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Abstract—In this outline of a program, based on rigorous renormalization group theory, we
introduce new definitions which allow one to formulate precise mathematical conjectures related to
conformal invariance as studied by physicists in the area known as higher-dimensional conformal
bootstrap which has developed at a breathtaking pace over the last few years. We also explore
a second theme, intimately tied to conformal invariance for random distributions, which can be
construed as a search for very general first and second-quantized Kolmogorov-Chentsov Theorems.
First-quantized refers to regularity of sample paths. Second-quantized refers to regularity of gener-
alized functionals or Hida distributions and relates to the operator product expansion. We formulate
this program in both the Archimedean and p-adic situations. Indeed, the study of conformal field
theory and its connections with probability provides a golden opportunity where p-adic analysis
can lead the way towards a better understanding of open problems in the Archimedean setting.
Finally, we present a summary of progress made on a p-adic hierarchical model and point out
possible connections to number theory. Parts of this article were presented in author’s talk at the
6th International Conference on p-adic Mathematical Physics and its Applications, Mexico 2017.
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1. GENERAL CONTEXT

The typical calculus sequence in North American universities goes as follows: Calculus I (differentia-
tion in one variable), Calculus II (integration in one variable), Calculus III (differentiation and integration
in finitely many variables). As is well known, the programmatic content of this sequence was worked
out at the heuristic level by Newton, Leibniz and others in the 17th century. Yet it almost took two
more centuries in order for it to become a fully rigorous part of mathematics. One may argue that this
sequence continues well into the graduate curriculum, and far beyond, into the unknown. Calculus IV
(differentiation in infinitely many variables) relates to the calculus of variations and the notions of Gateau
and Fréchet differentiability. It became well understood in the beginning of the 20th century. By contrast,
Calculus V (integration in infinitely many variables or functional integration) is at a less advanced stage.
It started with the construction of Wiener measure for Brownian motion and most of modern probability
theory or stochastic calculus can be seen as an effort to develop Calculus V. A deep theory for functional
integration has been invented by Kenneth G. Wilson, namely, renormalization group (RG) theory. It
is largely heuristic. However, as emphasized in [44] it is a systematic calculus with a wide range of
applications. Indeed, a search on Google Scholar with the exact phrase “renormalization group” returns
more than 206,000 articles! Most of this literature is not mathematically rigorous and belongs to physics,
but there is also a substantial body of work where the RG is implemented in a mathematically rigorous
way. The contents of this program fall within this research area known as rigorous RG theory or modern
constructive quantum field theory. Rigorous RG theory started with the results [34, 35] on hierarchical
models and it was shown to work in the Euclidean case in [94]. Recent results in the field are: 1) Falco’s
work on the Coulomb gas in 2D [84, 85]; 2) the series of articles [21–25, 48–51, 170] by Bauerschmidt,
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Brydges, Slade and Tomberg on the N-component φ4 model in four dimensions, including N = 0 or the
weakly self-avoiding walk; 3) the work by Chandra, Guadagni and the author [8–10, 57] on the p-adic
fractional φ4

3 model; and more recently 4) the work of Lohmann, Slade and Wallace on the Archimedean
fractional φ4

3 model [124, 169]. The items 3) and 4) are particularly challenging since the regime studied
is below the upper critical dimension and involves a nontrivial RG fixed point corresponding to a highly
non-Gaussian scaling limit (the word “highly” will be explained later).

Conformal probability (CP) is a very active area in analysis. Its main objects of study are scaling
limits of models from statistical mechanics. Such limits often exhibit a rich and nontrivial symmetry,
namely, conformal invariance (CI). The simplest example is provided by the time-inversion invariance

of Brownian motion tB1/t
d
= Bt proved by Paul Lévy in [122]. Much deeper is the analogous invariance

under conformal transformation in the 2D space of “time parameters” for the Ising model critical scaling
limit [55, 59] which represents the culmination of major effort led by Schramm, Smirnov and others.
Define the lattice couplings Jx,y for x,y ∈ Z

2 by the indicator function of x,y being nearest neighbors.
Given a single site probability measure ρss =

1
2 (δ−1 + δ1) on {−1, 1}, a nonnegative parameter β, and a

finite set or volume Λ ⊂ Z
2, one can define the probability measure νβ,Λ on {−1, 1}Z2

by

dνβ,Λ(σ) =
1

Zβ,Λ
exp

⎛
⎝1

2
β

∑
x,y∈Λ

Jx,yσxσy

⎞
⎠× d (⊗x∈Z2ρss) (σ),

where Zβ,Λ is the normalization constant or partition function. Using the Griffiths inequalities it is easy
to construct the infinite volume Gibbs measure νβ at inverse temperature β and zero magnetic field as
the weak limit of νβ,Λ when Λ ↗ Z

2. The corresponding spin correlations 〈σx1 · · · σxn〉 = E(σx1 · · · σxn)
are well defined and translation invariant. This choice of boundary condition is called “free” in rigorous
statistical mechanics and “Dirichlet” in constructive quantum field theory. At the critical temperature,
i.e., when β = βc =

1
2 log(1 +

√
2), the correlations exhibit power-law decay at large distances, e.g.,

〈σxσy〉 ∼ |x− y|−2[φ] where the symbol [φ] stands for the scaling dimension of the continuum field φ
in the scaling limit. This is also minus the Hurst self-similarity exponent. For Ising in d = 2 dimensions,
[φ] = 1

8 . Let L > 1 be a fixed integer and let r ∈ Z and for given spin configuration σ = (σx)x∈Z2

define the tempered Schwartz distribution Φr = Lr(d−[φ])
∑

x∈Z2 σxδLrx where δLrx is the delta function
located at Lrx. Let νφ,r be the probability measure on S′(R2) obtained as direct image by the previous
map from νβ . It follows from the combined results of [55, 59] that the scaling limit νφ, obtained as weak
limit of νφ,r when r → −∞, exists, is non-Gaussian and satisfies (global) CI (in a sense to be explained
later). The articles [55, 59] prove much more and in particular address local CI. However, this program
focuses on the “full plane” situation and global CI. Indeed, only the latter is available in dimension d = 3
and the ultimate goal of this program is to prove a result analogous to the one mentioned above for the
three-dimensional fractional φ4 model [2, 47] which conjecturally is the scaling limit of a long-range
Ising model [139, 149]. The results in [55, 59] give rigorous proofs for predictions [28, 29] made by
physicists working in conformal field theory (CFT) which is a proper subset of quantum field theory
(QFT). However, from the point of view of theoretical physics, this is rather well understood [68]. By
contrast, the program outlined in the present article aims at establishing direct rigorous mathematical
contact with very hot physics, i.e., the area of higher-dimensional conformal bootstrap (HDCB). The
CI of the fractional φ4

3 model is the object of a recent prediction [149] by researchers in this area.

