f and from utilizing the given
conditions, all are supposed to be determined.

Following the standard Adomian decomposition method (ADM) we give the solution R for the very
recent equation by the series

R =

∞∑

n=0

Rn ,

and following (2.11), (2.12), equation (5.8) takes the following form

∞∑

n=0

Rn = f0 − aReA(−pj−1k)
∞∑

n=0

L−1Rn − bp−mj
∞∑

n=0

L−1An (5.9)

where the components Rn are specified by the following recursive sequence

R0 = L−1f = f0,

R1 = −aReA(−pj−1k)L−1R0 − bp−mjL−1R2m+1
0 ,

R2 = −aReA(−pj−1k)L−1R1 − b(2m+ 1)p−mjL−1R1R
2m
0

R3 = −aReA(−pj−1k)L−1R2 − bp−mjL−1

[

(2m+ 1)R2R
2m
0 + (2m+ 1)(2m)

R2
1

2
R2m−1

0

]

...

Rn+1 = −aReA(−pj−1k)L−1Rn − bp−mjL−1An, n ≥ 1,

(5.10)

and An are the associate Adomian polynomials.

Hence, the solution to problem (5.3) in terms of wavelet functions is given by

u(x, t) =
∑

k,j,n

( ∞∑

s=0

Rs(t)e
iαk;jn

)

ψk;jn(x) (5.11)

where

R0(t) = L−1f(t) = f0(t) +C, C = const.,

R1(t) = −aReA(−pj−1k)L−1R0(t)− bp−mjL−1R2m+1
0 (t),

R2(t) = −aReA(−pj−1k)L−1R1(t)− b(2m+ 1)p−mjL−1R1(t)R
2m
0 (t),

R3(t) = −aReA(−pj−1k)L−1R2(t)

− bp−mjL−1

[

(2m+ 1)R2(t)R
2m
0 (t) +m(2m+ 1)R2

1(t)R
2m−1
0 (t)

]

,

...

Rn+1(t) = −aReA(−pj−1k)L−1Rn(t)− bp−mjL−1An(t), n ≥ 1.
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Viewing the initial condition, considering a unique integration constant C without loss of generality we
see

φ(x) =
∑

k,j

(

f0(0) + C +
∞∑

s=1

Rs(0)

)

eiαk;jn(0)ψk;jn(x)

=⇒
(

f0(0) + C +
∞∑

s=1

Rs(0)

)

eiαk;jn(0) = 〈φ,ψk;jn〉 := |〈φ,ψk;jn〉|eiβk;jn

which easily shows that

αk;jn(0) = βk;jn, C = |〈φ,ψk;jn〉| −
∞∑

s=0

Rs(0).

This completes the proof.

6. APPENDIX

6.1. Solution to the Abel Equation (3.6)

Throughout the appendix, we focus the solution to the Abel equation (3.6). This equation reduces to
the following canonical form:

z = −aR =⇒ W ·W ′
z −W = F(z) :=

F ( z
−a)

−a
(6.1)

Now, let us look for the exact analytic solution of (6.1) as normal form of (3.6).
Define a functional transformation as follows:

W (z) = W1(z) ·W2(r), r = r(z)

which reduces (6.1) to the following

W1W2(
dW1

dz
·W2 +W1 ·

dr

dz

dW2

dr
)−W1W2 = F(z). (6.2)

Here, the functions W1,W2 and r must be specified later at the right moments. In the sequel, to simplify
the computations let us define an auxiliary differentiable function h and introduce an equivalent form for
(6.2) by

(W 2
1

dr

dz
W2 + h)

dW2

dr
− 2F = (−W 2

1

dr

dz
W2 + h)

dW2

dr
− 2W1

dW1

dz
·W 2

2 + 2W1W2. (6.3)

Now, indicate the recent equality by H(z), then (6.2) is divided into two Abel equations of the second
kind:

(W 2
1

dr

dz
W2 + h)

dW2

dr
= 2F(z) +H(z), (6.4)

(−W 2
1

dr

dz
W2 + h)

dW2

dr
− 2W1

dW1

dz
·W 2

2 + 2W1W2 = H(z). (6.5)

It is obvious that both unknown functions h,H must be determined. To do this, we utilize the well-
known Julia construction mentioned in Section 2 to Abel’s equations (6.4)-(6.5). Simple integrations
together with considering r(z) as the identity function implies that

h = W 2
1 , W1 =

z + 2C0

2
(z �= −2C0), C0 = const., (6.6)
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W 2
2 + 2W2 − 8

∫
H(z) + 2F(z)

