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1. INTRODUCTION AND FORMULATION OF THE MAIN RESULTS

In this article, using the Fourier transform on a locally compact Vilenkin group, we obtain an
analogue of one classical Titchmarsh theorem on description of the image under the Fourier transform
of a class of functions satisfying the Lipschitz condition in L2. We now give the exact statement of this
theorem.

Suppose that f(x) is a function in the L2(R) space (all functions below are complex-valued),
‖ · ‖L2(R) is the norm of L2(R), and α is an arbitrary number in the interval (0, 1).

Definition 1.1. A function f(x) belongs to the Lipschitz class Lip(α, 2) if

‖f(x− t)− f(x)‖L2(R) = O(tα)

as t → 0.

Theorem 1.2 ([1, Theorem 85]). If f(x) ∈ L2(R) and ̂f(λ) is its Fourier transform then the
conditions

f ∈ Lip(α, 2), 0 < α < 1,

and
∫

|λ|≥r

| ̂f(λ)|2 dλ = O(r−2α)

as r → ∞ are equivalent.

There are many analogues of Theorem 1.2: for the Fourier transform on noncompact Riemannian
rang 1 symmetric spaces, in particular for the Fourier transform on the Lobachevsky plane; for the
Fourier-Jacobi transform; for the Fourier-Dunkl transform and etc. (for example, see [2–5]). For the
Fourier transform on the group Qp of p-adic numbers an analogue of Theorem 1.2 was proved in [6].
In this paper we obtain an analogue of Theorem 1.2 for the Fourier transform on an arbitrary locally
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compact Vilenkin group. Let us present necessary definitions from harmonic analysis on locally compact
Abelian groups (see, for example, [7] and [8]).

Let G be a locally compact Abelian group. A character of G is a continuous complex-valued function
χ(x) on G such that |χ(x)| = 1 and χ(x+ y) = χ(x)χ(y) for any x, y ∈ G. Let Γ be the set of all
characters of G. The set Γ equipped with the compact-open topology and the operation of point-wise
multiplication of characters becomes an LCA-group which is said to be the dual group of G. We note
that the group operation in the group G is always written additively and the operation in the dual group
Γ is written multiplicatively.

Definition 1.3. A locally compact Abelian group G is said to be a locally compact Vilenkin
group if there exists a strictly decreasing sequence of compact open subgroups {Gn}n∈Z such
that

⋃

n∈ZGn = G and
⋂

n∈ZGn = {0}.

The factor group Gn/Gn+1 is a finite Abelian group. Let dn be the order of the group Gn/Gn+1, then
dn ≥ 2. Note that in the definition of a Vilenkin group is often added the condition sup{dn : n ∈ Z} < ∞
(see, for example, [9, 10]), but in the present paper this condition is not required. Examples of locally
compact Vilenkin groups are the groupQp of p-adic numbers and, more generally, the additive groupK+

of any local field K (see [11]), the groups Qd
p = Qp × · · · ×Qp (d times) and (K+)d = K+ × · · · ×K+.

We note, that in the papers on the wavelet theory on groups is often used the following definition of
Vilenkin group (see, for example, [12–14]). Let m ≥ 2 be integer and Z/mZ be the additive groups of
integers modulo m. The Vilenkin group G consists of the sequences x = (xj), where j ∈ Z, xj ∈ Z/mZ

and there exists at most a finite number of negative j such that xj �= 0. The group operation on G is
defined as the coordinatewise addition modulo m. The topology on G is introduced via the complete
system of neighborhoods of zero

Gn = {(xj) ∈ G : xj = 0 for j ≤ n}, n ∈ Z.

For the case m = 2 the group G is the locally compact Cantor dyadic group.

These Vilenkin groups are the special case of the Vilenkin groups in sence of Definition 1.3.

In what follows G is an arbitrary locally compact Vilenkin group, Γ its dual group. For any n ∈ Z let
Γn be the annihilator of Gn, that is

Γn = {χ ∈ Γ : χ(x) = 1 for any x ∈ Gn}.
It follows from the properties of dual groups and the annihilators of subgroups (see [7, (23.24), (23.29)])
that Γn is a compact open subgroup of Γ, the sequence of subgroups {Γn}n∈Z is strictly increasing,
⋂

n∈Z Γn = {1} and
⋃

n∈Z Γn = Γ.