2. LONG-TERM VIEW AND PRECISE MOTIVATING CONJECTURES

The fractional φ4
3 model corresponds to probability measures on distributions φ in S′(R3) which can

be formally written as

1

Z
exp

(
−1

2
〈φ, (−Δ)αφ〉L2 −

∫

R3

{gφ(x)4 + μφ(x)2} d3x
)

Dφ, (2.1)

where the fractional power of the Laplacian is α = 3+ε
4 with 0 < ε  1 and Dφ is the nonexistent

Lebesgue measure on S′(R3). The rigorous study of such measures necessitates regularization. Let
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ρUV be a mollifier, namely, a smooth function R
3 → R that is invariant by the orthogonal group O(3),

has compact support and integral equal to 1. Let also ρIR be a smooth cut-off function, namely, one that
is nonnegative, O(3)-symmetric, compactly supported and identically equal to 1 in a neighborhood of
the origin. Define the non-cut-off covariance C−∞ as the continuous symmetric bilinear form on S(R3)
given in Fourier space as

C−∞(f, g) =
1

(2π)3

∫

R3

f̂(ξ)ĝ(ξ)

|ξ|3−2[φ]
d3ξ

with [φ] = 3−ε
4 . By the Bochner-Minlos Theorem (see, e.g., [168, §I.2]) there is a well defined centered

Gaussian probability measure μC−∞ on S′(R3) with covariance C−∞. For r ∈ Z, define the rescaled
mollifier ρUV,r by L−3rρUV(L

−r•). For φ sampled according to μC−∞ , let μCr denote the law of φ ∗ ρUV,r

and let Cr be the corresponding covariance. The sample paths of μCr are smooth and (with a slight abuse
of notation) the kernel Cr(x, y) = Cr(x− y) of Cr is also smooth. For s ∈ Z define the rescaled cut-off
function ρIR,s by ρIR(L

−s•). Given a bare ansatz (gr, μr)r∈Z or rather the germ of such a sequence at
−∞, one has well defined probability measures νr,s on S′(R3) given by

1

Zr,s
exp

(
−
∫

R3

ρIR,s(x){gr : φ4 :Cr (x) + μr : φ
2 :Cr (x)} d3x

)
dμr(φ), (2.2)

where Wick ordering : φ2 :Cr (x) = φ(x)2 − Cr(0) and : φ4 :Cr (x) = φ(x)4 − 6Cr(0)φ(x)
2 + 3Cr(0)

2

is introduced as a matter of convenience. The mathematical study of the formal measures (2.1) amounts
to parametrizing the set of all weak limits of νr,s when r → −∞ and s → ∞. Since the choice of
bare ansatz is infinite-dimensional one may naively expect that this set is also infinite-dimensional.
Conjecturally, because of the universality phenomenon, this should instead be a two-dimensional family
(parametrized by the unstable manifold of the trivial RG fixed point as explained in [5, p. 6]). Of particular
interest are isolated points in this set corresponding to self-similar or scale invariant (see [69, 70])

weak limits where the resulting random Schwartz distribution φ satisfies λ[φ]φ(λ•) d
= φ(•) (doubly!)

in the sense of distributions, for suitable exponent [φ] and all λ > 0. The high temperature fixed point
is Gaussian white noise on R

3 with [φ] = 3
2 and should result when μr is chosen too large relative to

gr. Taking gr = μr = 0 gives the previous Gaussian μC−∞ , i.e., the fractional Gaussian field FGFα(R
3)

of [123] with α = 3+ε
4 and [φ] = 3−ε

4 . However, there should be a third much more interesting, i.e., highly
non-Gaussian, self-similar measure νφ with the same [φ] = 3−ε

4 .

Conjecture 1: Set [φ] = 3−ε
4 for ε positive and small enough. Then there exists a nonempty open

interval I ⊂ (0,∞) and a function μc : I → R such that for all g ∈ I, if one sets gr = L−r(3−4[φ])g

and μr = L−r(3−2[φ])μc(g), the weak limit νφ = limr→−∞ lims→∞ νr,s exists and is non-Gaussian,
translation-invariant (stationary), O(3)-invariant (isotropic), scale-invariant (self-similar)
with exponent [φ]. Moreover this limit is independent of the choice of L, that of g ∈ I, as well
as that of the cut-off functions ρUV and ρIR.

Some readers may not be familiar with what “weak limit” means in the above conjecture. Indeed,
probability measures in spaces such as S′(R3) are not popular among probabilists who often prefer
the use of abstract Wiener spaces or probability measures on Banach spaces [38]. The literature
on probability theory in spaces of distributions such as S′(Rd) or D′(Rd) is less well known. The
probabilist’s first choice for a reference on the subject often is the pedagogically excellent [179]. However,
it does not cover enough ground for the needs of constructive QFT and CP. Likewise, white noise
theory [107] is too limited in scope since it only treats one probability measure on S′(Rd): white noise!
A gap in the literature is the absence of a very general “first-quantized” Kolmogorov-Chentsov (KC)
theorem which would roughly say: if a probability measure μ on S′(Rd) has finite moments of all orders
with smooth kernels Sn(x1, . . . , xn) away from the diagonal behaving like |Sn(z + λx1, . . . , z + λxn)| ∼
λ−n[φ] when λ → 0, then μ(Cα) = 1 for all α < −[φ]. Here the Cα denote the α-Hölder-Zygmund
spaces, i.e., Besov spaces Bα

∞,∞ featuring in [18, 101], and we are especially interested in the negative
α situation. A first approximation to such an ideal theorem is [11, Thm. 1.4.2] for Gaussian measures.
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Much closer to what we have in mind are the versions of such a result given in [140, Lemma 9] as well
as [58, Thm. 2.7] and [93, Prop. 2.32]. Note that there is no need for versions and modifications since we
are talking about random distributions [86, Ch. III] rather than the weaker notion of generalized random
field [86, Ch. II] and, furthermore, the spaces Cα are measurable subsets of S′(Rd). The above statement
we gave for the ideal KC Theorem is not strictly-speaking correct since one needs a hypothesis on the
correlations as distributions on the diagonal which would follow, e.g., if [φ] < d

2 , i.e., the kernel is
locally integrable, and correlations are given by integration against this kernel. Finally, the ideal KC
Theorem should include the case [φ] < 0 and the most basic KC Theorem for Brownian motion. This
requires the use of spaces of test functions Sk(R

d) with vanishing spatial moments up to order k as
in [69], or non-canonical lifts for incremental fields as in [123]. The simplest example of such a lift is
the convention Bt = 0 at t = 0 for Brownian motion. Spaces of distributions like S′(Rd) and D′(Rd) are
well behaved from the point of view of probability theory. This is largely due to the nuclear property which
unfortunately is rather technical. The author’s simplifying point of view is to take as practical definition
of a nuclear space: a locally convex topological vector space which is isomorphic to s, s0 or s0⊗̂s. Here
s = s(N) is the space of sequences with faster than power-law decay. One can similarly define s(Nd) and
s(Zd). For instance, if one used a φ4-type single site measure dρss(u) ∼ exp(−au4 − bu2)du, the theory
of superstability (see [57, §4.7] and references therein) would realize infinite volume lattice measures
in s′(Z2) before transfer to S′(R2) for the study of the scaling limit. As topological vector spaces
s � s(Nd) � s(Zd) � S(Rd) [167]. The space s0 = ⊕NR is that of almost finite sequences with the
finest locally convex topology, i.e., the one generated by the uncountable set of all possible seminorms.
The Schwartz-Bruhat spaces [43, 147] S(Qd

p) are isomorphic to s0. Finally s0⊗̂s = ⊕Ns with the
topology defined by the set of all seminorms that are continuous on individual summands. The adelic
Schwartz-Bruhat space S(AQ) is isomorphic to s0 ⊗ s but so is the classical space of test functions
D(U), for U a nonempty open set in R

d. Explicit Schauder bases realizing the last Valdivia-Vogt
isomorphism [175, 177] were not known until recently [19]. In the statement of Conj. 1, S′(Rd) is to
be understood as a topological space with the strong topology. The σ-algebra is the Borel σ-algebra
for this topology. One can also use the weak-∗ topology, but the Borel σ-algebra would be the same and
it would also equal the cylinder σ-algebra (that makes the maps φ �→ φ(f) measurable) [26, 86]. More
importantly, weak convergence of probability measures is defined as usual via the convergence
of expectations of bounded continuous functions. By a remarkable theorem of Fernique [86, Thm.
III.6.5], this definition is insensitive to the choice of topology between the weak-∗ and strong ones in the
definition of bounded continuous functions. While S′(Rd) is non-metrizable and thus not Polish (the
popular tools in [30] fail), probability theory on this space is in some sense nicer than in Banach spaces.
Prokhorov’s Theorem, Bochner’s Theorem and the Lévy Continuity Theorem all apply to S′(Rd) and
their statements are identical to their finite-dimensional analogues (see [86, 179]).