(z + 2C0)2
dz = 0, (6.7)

W 2
2 − 2W2 +

8

(z + 2C0)4

∫

(z + 2C0)
2H(z)dz = 0. (6.8)

Therefore, it only remains to find the functions H(z),W2(z). Considering the real roots of (6.7)-(6.8)
and solving them for W2 at the same time we derive the following

√
λ2 −A = λ

√
1 +B − 2λ (6.9)

where

λ = (z + 2C0)
2 = (2W1)

2, A = 8

∫

λHdz, B = 8

∫
H

λ
dz + 16

∫
F

λ
dz. (6.10)

Now, one can square and then differentiate (6.9), respectively, to obtain that

6λλz +Az + 2(1 +B)λλz + λ2Bz − 8
√
1 +Bλλz − 2λ2 Bz√

1 +B
= 0. (6.11)

Mixing (6.10) together with (6.11) implies the following form

(1 +B)
3
2 − 4(1 +B) +

[

3 +
4(H + F)

z + 2C0

]

(1 +B)
1
2 − 4

H + 2F

z + 2C0
= 0. (6.12)

Inspiring by the Cardano’s substitution

(1 +B)
1
2 = B +

4

3
(6.13)

we derive a depressed cubic form as follows

B
3
+ pB + q = 0, (6.14)

where

p = −μ2

3
+ ν, q = 2(

μ

3
)3 − μν

3
+ η, μ = −4, ν = 3− η, η = −4(H + F)

z + 2C0
. (6.15)

From the calculus, determined by the discriminant of the cubic equation one can consider the real roots
as follows:

Δ = (
p

3
)3 + (

q

2
)2. (6.16)

Case 1: Δ < 0 (p < 0)

B1 = 2

√
−p

3
cos

θ

3
, B2 = −2

√
−p

3
cos

θ − π

3
, B3 = −2

√
−p

3
cos

θ + π

3
,

cos θ = − q

2
√

−(p3 )
3
, 0 < θ < π.

(6.17)
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Case 2: Δ > 0

B = 3

√

−q

2
+

√
Δ+ 3

√

−q

2
−

√
Δ. (6.18)

Case 3: Δ = 0

B1 = 2 3

√

−q

2
, B2 = B3 = − 3

√

−q

2
. (6.19)

Following the relation (6.13) one can easily find the real roots of Eq. (6.12) by (6.15)-(6.19). Now,
considering the definition of B in (6.10) along with the replacement (6.13) we observe that

B(z) = 8

∫
H

λ
dz + 16

∫
F

λ
dz = (B +

4

3
)2 − 1, (6.20)

and linking (6.7) together with (6.10)

√
1 +B =

√

1 + 8

∫
H + 2F

λ
dz = 1 +W2, (6.21)

and following (6.20) it implies

W2 = B(z) +
1

3
=

√
B(z) + 1− 1, (6.22)

which is related to the unknown function H(z). Summing up, one can list the following:

W2 = B(z) +
1

3
, B = 8

∫
H + 2F

(z + 2C0)2
dz =

(

B(z) +
4

3

)2

− 1,

A(z)

λ2
=

8

(z + 2C0)4

∫

(z + 2C0)
2H(z)dz =

[

B(z) +
1

3

][
5

3
−B(z)

] (6.23)

where B(z) is given as in Eqs. (6.17)-(6.19) with respect to the unknown function H(z). Now (6.5)
together with (6.23) implies that

W = W1 ·W2 =
1

2

(

z + 2C0

)(

B(z) +
1

3

)

(6.24)

where B(z) is given as in Eqs. (6.17)-(6.19) and related to unknown parameter η in (6.15). Now, since
W = R′ and z = −aR one can easily see that

−2

a
ln

∣
∣
∣
∣R(t)− 2C0

a

∣
∣
∣
∣ =

∫ t

0
B(−aR(s))ds +

1

3
t+ C1 (6.25)

where B is given as in Eqs. (6.17)-(6.19).

In order to find the subsidiary function H(z) we first rewrite the Abel equations (6.4) and (6.5) and
then by equating the results we obtain the following Riccati equation

W ′
2 =

W ′
1

W1
W 2

2 − 1

W1
W2 +

F +H

W 2
1

. (6.26)
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It is easily seen that Riccati equation (6.26) can be transformed into (6.14) (or (6.12)) with the help
of (6.22) and the following equality which is derived by the second relation in (6.23)

B
′
z =

4(H + 2F)

(z + 2C0)2[B(z) + 4
3 ]
.