We choose Haar measures dx on G and dχ on Γ so that
∫

G0

dx =

∫

Γ0

dχ = 1.

We denote by μ(A) the Haar measure of a subset A ⊂ G, and by λ(B) the Haar measure of a subset
B ⊂ Γ.

For every n ∈ Z we define the number mn by

mn :=

⎧

⎪

⎨

⎪

⎩

d1d2 . . . dn if n > 0,

1 if n = 0,

d−1
0 d−1

−1 . . . d
−1
−n+1 if n < 0.

(1.1)

Then

μ(Gn) =
1

mn
, λ(Γn) = mn. (1.2)

p-ADIC NUMBERS, ULTRAMETRIC ANALYSIS AND APPLICATIONS Vol. 9 No. 4 2017



308 PLATONOV

Let Lp(G), 1 ≤ p < ∞, be a Banach space of all measurable C-valued functions f(x) on G with finite
norm

‖f‖p = ‖f‖Lp(G) :=

⎛

⎝

∫

G

|f(x)|p dx

⎞

⎠

1/p

.

Similarly, let Lp(Γ) be a Banach space of all measurable C-valued functions g(χ) on Γ with finite norm

‖g‖p = ‖g‖Lp(Γ) :=

⎛

⎝

∫

Γ

|g(χ)|p dχ

⎞

⎠

1/p

.

As usual, functions from the spaces Lp are considered up to their values on a set of measure 0.

For any function f(x) ∈ L1(G), by the Fourier transform of f we mean the function ̂f(ξ) on Γ defined
by the formula

̂f(χ) :=

∫

G

f(x)χ(x) dx, χ ∈ Γ. (1.3)

If f ∈ L2(G), then its Fourier transform ̂f(ξ) can be defined as the limit in L2(G) of a sequence of the
functions

̂fn(χ) :=

∫

Gn

f(x)χ(x) dx (1.4)

as n → ∞. The Fourier transform F : f(x) �→ ̂f(χ) is a linear isomorphism of the space L2(G) into the
space L2(Γ), and for any function f ∈ L2(G) we have the Parseval’s identity

‖F (f)‖L2(Γ) = ‖f‖L2(G). (1.5)

For a function f(x) on G and for any h ∈ G let

(τhf)(x) := f(x− h). (1.6)

The operator τh is called the translation operator. If f ∈ L2(G) and F (f)(χ) = ̂f(χ) is its Fourier
transform, then we have:

F (τhf)(χ) = χ(h) ̂f(χ). (1.7)

For f ∈ L2(G) and n ∈ N let

ω2(f ;n) := sup{‖f − τhf‖2 : h ∈ Gn}. (1.8)

The sequence of numbers {ω2(f ;n)}n∈N is called the modulus continuity of f in the space L2(G).
Let ω = {ωn}n∈N be a sequence of real numbers monotonously decreasing to zero (that is (i) ωn ≥ 0;

(ii) ωn ≥ ωn+1 ∀n ∈ N; (iii) ωn → 0 as n → ∞).

Definition 1.4. A function f(x) belongs to the space Hω
2 (G), if f ∈ L2(G) and for some constant

c = c(f) > 0 we have

ω2(f ;n) ≤ c ωn, n ∈ N. (1.9)

Let ω = {ωn}n∈N and ω′ = {ω′
n}n∈N be sequences of real numbers monotonously decreasing to zero.

The sequences ω and ω′ will be called equivalent if we have

c1 ωn ≤ ω′
n ≤ c2 ωn, n ∈ N

for some positive constants c1 and c2. It can be proved (see section 2) that for any nonzero sequence ω the
space Hω

2 (Qp) is nonzero, and Hω
2 (Gp) = Hω′

2 (G) if and only if the sequences ω and ω′ are equivalent.
The main results of the paper are the next theorems.
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Theorem 1.5. For every f ∈ L2(G) we have the inequality
( ∫

Γ\Γn

| ̂f(χ)|2 dχ
)1/2

≤ 1√
2
ω2(f ;n), n ∈ N, (1.10)

where constant 1√
2

in (1.10) is exact.

The following theorem is an analogue of the Tichmarsh theorem.