A probability measure μ on S′(Rd) has the moments of all orders (MAO) property if φ �→ φ(f) is in
Lp(S′(Rd), μ) for all f ∈ S(Rd) and all p ∈ [1,∞). By [86, Cor. II.2.5], the moments Sn(f1, . . . , fn) =

〈φ(f1) · · · φ(fn)〉 =
∫
φ(f1) · · · φ(fn) dμ(φ) are automatically continuous as n-linear forms on S(Rd).

By the Schwartz-Grothendieck Nuclear Theorem (see [167, Thm. 6] for an easy proof), the moments
Sn can be seen as distributions, i.e., elements of S′(Rnd). An MAO measure μ is determined by
correlations (DC) if the only MAO measure with the same sequence of moments Sn as μ is μ itself.
A DC measure will be called determined by pointwise correlations (DPC) if: 1) for all n, the Sn ∈
S′(Rnd) have singular support (see, e.g., [42]) contained in the big diagonal Diagn = {(x1, . . . , xn) ∈
R
nd|∃i �= j, xi = xj} (this property uniquely defines the smooth pointwise functions Sn(x1, . . . , xn) =

〈φ(x1) · · · φ(xn)〉 on R
nd\Diagn); 2) these pointwise correlations are L1,loc on Diagn; and 3) for all n and

all test functions f1, . . . , fn ∈ S(Rd) one has

〈φ(f1) · · ·φ(fn)〉 =
∫

Rnd\Diagn

〈φ(x1) · · · φ(xn)〉f(x1) · · · f(xn) ddx1 · · · ddxn,

where on the left one has an honest expectation with respect to μ whereas on the right, the expectation-
like notation 〈φ(x1) · · ·φ(xn)〉 is merely symbolic.
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Conjecture 2: The measure νφ from Conj. 1 is DPC.

Note that pointwise correlations must satisfy 〈φ(λx1) · · · φ(λxn)〉 = λ−n[φ]〈φ(x1) · · ·φ(xn)〉 as a
result of self-similarity. If one keeps in mind translation invariance, then local integrability, e.g., for n = 2
amounts to d− 2[φ] > 0 which is luckily satified for d = 3 and [φ] = 3−ε

4 with ε small.

Conjecture 3: The measure νφ is Osterwalder-Schrader (OS) positive (see [99, §6.1]).

Thus the measure should satisfy all the OS axioms and should provide a nontrivial Euclidean QFT
in the traditional sense of constructive QFT. Although the last conjecture does not pertain to probability
per se, it has important consequences with relation to probability. For instance it would imply real
analyticity for the pointwise correlations 〈φ(x1) · · ·φ(xn)〉 (see [99, Cor. 19.5.6]). OS positivity can also
help prove bounds on correlations (see [92] for a famous example and [164] for a review). Since the recent
work of Hairer [102, 103] (see also [56, 117]) on the stochastic quantization SPDE for theφ4

3 model, there
has been renewed attention devoted to the latter. However, in [112], the author expresses some criticism
for this approach seen as a way to construct the φ4

3 model and show that it satisfies the OS axioms.
Such criticism is based on the premise that it would essentially be impossible to prove OS positivity for a
nontrivial limit (such as νφ) if it did not hold for the approximants (such as νr,s). This premise may be too
pessimistic. Indeed, the author noticed a few years ago (talk at the conference “Rigorous Quantum Field
Theory in The LHC Era”, Vienna, 2011) that all one needs is a partial OS positivity for approximants
that becomes full OS positivity in the limit. Namely, one only needs positivity for observables that
are “Lr away” from the reflection hyperplane. This is what regularization on a lattice of mesh Lr

does! Thus a strategy for proving Conj. 3 could be as follows. Let θ(x1, . . . , xd) = θ(−x1, x2, . . . , xd),
θf(x) = f(θx), θφ(f) = φ(θf) and θF (φ) = F (θφ) denote the reflection respectively for points, test
functions, distributional fields and measurable functionals. OS positivity would follow if one can show∫
θF (φ)F (φ)dνφ(φ) ≥ 0 for all F ’s given by a polynomial in the “coordinates” φ(f1), . . . , φ(fn) with

test functions f1, . . . , fn having compact support in the open half-space (0,∞)× R
d−1. Once these

functions are fixed then there is a lower bound a > 0 for the distance between these supports and the
reflection hyperplane. Now replace the couplings gr and μr in (2.2) by space-dependent functions g̃r(x)
and μ̃r(x) which vanish in a corridor of thickness ∼ Lr around the reflection hyperplane, are essentially
equal to the previous uniform values gr, μr further away, and may eventually be bigger at the edges of the
corridor in order to compensate for the inside loss. Then the analogue of

∫
θF (φ)F (φ)dνr,s(φ) can be

written as
∫
θF (φ ∗ ρUV,r)e−θ˜Vr(φ∗ρUV,r)F (φ ∗ ρUV,r)e

−˜Vr(φ∗ρUV,r)dμC−∞(φ) for a suitable functional

Ṽr. Roughly speaking, the latter lives in (Lr,∞)×R
d−1. The needed positivity then is a result of OS

positivity for the non-cut-off Gaussian μC−∞ , the size ∼ Lr for the compact support of ρUV,r and
taking Lr  a. Hence, the problem is reduced to showing that this evanescent corridor modification
has no effect on the weak limit νφ. One thus needs a robustness result with respect to a perturbation
of the interaction (the part inside the exponential in (2.2)) corresponding to a hypersurface defect
in the middle of the bulk. Note that a similar robustness is needed in Conj. 1 in order to deal with
the smooth fall-off of ρIR,s. While O(d) invariance in Conj. 1 is trivial as stated, this is not the case
for translation invariance. One needs similar robustness with respect to boundary effects due to the
symmetric difference of two large spheres. The latter should be negligible compared to the bulk since the
shape satisfies the Van Hove criterion (see [156, Def. 2.1.1]) for thermodynamic limits, but one has to
prove it.

Given two nonempty simply connected open sets U and V in R
d, a Ck-diffeomorphism f : U → V ,

with k ≥ 1 finite or infinite, is called conformal if there exists a function τ : U → R such that ∀x ∈ U ,
e−τ(x)Dxf ∈ O(d). The condition is void for d = 1. If d = 2, then f(z) must be of the form g(z) or g(z)
for some holomorphic map g. If one does not fix the domain U and target V this gives a rich infinite-
dimensional flexibility (as in the titles of [28, 29]); but if one does then one is reduced to SL2(C) or
SL2(R) Möbius symmetry. Finally, if d ≥ 3 then by a theorem of Liouville (see, e.g., [104]) f must be
the restriction of an element of the Möbius group M(Rd) of global conformal maps. This group can be

defined as the group of bijective transformations of the “sphere” R̂d = R
d ∪ {∞} generated by Euclidean

isometries, scaling transformations x �→ λx with λ > 0 and the unit-sphere inversion J(x) = |x|−2x. By
definition, the first two preserve the point at infinity while J exchanges the origin and ∞. Another more
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elegant definition of M(Rd) can be given using the absolute cross-ratio. In the convention of [12] (there
is no standard choice in the literature) it is given by CR(x1, x2, x3, x4) = (|x1 − x3| |x2 − x4|)/(|x1 −
x4| |x2 − x3|) for quadruples in (Rd)4\Diag4. It can be extended by continuity (R̂d is seen as the one-

point compactification of Rd) to R̂d\D̂iag4 where D̂iag4 is the new big diagonal, by omitting factors
which contain ∞. Then M(Rd) is the group of bijective transformations which leave the cross-ratio
invariant (see [181, Thm. 4] or [153, Thm. 4.3.1]).
Conjecture 4: The measure νφ satisfies global CI. Namely, the pointwise correlations for νφ obey