The Riccati equation (6.26) can be reduced to the normal form by a functional transformation as follows:

W2(z)− 1 = B(z)− 2

3
= G(τ), τ = ln |z + 2C0| =⇒ G′

τ = G2 − [1− 4(F +H)e−τ ]. (6.27)

It is obvious that the following set of equations satisfies the right hand side of (6.27).

G(τ) = B(τ)− 2

3
, B

′
τ =

4(H + 2F)

B(τ) + 4
3

e−τ . (6.28)

By [32, page 105], it is known that, if Eqs. (6.28) constitute a particular solution of (6.27) then the
general solution is as form of below:

Gg(τ) = B(τ)− 2

3
+A(τ); A(τ) =

ω(τ)

C2 −
∫ τ
0 ω(s)ds

;

ω(τ) = exp

{

2

∫ τ

0

[

B(s)− 2

3

]

ds

}

, B
′
τ =

4(H + 2F)

B(τ) + 4
3

e−τ

(6.29)

in which C2 is an integration constant. Following the cubic equation (6.12), it has been checked that
the particular solution of the Riccati equation ((W2)p := B(τ) + 1

3 ) satisfies the Abel equations (6.4)
and (6.5). This implies that the Abel equation must be satisfied by the general solution of the Riccati
equation, as well. Accordingly, it is interpreted as A(τ) may vanish. This term is formulated as follows:

lim
τ→±∞

Gg(τ) = lim
τ→±∞

(

B(τ)− 2

3

)

, i.e. lim
τ→±∞

A(τ) = 0. (6.30)

The limit equalities (6.30) are given by the following improper integral:

∫ +∞

−∞
A′

τdτ = 0 s.t. A′
τ =

ω′
τ

C2 −
∫ τ
0 ω(s)ds

+
ω2(τ)

[C2 −
∫ τ
0 ω(s)ds]2

, (6.31)

hence
∫ +∞

−∞

ω′
τ

C2 −
∫ τ
0 ω(s)ds

dτ +

∫ +∞

−∞

ω2(τ)

[C2 −
∫ τ
0 ω(s)ds]2

dτ = 0. (6.32)

The recent equality holds if both integral terms in (6.32) are identically zero. Therefore, the following
statements can be derived

∫ +∞

−∞
ω′
τdτ = 0, C2 −

∫ τ

0
ω(s)ds �= 0,

∫ +∞

−∞

∣
∣
∣
∣

ω(τ)

C2 −
∫ τ
0 ω(s)ds

∣
∣
∣
∣

2

dτ = 0 (6.33)

such that the function ω is supposed to be specified. In the following, some mathematical logical
statements are provided to facilitate the evaluation of this function. In view of the first equation in (6.33)
it is understood that the derivative of ω, i.e., ω′

τ can be taken as odd function. Moreover, considering
C2 = 0 as above, from the second part in (6.33) we see that ω �= 0 and also should be non-singular. The
third part of (6.33) shows us that it is appropriate to consider ω as constant or convergent at infinity.
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In conclusion, it is more suitable to suppose both functions ω, ω′
τ as semi-constant even and odd,

respectively. From the calculus [13, type 3.721.1], comparing the first part of (6.33) and the fact that
∫ +∞
−∞

sin τ
|τ | dτ = 0 together with the argument as above we suppose that

ω′
τ =

sin τ

|τ | (6.34)

which implies that ω(τ) = sgn(τ)Si(τ) where Si stands for the Sine integral given by

Si(τ) =
∫ τ

0

sinx

x
dx = −π

2
+

∞∑

i=1

(−1)i+1τ2i−1

(2i − 1)(2i − 1)!
.

It is clear that ω, ω′
τ hold in all conditions mentioned above and hence following the third part of (6.29)

we obtain that

lnω(τ) = 2

∫ τ

0

[

B(s)− 2

3

]

ds = ln[sgn(τ)Si(τ)] =⇒ 2(B(τ)− 2

3
) =

sin τ

|τ |sgn(τ)Si(τ)
. (6.35)

Now, considering (6.29) with the values obtained above we observe that

Gg(τ) =
sin τ

2|τ |sgn(τ)Si(τ)
+

sgn(τ)Si(τ)
C2 −

∫ τ
0 sgn(s)Si(s)ds

which satisfies the condition (6.30), that is,

lim
τ→±∞

A(τ) = lim
τ→±∞

sgn(τ)Si(τ)
C2 −

∫ τ
0 sgn(s)Si(s)ds

= 0.