〈φ(x1) · · ·φ(xn)〉 =
(

n∏
i=1

|Jf (xi)|
[φ]
3

)
× 〈φ(f(x1)) · · · φ(f(xn))〉 (2.3)

for all f ∈ M(R3), and all collections of distinct points in R
3\{f−1(∞)}. Here, Jf (x) = det(Dxf)

denotes the Jacobian determinant of f at x.
This is the analogue of the self-similarity propery stated after Conj. 2 where now the rescaling factor

λ is allowed to be space-dependent. Conj. 4 is supported by the arguments in [149]. CI for the fractional
φ4
3 model thus joins similar physically motivated conjectures in 3D for the self-avoiding walk [114],

percolation [100] or the short-range Ising model (see, e.g., [65]). The 2D Ising analogue of Conj. 4
immediately follows from the explicit formula proved in [59, Eq. 1.6] for the full plane case (see also [75,
Thm. 4]). Note that the argument in [149] is quite subtle since the fractional φ4

3 model is nonlocal and
one is missing the most important ingredient of textbook CFT [68], namely, a local energy-momentum
tensor. Instead, [149] makes fundamental use of the point of view known in the physics literature
as AdSd+1/CFTd correspondence and holography (see, e.g., [113, 183]) which involves a notion of

extension from the boundary to the bulk as in [54]. Indeed, R̂d can be identified with the unit sphere S
d

inside Rd+1. This sphere is the topological boundary of the open unit ball Bd+1. Although not a conformal
invariant, the metric induced from the Euclidean one on R

d+1 is a reasonable one to put on S
d. As for

B
d+1, the good metric to use is the hyperbolic one given by ds = 2|dx|

1−|x|2 . The AdS/CFT point of view
is based on the classical theorem in geometry which establishes a one-to-one correspondence between

elements of M(Rd) acting on the boundary R̂d � S
d and hyperbolic isometries acting on B

d+1 (see,
e.g., [153, Thm. 4.5.2]). Instead of using the previous conformal ball model of hyperbolic geometry one

can also use the upper half-space model where R̂d is identified with the hyperplane R
d × {0} ⊂ R

d+1

together with the point at infinity “(0, . . . , 0,∞)”. The hyperplane is equipped with the usual Euclidean
metric and appears as the boundary (in R

d+1) of the upper half-space H
d+1 = R

d × (0,∞). The latter
is equipped with the hyperbolic metric ds = |dx|/xd+1. The spaces B

d+1 or Hd+1 are what physicists
call the Euclidean Anti-de Sitter space AdSd+1 (the word “Euclidean” is not in the sense of geometry
but in the sense of the Euclidean vs. Lorentzian/Minkowskian distinction in axiomatic and constructive
QFT).

The article [149] not only covers the 3D fractional φ4 model but, more generally, critical scaling limits
of long-range Ising models in any dimension. Indeed, instead of using the mollifier ρUV one can use
a lattice regularization, as in [46], in order to make sense of (2.1). The fractional Laplacian (−Δ)α

with α = 3+ε
4 would be replaced by the lattice analogue (−ΔLrZ3)α adapted to the fine lattice with

mesh Lr. This is a rescaled version of the unit lattice fractional Laplacian (−ΔZ3)α with off-diagonal
matrix elements −Jx,y. It is an easy exercise to check that Jx,y > 0 (the model is ferromagnetic) and
Jx,y ∼ |x− y|−(d+σ) at long distance, with d = 3 and σ = 3+ε

2 . Long-range models were rigorously
studied in d = 1 by Dyson [81, 82] and for general d and σ in [14] where the existence of a critical inverse
temperature βc is shown. The corresponding critical scaling limits were the object of non mathematically
rigorous investigations by physicists [87, 158, 159]. For d = 3, as one increases σ one should see three
regimes: mean-field, intermediate, and short-range (see [149, Fig. 1]). The ε ∼ 1 regime of the long-
range model where one would transition into the more mysterious scaling limit for the 3D short-range
Ising model has been the object of recent controversy among physicists [17, 27, 31, 41, 150]. This
program pertains to the other more mathematically tractable end 0 < ε  1 of the intermediate region,
where one is close to the mean-field regime yet below the upper critical dimension. Note that if one uses
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the lattice regularization for (2.1) and makes the same choices as in Conj. 1 for the bare ansatz gr, μr

then one is taking the scaling limit of a fixed critical lattice measure for the long-range model (similarly
to the discussion of [55, 59] in relation to the 2D short-range Ising model).
Conjecture 5: The measure νφ can be obtained as a critical lattice scaling limit starting with 1) a
single site measure ρss of φ4 type as well as with 2) ρss =

1
2(δ−1 + δ1).

We have nothing to say at this point about Conj. 5. Indeed Part 1) of the latter amounts to robustness
with respect to the choice of regularization or perturbations of the Gaussian measure (independence
from the choice of ρUV in Conj. 1). This is very hard to do with rigorous RG methods (see however [24]
where a particular instance of this issue was overcome!). The leitmotiv of this program is robustness
with respect to changes in the interaction potential (e.g., the choice of ρIR in Conj. 1). Part 2) of
Conj. 5 seems even more difficult. This conjecture in the physics literature [68, §7.4.7] goes under
the heading of effective Ginzburg-Landau (or multi-critical model) description of the unitary minimal
models M(m+ 1,m) of CFT [185]. If one uses block-spins to implement the RG, then one would sum
unit-lattice spins σx over blocks of size L and multiply by L−(d−[φ]). The usual coarse-graining for the
central limit theorem is when [φ] = d

2 as in [143, 144] or [40]. If one repeats the operation N times then
the spacing between spin values is ∼ L−N(d−[φ]) → 0 whereas the extreme values go as LN [φ] → ∞ so
the spin distribution looks like a law on R with continuous density. If one starts with ρss =

1
2(δ−1 + δ1)

it is therefore intuitively reasonable to expect the same scaling limit as if one started with a double-
well φ4-type ρss (see also [116, §12.3]). Finally, with regard to the φ4

2/Ising conjectural equivalence in
2D, note that massless measures νm=0 are known to exist (also for φ4

3) from the works [98, 135] (see
also [46, §9]). However, these are not self-similar and thus νm=0 �= νφ since the bare coupling gr is kept
fixed with respect to the UV cut-off r (see [46, §4]). One would need to take the large distance scaling
limit (see [70, Eq. 3.1]) of νm=0 in order to recover νφ. From the RG perspective, νm=0 corresponds to
a two-sided RG trajectory starting at a Gaussian fixed point and ending at a nontrivial fixed point, just
like the one constructed in [2] for the 3D fractional φ4 model.

The article [149] belongs to HDCB which has known tremendous activity in the last few years. For a
long time, it was believed that conformal symmetry in d ≥ 3 was too poor to produce precise predictions
for critical exponents as 2D CFT did; but the situation changed! The, soon to be explained, operator
product expansion (OPE) is the main conceptual foundation for HDCB [83, 157] as well as for 2D
CFT [28, 29]. The OPE is expected to hold in any QFT conformal or not, and it gives precise predictions
for the asymptotic behavior of pointwise correlations near Diagn. Supplemented with CI and the
associative property (crossing symmetry), the OPE essentially allows one to compute the correlations of
the CFT at hand. Recent progress was made possible by better formulas for conformal blocks [71, 72],
and the discovery [152] of a universal bound [φ2] ≤ f([φ]) relating the scaling dimension of the field
φ, with law νφ, to the scaling dimension [φ2] of a suitably renormalized pointwise square N [φ2]. The
2D Ising model was found to be a “kink” which saturates this bound at the point ([φ], [φ2]) = (18 , 1).
Similarly to thinking of φ as the scaling limit of the spin field, a good way to think of N [φ2] is as
the scaling limit of the energy field whose correlations were studied in [109, 110]. It was observed
(see [157]) that a similar positioning at a kink happens for 3D Ising and this could give a clue to
the pair ([φ], [φ2]) for 3D Ising. Some of the most precise theoretical predictions for 3D Ising critical
exponents are in [166], namely: [φ] � 0.518151 and [φ2] � 1.41264. The author previously thought
that such HDCB predictions were the result of an appealing but unjustified “kink hypothesis” for 3D
Ising, but in fact they rest on much more solid arguments using OS positivity, the OPE and crossing
symmetry applied to the mixed four-point functions of the fields φ and N [φ2] [115]. For the fractional
φ4
3 model in R

3 one expects [φ2]− 2[φ] = ε
3 + o(ε) (see, e.g., [149, Eq. 2.18]). This is exactly the

relation proved in [9] for the hierarchical fractional φ4
3 model. Such composite field anomalous scaling

is reminiscent of multifractality (see, e.g., [16]). For an ordinary random field φ(x), with moments
satifying E|φ(x)− φ(y)|m ∼ |x− y|−[φm], multifractal behavior can be described as a nonlinear variation
of the scaling exponent [φm] in terms of the power m. When the Hurst exponent −[φ] is positive, the
process is not a generalized one, and the power is a “true power”, then such behavior is ruled out by
strict self-similarity. For the fractional φ4

3 model the strictly self-similar field φ sampled according to νφ
is a generalized one and the square N [φ2] is not a naive product of the field with itself. In addition to
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additive renormalizations as in the usual Wick product construction [62] or the recent work [102], one
needs a nontrivial multiplicative renormalization which is responsible for this “multifractal” relation
[φ2] > 2[φ]. It is remarkable for the simplified model in [9] to produce, if one boldly keeps the O(ε)
terms and extrapolates to ε ∼ 1 (3D short-range Ising), a value 1/3 = 0.33 . . . for the scaling anomaly
[φ2]− 2[φ] that is quite close to the value 0.3763 . . . deduced from [166].

Conjecture 6: There exists [φ2], a function of ε only, satisfying [φ2]− 2[φ] = ε
3 + o(ε) where

[φ] = 3−ε
4 and ε is supposed to be small for which the following is true. Let φr,s be a ran-

dom (smooth) distribution in S′(R3) sampled according to νr,s defined by (2.2). Define a
new smooth field Nr,s[φ

2] which is given deterministically in terms of φr,s by Nr,s[φ
2](x) =

L−r([φ2]−2[φ])
[
φr,s(x)

2 − E(φr,s(x)
2)
]

where the expectation is with respect to dνr,s(φr,s). Then the
pair of random variables (φr,s, Nr,s[φ

2]) ∈ S′(R3)2 converges in distribution to a pair (φ,N [φ2])

with joint law νφ×φ2 such that var(N [φ2](f)) > 0 for some test function f .
Clearly, the non-Gaussian measure νφ must be the first marginal of νφ×φ2 .

Conjecture 7: The joint law νφ×φ2 is DPC as well as translation, rotation, scale and conformal
invariant as in the previous conjectures 1, 2 and 4.

Of course, [φ] needs to be replaced by [φ2] where appropriate in the statements obtained by trivially
adapting those of the previous conjectures. Also, the symmetries act diagonally: the same geometric
transformation is applied to φ and N [φ2]. A result of Conj. 7 is to give access to all mixed pointwise
correlations 〈 φ(x1) · · · φ(xn) N [φ2](y1) · · ·N [φ2](ym) 〉 for the measure νφ×φ2 on S′(R3)2. Note that
for 2D Ising, the 1st marginal νφ has been obtained in [55] but the existence of the joint law νφ×φ2 or
even just the 2nd marginal νφ2 is more problematic because [φ2] = 1 and the covariance kernel fails
to be L1,loc. Nevertheless, the mixed pointwise correlations still make sense and they should be the
scaling limits of mixed spin-energy correlations. For the fractional φ4

3 the situation is better because of
the relation [φ2]− 2[φ] = ε

3 + o(ε) which implies the L1,loc property 3− 2[φ2] > 0 when ε is small.

Conjecture 8: There exists positive constants c1,1;0 and c1,1;2 such that φ(x)φ(y) = c1,1;0|x−
y|−2[φ]+ c1,1;2|x− y|[φ2]−2[φ]N [φ2](x)+ o(|x− y|[φ2]−2[φ])when y → x, inside arbitrary mixed point-
wise correlations.

The meaning of ‘inside correlations’ should be clear. It implies, e.g., 〈φ(x)φ(y)φ(z1) · · ·φ(zn)〉 =
c1,1;0|x− y|−2[φ] 〈φ(z1) · · · φ(zn)〉+ c1,1;2|x− y|[φ2]−2[φ]〈N [φ2](x)φ(z1) · · · φ(zn)〉+ o(|x− y|[φ2]−2[φ])

when y → x for fixed (x, z1, . . . , zn) ∈ R
(n+1)d\Diagn+1. The simplest example of the OPE is Conj.

8. Note that complete dependence of pairs of random variables does not necessarily survive convergence
in distibution. Stronger notions than weak limits of probability measures would be needed in order to
preserve that property (see, e.g., [165]). While Nr,s[φ

2] is a function of φr,s it is not clear from Conj. 6
that the “energy” field N [φ2] should be a deterministic function, i.e., a pathwise renormalized square of
the “spin” field φ.

Conjecture 9: Let Ñr[φ
2](x) = L−r([φ2]−2[φ])

[
(φ ∗ ρUV,r)(x)

2 − E
(
(φ ∗ ρUV,r)(x)

2
)]

where φ is sam-
pled according to νφ and the expectation is with respect to that measure. Then for all test
functions f , the smeared quantities

∫
R3 Ñr[φ

2](x) f(x) d3x, built from the smooth field Ñr[φ
2](x),

converge in every Lp(S′(R3), νφ), for p ∈ [1,∞), and almost surely to a limit Ñ [φ2](f). Moreover,
there exists a Borel measurable map Sq : S′(R3) → S′(R3) such that 1) for all f , Sq(φ)(f) =
Ñ [φ2](f), νφ-a. s. in φ; and 2) the law of (φ, λSq(φ)) is νφ×φ2 , for a suitable constant λ > 0.

As is well known, one cannot define the pointwise product of distributions in general [162]. One
could argue that the whole history of stochastic calculus can be seen as an effort to circumvent this no-
go theorem, albeit in a stochastic sense or, even better, in an almost sure or pathwise sense. This was
nicely recalled in [101, pp. 5–6] starting with the simplest case: Itô’s integral. Indeed, when considering∫
f(Bt)dBt with f smooth, or rather

∫
f(Bt)Ḃtdt the issue is not so much integration as it is pointwise

multiplication of f(Bt) (of regularity Cα, α < 1
2 ) with Ḃt (of regularity Cβ , β < −1

2 ). Deterministic
multiplication theorems, for instance based on Bony paraproducts [18], require α+ β > 0 which one
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barely misses in the case of Brownian motion. Itô’s theory circumvents this issue by using a stochastic
construction. Later (see, e.g., [88]) one could do this construction in a pathwise or almost sure sense.
Typical pathwise approaches amount to identifying a set G of good paths for which one can do the wanted
construction deterministically. Then, one brings in probability by showing that sample paths are a. s. in
G. Conj. 9 gives a similar pathwise construction of the pointwise square of φ, except the set G is implicitly
defined and the separation with probability is not as clear-cut. Still, Conj. 9 is clearly related to pathwise
approaches for products of random distributions as in [101, 102] which took their inspiration from the
theory of rough paths [126]. Going from Conj. 8 to Conj. 9 can be done using what we would like to call
a “second-quantized” KC Theorem as in the recent article [7].