Differentiating from both sides in the second part of (6.35) and then equating with second part of
(6.28) we conclude that

4(H + 2F)

B(τ) + 4
3

e−τ =
cos τ [|τ |sgn(τ)Si(τ)]− sin τ [Si(τ) + sin τ ]

2τ2Si2(τ)
.

This shows that H can be found by the following

H = eτ
cos τ [|τ |sgn(τ)Si(τ)]− sin τ [Si(τ) + sin τ ]

8τ2Si2(τ)

(
sin τ

2|τ |sgn(τ)Si(τ)
+ 2

)

− 2F(τ) (6.36)

where τ = ln | − aR+ 2C0|.
Remark 6.1. We note that in order to determine the function H in the process as above one can
also utilize the fact that

∫ +∞

−∞

cosαx

β − x
dx = π sinαβ, α > 0, Imβ ≥ 0

[13, type 3.722.8] and consider the following replacement

∫ +∞

−∞

cos x

x
dx = 0 =⇒ ω′

τ =
cos τ

τ

=⇒ ω(τ) = −
∫ +∞

τ

cos x

x
dx = Ci(τ) = γ + ln τ +

∫ τ

0

cos t− 1

t
dt

=⇒ ω(τ) = Ci(τ) = γ + ln τ +

∞∑

k=1

(−1)kτ2k

(2k)(2k)!
,

where γ ∼= 0.57721 is the Euler-Mascheroni constant, and proceed the process of proof to result
another appropriate function H .
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6.2. Adomian Decomposition Method for (3.16)

In this section let us focus the solution of Eq. (3.16). The nonlinear operator

N(R) = exp

(

−
∫ t

0

a

2
B(−aR(s))ds

)

is decomposed as

exp

(

−
∫ t

0

a

2
B(−aR(s))ds

)

=

∞∑

n=0

An

where An are so-called the Adomian polynomials given by the following formula

Am =

[
1

m!

dm

dλm
N(

m∑

i=0

λiRi)

]

λ=0

.

That is,

A0 = N(R0) = e−
a
2
B(−2C0)t where R0 =

2C0

a
,

A1 = R1N
′(R0),

A2 = R2N
′(R0) +

1

2!
R2

1N
′′(R0),

A3 = R3N
′(R0) +R1R2N

′′(R0) +
1

3!
R3

1N
′′′(R0),

A4 = R4N
′(R0) + (R1R3 +

R2
2

2
)N ′′(R0) +

R2
1R2

2
N ′′′(R0) +

R4
1

4!
N (4)(R0),

A5 = R5N
′(R0) + (R1R4 +R3R2)N

′′(R0) + (
R2

2R1 +R2
1R3

2
)N ′′′(R0) +

R3
1R2

3!
N (4)(R0)

+
R5

1

5!
N (5)(R0),

...

Now by the ADM we have the recursive scheme as follows

R0 =
2C0

a
,

R1 = e−
a
2
( t
3
+C1) ·A0 = e−

a
2
(B(−2C0)t+

t
3
+C1),

R2 = e−
a
2
( t
3
+C1) ·A1 = −a

2
B(−2C0)e

−a(B(−2C0)t+
t
3
+C1)

R3 = e−
a
2
( t
3
+C1) ·A2 =

3a2

8
B

2
(−2C0)e

− 3a
2
(B(−2C0)t+

t
3
+C1)

R4 = e−
a
2
( t
3
+C1) ·A3 = −a3

3
B

3
(−2C0)e

−2a(B(−2C0)t+
t
3
+C1)

R5 = e−
a
2
( t
3
+C1) ·A4 =

125a4

24× 16
B

4
(−2C0)e

− 5a
2
(B(−2C0)t+

t
3
+C1)

R6 = e−
a
2
( t
3
+C1) ·A5 = − 1296a5

120× 32
B

5
(−2C0)e

−3a(B(−2C0)t+
t
3
+C1)

...

Rk+1 = e−
a
2
( t
3
+C1) · Ak =

(k + 1)k−1(−a)k

2kk!
B

k
(−2C0)e

− (k+1)a
2

(B(−2C0)t+
t
3
+C1).
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Consequently,

R(t) =
2C0

a
+

∞∑

k=0

(k + 1)k−1

2kk!
(−a)kB

k
(−2C0)e

− (k+1)a
2

(B(−2C0)t+
t
3
+C1).
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10. O. F. Casas-Sánchez, J. Galeano-Peñaloza and J. J. Rodriguez-Vega, “Parabolic-type pseudodifferential
equations with elliptic symbols in dimension 3 over p-adics,” p-Adic Numbers Ultrametric Anal. Appl. 7 (1),
1–16 (2015).
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