Conjecture 10: The field φ sampled according to νφ is not subordinated to a Gaussian field in the
sense of [69, 129] if one only allows finite order Wiener chaos representations.

Conj. 10 is the explanation of the word “highly” used when saying that νφ is a highly non-Gaussian
measure. In constructive QFT one has different grades of nontriviality which can be ranked by increas-
ing strength as: NT1) the Euclidean probability measure is non-Gaussian; NT2) the corresponding
quantum field obtained by OS reconstruction is not in the Borchers class (see, e.g., [171, §4.6]) of
a generalized free field; NT3) the S-matrix is not the identity; NT4) the S-matrix exhibits particle
production/destruction. Only NT4 gives Einstein’s E = mc2 its full punch! Note that a Wick square
of a free field would be non-Gaussian, i.e., one can have NT1 but not NT2 (see [154, 155]) and
thus a trivial S-matrix [39, Cor. 12.2]. Conj. 10 is related to property NT2 and it follows easily from
Conj. 9 and the existence of an anomalous dimension [φ2]− 2[φ] > 0 from Conj. 6. Indeed, Conj. 9
says N [φ2] is a functional of φ. If the latter was itself a functional, say : ψk :, of a Gaussian field ψ,
then by the easy analogues of Conj. 8 and 9 for ψ one should be able to rule out a relation such as
[φ2]− 2[φ] = ε

3 + o(ε) and get a contradiction. Interestingly, Conj. 10 leaves the door open to an infinite
chaos-order representation. In some sense, the Coulomb gas formalism of CFT [68, Ch. 9] supports
that idea: correlations of nontrivial CFTs like 2D Ising can be obtained using infinite chaos-order fields
: eiαψ(x) : where ψ is the massless free field, modulo suitable screening charges. This ties in with the
multifractal story told earlier. The first precise mathematical model for such behavior, following earlier
insights by Kolmogorov and Yaglom, is Mandelbrot’s cascade (see [16] and references therein) initially
defined by an RG-like fixed point equation but which can also be seen as a random measure with density
(with respect to Lebesgue measure) given by an infinite chaos-order field : eαψ(x) : with ψ similar to a
hierarchical Q1

2 field (with [φ] = 0, i.e., log-correlated as in [77]) in the notations of the next section. Note
that for the fractional φ4

3 it is not clear how one can even formulate NT3 and NT4, so Conj. 10 might be
the best one can do in the near future. Indeed, there is no reasonable notion of particles even for the free
QFT corresponding to μC−∞ studied, e.g., in [78, 79]. The current frontier regarding scattering theory
for massless QFTs does not concern relativistic ones (as the one obtained from νφ by OS reconstruction)
but non-relativistic models (see [60, 67, 80] for recent work in the area).

From the probabilistic point of view, Conj. 4 using moments and their pointwise limits may seem as
a poor way to formulate CI for a probability measure such as νφ. A more satisfactory approach would
be to define Tfφ resulting from the covariant action of a conformal map f ∈ M(Rd) on a distribution
φ ∈ S′(Rd). As far as we know, this issue was not addressed in the 2D CP literature, perhaps because of
the emphasis on local rather than global CI. If f : U → V is a diffeomorphism, then (Tfφ)(x) in D′(V ) is

easy to define as |Jf−1(x)|
[φ]
d φ(f−1(x)) in the sense of distributions as in [77]. Namely, for a test function

g ∈ D(V ), define (Tfφ)(g) = φ(Tf−1g) where (Tf−1g)(x) = |Jf (x)|1−
[φ]
d g(f(x)). However, this results

in the unpleasant feature that domains U , V will change with the map f . If one wants to implement a
true action of the group M(Rd) at the level of Schwartz distributions in S′(Rd), one must stomach the
point at infinity. This was done in white noise theory (see [108] and [107, §5.3]) by changing the space
of test functions from S(Rd) to the Dχ used in [96] in order to revisit Bargmann’s study [20] of unitary
representations of M(R) and M(R2). A similar idea was used in a p-adic context in [119, 120]. However,
most computations in physics are done in Fourier space and the ideal setting for Fourier analysis is
provided by the distribution space S′(Rd). In order not to give up the beloved space S′(Rd), the following
can be done when 0 < [φ] < d

2 . If one does not second-guess Schwartz’s intentions when choosing the
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letter “S” for his space, the explanation for the latter is the word “spherical”. Indeed, Schwartz proves
(see [161] or [163, §VII.4]) that an element φ ∈ D′(Rd) belongs to S′(Rd) if an only if it admits an

extension to an element of D′(Sd) via R
d ⊂ R̂d � S

d (see [13] for a far-reaching generalization). For a
measure such as μC−∞ or νφ, with 0 < [φ] < d

2 , by the 1st-quantized KC theorem, the φ’s would almost
surely be in Cα for α < −[φ]. The key remark, is that by taking α > −d, the extension is unique (and
it is also in the space Cα for the sphere S

d). Namely, one is in a removable singularity situation similar
to that of Riemann’s Theorem (see [63, §8.1]). One can also realize the unique extension in a Borel
measurable way by avoiding the Hahn-Banach Theorem used in [163, §VII.4] and relying instead on
a more constructive extension procedure (see [39, p. 88] or [134, Thm. 2.1]). This gives a definition
of the push-forward (Tf )∗ν of the original measure ν by an almost sure pathwise construction. The
additional restriction [φ] < d

2 , rather than just [φ] < d, comes from the need for the DPC property in
order to reduce an equation (Tf )∗ν = ν to a statement about pointwise correlations as in Conj. 4.
For the Gaussian measure μC−∞ , and contrary to what a hasty reading of [77] might suggest, CI (in
the stronger probabilistic sense just explained) holds for all [φ] ∈ (0, d2 ) because the DPC property
holds as well as the easy analogue of Conj. 4 [151]. The latter reduces to the fundamental identity
|J(x)− J(y)| = |x− y| × |x|−1 × |y|−1 for the unit-sphere inversion. It is somewhat surprising that
CI needs the 1st-quantized KC Theorem and thus a condition such as [φ] < d

2 . As for the “second-
quantized” KC Theorem and the OPE, even for Gaussian fields, going beyond the [φ] = d

2 barrier is
rather problematic. This relates, e.g., to the construction of iterated integrals of fractional Brownian
motion for low Hurst exponent. Very little is known, apart from the findings from the difficult work by
J. Unterberger, with help from J. Magnen [127, 128, 173, 174]. Finally, before moving on to the p-adic
fractional φ4

3 model, it is worth remarking that if CI and OS positivity hold, then so do more exotic forms
of the latter. One would have inversion positivity [89, 142] with respect to say the unit sphere instead of
a reflection hyperplane.

3. THE p-ADIC HIERARCHICAL MODEL

It should be apparent from the previous discussion that Conj. 1-10 (except perhaps 5) are connected
by a unifying theme: robustness with respect to space-dependent perturbations of the interaction,
e.g., replacing gr, μr in (2.2) by functions gr(x), μr(x). The ultimate goal of this program is to make
progress on these nine conjectures which is a battle that has to be fought simultaneously on all
fronts. The chosen RG approach is very expensive: proofs such as [21–25, 48–51, 170] tend to take
monumental proportions. Besides, the latter work addresses issues that are more tractable than the
OPE, anomalous dimensions and CI. The last thing one would want is to build a big RG machine and
then, at the last step towards proving say CI, to discover with horror that some choice of cut-off made
at the beginning will not work and one has to start over. It is thus essential to find a toy model where
all the problems in Conj. 1-10 are present yet in cleaner smaller-scale form. This is what the p-adic
hierarchical fractional φ4

3 model of [9] provides. When studying complex multiscale phenomena it is often
important to decompose functions into time-frequency atoms which live on a tree, e.g., when using a
wavelet decomposition. Unfortunately for most questions of interest the metric which governs how these
atoms interact with each other is not the natural (from the tree point of view) ultrametric distance, but
the Euclidean metric of the underlying continuum. Hierarchical models in physics amount to changing
the model so it is the ultrametric distance which defines atomic correlations. The same idea also appears
in mathematics where such toy models are often called “dyadic models” [172]. Given a problem in
Euclidean space, there are lots of ways of setting up a hierarchical model for it. The p-adics, in some
sense provide the most canonical, structured and principled way of doing this. In order to make this
article readable to probabilists who are not familiar with p-adic analysis, the p-adic fractional φ4

3 model
will be introduced without appealing to p-adic analysis as covered, e.g., in [15, 160, 176] (see also [73]
for a recent review) but instead by relying on the well developed probablistic intuition for trees (Galton-
Watson processes, branching Brownian motion, etc.). The few remarks needing p-adic analysis will be
placed between the symbols ♠ and ♥.

Take an integer p > 1 and let Lk denote the set of boxes
∏d

i=1[p
kai, p

k(ai + 1)), (a1, . . . , ad) ∈ N
d,

which form a partition of the orthant [0,∞)d by cubes of size pk, k ∈ Z. The set T = ∪k∈ZLk naturally
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has the structure of a doubly-infinite tree. Now forget about how the tree was defined using an artificial
embedding in [0,∞)d and just remember the tree structure and its organization into layers Lk. There
is a clear notion of rays or leaves at infinity forming a set L−∞ =: Qd

p (see [6]). Pick a ray and call
it the origin 0. Give the name ∞ to the common root of all these rays. For x, y ∈ Q

d
p define their

distance |x− y| = pk where k labels the layer Lk where the two rays split. This is an ultrametric,
whose closed balls are in one-to-one correspondence with vertices x ∈ T. One can easily define a
“Lebesgue measure” ddx on Q

d
p which assigns a volume pkd for a ball corresponding to an x in Lk. Thus,

Volume = (Linear size)d as in R
d. The layer L0 (the set of unit balls in Q

d
p) plays the role of the lattice

Z
d. Define the center Ω ∈ T as the site where the bi-infinite path ∞ → 0 meets L0. Define a centered

Gaussian random field (ζx)x∈T by letting Eζxζy if x, y are in different layers or are in the same layer
Lk but have different mothers. The remaining case is settled by letting Eζxζy be equal to −p−dp−k[φ] if
x �= y and to (1− p−d)p−k[φ] if x = y. The Gaussian μC−∞ is the law of the field φ(x) =

∑
x ζx where

the sum is over all sites along the ray ∞ → x. It lives in S′(Qd
p) � R

N obtained as the dual of the space
S(Qd

p) � s0 � ⊕NR of smooth (i.e., locally constant) compactly supported functions f : Qd
p → R

with the locally convex topology defined by all seminorms. Note that the usually trivial part of Bochner’s
Theorem is nontrivial but still true for s0 since it is sequential [145, pp. 795–796]. Fix L = pl for some
integer l > 0. If one stops the summation over x, coming from ∞, at the layer Llr, then this defines
the analogue of the smooth field φ ∗ ρUV,r and its law μCr . The volume cut-off ρIR,s is the indicator
function of the closed ball of radius Ls around 0. Combine analogues of translations and O(d) elements
into the group of bijective isometries of Qd

p for the ultrametric. Scaling corresponds to vertical shifts
between layers Lk. Now the hierarchical analogues of Conj. 1-10 should be clear except for Conj. 3 and

4. Define the cross-ratio as before for distinct points in Q̂d
p = Q

d
p ∪ {∞} using the ultrametric instead

of the Euclidean metric. Define the group of global conformal transformations M(Qd
p) as the invariance

group of the cross-ratio. Replace |Jf (x)| by the Radon-Nikodym derivative relating the measure ddx

for Qd
p and its transform by f . Now Conj. 4 is clear. ♠ Conj. 5 Part 1) degenerates since Fourier and

lattice cut-offs are the same but Part 2) remains. ♥ Note that T with the “hyperbolic metric” given by
the graph distance plays the role of Bd+1 or Hd+1. The latter corresponds to the stratification of T into
layers Lk whereas the conformal ball point of view involves stratification into spheres (in graph distance)
around the center Ω. Again (see [120, pp. 127–128]), elements of M(Qd

p) correspond to hyperbolic
isometries of T. The proof uses the beautiful Mumford-Manin-Drinfeld cross-ratio lemma (see [132, p.
246], [130, Lem. 5.6] or [131, §3.2]): CR(x1, x2, x3, x4) = p−δ(x1→x2;x3→x4) where δ(x1 → x2;x3 → x4)
is the number of common edges in the two paths, counted positively if orientations agree and negatively
otherwise. ♠ The analogue of the inversion J is J(x) = |x|2x with no typo! It preserves the cross-ratio
because of the fundamental identity |J(x)− J(y)| = |x− y| × |x|−1 × |y|−1 which makes the Euclidean
norm special forRd and |x| = max1≤i≤d |xi| forQd

p.♥Finally, Conj. 3 just needs a definition of half-space
and reflection. Take first d = 1 and p odd for simplicity (one can also treat p = 2). When drawing the tree
T and the path ∞ → 0 from bottom to top as in [6], move half of the p− 1 branches at each node to the
left of the path and half to the right. This gives the analogue of R = (−∞, 0) ∪ {0} ∪ (0,∞). Then, take
the product with Q

d−1
p using the obvious interpretation of Qd

p as a cartesian product of d copies of Q1
p.

The resulting p-adic OS positivity is satisfied by μC−∞ but not by μCr , just as in R
d. Moreover, the range

of fractional Laplacian exponents α for which OS positivity holds is the same as that where e−t(−Δ)α has
a positive pointwise kernel [36]. One does not have the limitation α ≤ 1 on Q

d
p which reflects the simpler

set of distributions supported at the origin and pole structure of the relevant Gamma functions.

4. WHAT HAS BEEN DONE IN THE p-ADIC CASE

For the p-adic model the following has been proved. The article [9] proves Conj. 1 except indepen-
dence with respect to L, ρUV and ρIR and full scale invariance. Only discrete scale invariance by powers
of L = pl is proved. Reference [9] also proves Conj. 6 with [φ2] possibly depending on L as well as Conj.
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7 except the DPC and CI properties. Scale-invariance is also discrete. Later in [10] (see [57, Ch. 4] for
a preview), the possible dependence of [φ2] on L is ruled out and discrete scale invariance is upgraded
to full one by powers of p for Conj. 1 and Conj. 7. In May 2015, the author proved the DPC property in
Conj. 7. Note that [9, 10] not only prove conjectures but introduce new methods. The article [9] develops
the space-dependent rigorous RG, i.e., one able to handle couplings gr(x), μr(x). The non-rigorous
version is called local RG in the physics literature (see [182, §12.4] and [74, 111, 141, 146]). The new
method in [10], based on a successful marriage of RG and correlation inequalities techniques, shows
that the measures νφ obtained by the RG with two ratios L and pL are the same and thus inherit both
discrete scale invariances. This method should work in R

d too since the ratio of log(L) and log(L+ 1) is
irrational (see, e.g., [178]) and the DPC property would imply scale invariance by the full group (0,∞).

The first nontrivial example of successful use of the RG method is not due to Wilson but
rather Landen and Gauss in the late 18th century [136, §2.3]. For �V = (a, b) ∈ (0,∞)2, let Z(�V ) =∫ π/2
0 (a2 cos2 θ + b2 sin2 θ)−

1
2 dθ which is trivial to compute on the “line of fixed points” {a = b}. The

identity Z(�V ) = Z(RG(�V )) for the transformation RG : (a, b) �→
(
a+b
2 ,

√
ab
)

is the basis for Gauss’s

algorithm to compute Z(�V ) in general. The RG method in [9] (see [5] for a quick review) is based on
the same idea. Since the Lévy Continuity Theorem holds for s′0 � s′0 × s′0, weak convergence follows
from that of characteristic functions which is proved by showing uniform convergence in a small
complex neighborhood of the origin [125]. The characteristic function is the ratio of Z(�V [f, j]) over
Z(�V [0, 0]) = Zr,s from (2.2) where �V [0, 0] is some data that encodes the integrand. Similarly, �V [f, j]

accounts for the addition of source terms φ(f) (or φr,s(f) in the notation of Conj. 6) and Nr,s[φ
2](j)

due to two test functions f and j. For suitable ρUV, Γ = C0 − C1 is positive semidefinite and one has
a decomposition of Gaussian measures μC0 = μΓ ∗ μC1 . The RG transformation is the operation of
performing the μΓ integration followed by rescaling. It results in identities similar to that of Gauss.
One then iterates, and carefully compares the trajectories for the numerator and denominator using
dynamical systems tools, some of which new like the infinite-dimensional Poincaré-Koenigs Theorem
of [9, §9]. Although the author was unaware of it at the time when [9] was written, it turns out that [9, §9]
share a similar flavor with the treatment in [148, §2.6 and §2.7] of the Stable Manifold Theorem and the
λ-Lemma. The main difference is that [148, §2.6 and §2.7] is in the differentiable category whereas [9,
§9] is in the analytic category. Other works in rigorous RG theory handle the φ(f) source by completing
the square and translating the Gaussian measure. This causes problems if one iterates RG too many
times. This is why [21, 45, 139] produce scaling/continuum limits in finite volume. The new method
of [9] allows one to take both r → −∞ and s → ∞ limits and shows the commutation of these limits.
For the Nr,s[φ

2](j) source the previous translation trick does not work and one has to introduce space-
dependent RG techniques as in [9]. One could say that obtaining a CFT compactified on a torus [139] is
a good thing and indeed it is [68, Ch. 10], provided one can extract the full space CFT from it by a short
distance scaling limit [70, Eq. 3.2]. However, this exactly means doing s → ∞ after r → −∞ which
again seems to require techniques as in [9].

5. WHAT REMAINS TO BE DONE

In this last section we will try to isolate some specific tasks one needs to tackle in order to complete the
program outlined in this article. Some must be done before others and it may thus be useful to indicate
in which order one may proceed.
Phase 1: In this first phase the main task is to complete the proofs of the conjectures in the p-adic
case. Conj. 3 mostly needs the stable manifold theorem [9, §8.2]. Although technical, the OPE and
the construction of pathwise squares form a natural continuation of [9]. One of the main issues to be
addressed in this phase concerns CI in Conj. 4 (CI in Conj. 7 follows from Conj. 4 and Conj. 8). The claim
in the truly remarkable article [119] amounts to Conj. 4 but the article has a shortcoming: CI is shown
for the “wrong” model. Namely, Lerner uses the conformal ball model for his cut-off, i.e., spheres with
center Ω instead of the layers Lk. Our solution is simple: show that the “right” and “wrong” models are
the same. We believe the main needed tools are in [9] whose space-dependent RG philosophy needs to
be pushed one step further by allowing space-dependent cut-offs! Namely, one should reprove Conj. 1
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with r → r(x) in (2.2) and appropriate tweaks to the Lebesgue measure involving (min{1, |x|−1})2dddx
which is the p-adic analogue of (1 + |x|2)−dddx defining the conformal Cauchy distribution [76, 121].

Phase 2: One needs to tackle the main problem: developing a rigorous space-dependent RG for Rd

using work on the p-adic side as a guide, following the philosophy in Weil’s famous de profundis letter
to his sister [180]. The argument for CI in [149] is in the sense of formal power series (FPS). As a warm-
up, one should give a mathematical proof for this property (still in the FPS sense). A thorough rigorous
pertubative study of the fractional φ4

3 model on R
3 is available [32, 33, 137, 138] as well as an ingenious

proof of CI on Qp in the FPS sense [120]. One just needs to combine the two. For the non-perturbative
study, the first step is to find the right partition of unity for, e.g.,

∫
g(x)φ(x)4 ddx in order to satisfy the

localization property of [5]. The sharp indicator functions used in [2, 47] do not look promising. One
would need smooth decompositions, e.g., as in [1, Ch. 4]. The first thing to try are Daubechies wavelets
which served Hairer well in [102]. The wavelet transform will play a crucial role since it provides an
extension to the upper half-space model. A wavelet basis corresponds to sampling at the vertices of
a 2-adic T embedded in the real Hd+1. One has to see how M(Rd) acts on such a basis. There is a
coupling/field duality in

∫
g(x)φ(x)4 ddx which may signal the need for different dual treatments of g

and φ, perhaps using [64, 90].
Phase 3: If enough progress is made on the main problem, one may also explore possible applications
to number theory. By a remark of Burnol [52, 53] and Bochner’s Theorem for D′((0,∞)) [86, §6],
the Riemann Hypothesis (RH) is equivalent to the existence of a certain multiplicatively translation-
invariant probability measure on D′((0,∞)). The covariance kernel behaves like |x− y|−1 on the
diagonal and the ideal KC Theorem would suggest the corresponding field has regularity α < −1

2 so
one really needs random distributions. While Burnol’s explanation for Weil positivity is a quantum
one (in the sense of quantum versus classical mechanics), that in the approaches by Connes [61] and
Deninger [66] are classical. Let G be a finite group with a left action on a finite set X and denote by
g �→ T (g) the corresponding unitary representation in l2(X). Then, clearly, the matrix (Mg1,g2)g1,g2∈G
given by Mg1,g2 = tr

(
T (g1g

−1
2 )

)
is positive semidefinite. Connes’ mechanism for positivity [61, p. 66] is

a sophisticated elaboration on the previous fact. In Deninger’s approach it is clear that RH is related to
an action of the scaling group (0,∞), but action on what? That is the question. A possibility suggested
in [66, p. 99] is that the relevant finite-dimensional dynamical system might emerge as an attractor inside
an infinite-dimensional one, similarly to renomalizable QFT’s inside theory space where (0,∞) acts as
the RG. This tantalizing possibility was further investigated in [118]. Perhaps one should try to reconcile
the quantum point of view of Burnol with the classical one of Connes and Deninger, and holography [133]
may provide some clues for doing so. Although not yet very well understood, the holographic RG is a
way to geometrize the scale direction in Wilson’s RG, roughly, using the {0}d × (0,∞) axis in H

d+1

(see, e.g., [37, 106, 141]). For instance, take a random field φ on R
d and extend it to H

d+1 using the
wavelet transform. This is the continuous analogue of the block-spinning procedure for the p-adic
case in [119, 120] which goes back to [184]. Then restrict to the (0,∞) axis in H

d+1. Multiplicative
translation-invariance for the resulting field, as in Burnol’s remark, means that the original field is self-
similar which most often than not [141] translates into CI. However, this construction is too naive
because the extended field is smooth which is incompatible with the expected −1

2 Hölder regularity.
In any case, a good example to look at would be the simplest nontrivial case of elliptic curves over finite
fields where RH is not a conjecture but a theorem from 1936 [105]. Quite ironically, the profound unity
in the book series by Gel’fand and co-authors on generalized functions was literally lost in translation.
Volumes 5 [96] and 6 [95] focused on the unitary representations of groups such as M(R) or M(R2),
over local fields such as R or Qp. The corresponding applications to number theory form a flourishing
and vibrant area in mathematics (see [91] for review emphasizing connections to CFT). It would be
desirable to develop number theoretical applications, preferably easier ones than the RH bogeyman, for
Volume 4 [97] too.
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79. M. Dütsch and K.-H. Rehren, “Generalized free fields and the AdS-CFT correspondence,” Ann. Henri
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