Theorem 1.6. Let ω = {ωn}n∈N be any sequence of real numbers monotonously decreasing to zero.
Then the next conditions are equivalent:

f ∈ Hω
2 (G) (1.11)

and
( ∫

Γ\Γn

| ̂f(χ)|2 dχ
)1/2

≤ c ωn, n ∈ N, (1.12)

where c = c(f) is some positive constant.

For the case when G is the group of p-adic numbers the Theorems 1.5 and 1.6 were proved in [6]. Also
we note that in the special case when G is the Cantor dyadic group and ωn = 2−αn, α > 0, the results of
the Theorem 1.6 follow from the description of Lipschitz classes in terms of the best approximations of
functions by Walsh polynomials (see, for example, [15], p. 189).

2. PROOFS OF THEOREMS 1.5 AND 1.6

Lemma 2.1. Let χ be a character of group G, n ∈ Z. Then
∫

Gn

χ(x) dx =

{

μ(Gn), if χ ∈ Γn,

0, if χ /∈ Γn.

Proof.
Let In =

∫

Gn

χ(x) dx. If χ ∈ Γn then

In =

∫

Gn

1 dx = μ(Gn).

If χ /∈ Γn then χ(x0) �= 1 for some element x0 ∈ Gn. It follows from invariance of the Haar measure that
∫

Gn

χ(x) dx =

∫

Gn

χ(x+ x0) dx =

∫

G0

χ(x)χ(x0) dx = χ(x0)

∫

Gn

χ(x) dx.

Then In = χ(x0)In and hence In = 0. �

Proof of Theorem 1.5
1) Let f ∈ L2(G), h ∈ Gn, n ∈ N. By definition of the modulus of continuity we have

ω2(f ;n) := sup{‖f − τhf‖2 : h ∈ Gn}. (2.1)

It follows from (1.7) that

F (f − τhf)(ξ) = (1− χp(ξh)) ̂f (ξ), (2.2)
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then, using the Parseval’s identity (1.5), we have

‖f − τhf‖22 =
∫

Γ

|1− χ(h)|2 | ̂f(χ)|2 dχ. (2.3)

If χ ∈ Γn, h ∈ Gn, then χ(h) = 1. Hence, equality (2.3) can be rewritten in the form

‖f − τhf‖22 =
∫

Γ\Γn

|1− χ(h)|2 | ̂f(χ)|2 dχ. (2.4)

Integrating the equality (2.4) with respect to h ∈ Gn, we obtain
∫

Gn

‖f − τhf‖22 dh =

∫

Γ\Γn

(∫

Gn

|1− χ(h)|2 dh
)

| ̂f(χ)|2 dχ. (2.5)

It follows from |χ(h)| = 1 that

|1− χ(h)|2 = 2− 2 Reχ(h). (2.6)

It follows from Lemma 2.1 that
∫

Gn

χ(h) dh = 0 if χ ∈ Γ \ Γn, (2.7)

hence it follows from (2.6) and (2.7) that
∫

Gn

|1− χ(h)|2 dh =

∫

Gn

(2− Reχ(h)) dh = 2

∫

Gn

dh = 2μ(Gn). (2.8)

From (2.5) and (2.8) it follows that
∫

Gn

‖f − τhf‖22 dh = 2μ(Gn)

∫

Γ\Γn

| ̂f(χ)|2 dχ. (2.9)

On the other hand, since ‖f − τhf‖2 ≤ ω2(f ;n) for h ∈ Gn, then
∫

Gn

‖f − τhf‖22 dh ≤ (ω2(f ;n))
2
∫

Gn

dh = μ(Gn) (ω2(f ;n))
2 . (2.10)

It follows from (2.9) and (2.10) that

2μ(Gn)

∫

Γ\Γn

| ̂f(χ)|2 dχ ≤ μ(Gn) (ω2(f ;n))
2 ,

which implies that the inequality (1.10) holds.
2) We claim that the constant 1√

2
in (1.10) is exact.

For any n ∈ Z and a ∈ G let Gn(a) := a+Gn = {x ∈ G : x− a ∈ Gn}. In particular, Gn(0) = Gn.
For every s ∈ N we define the function ϕs on G by

ϕs(x) :=

{

1 if x ∈ Gs,

0 if x /∈ Gs,

that is, ϕs is the characteristic function of the subset Gs. Then ‖ϕs‖22 = μ(Gs) and

(τhϕs)(x) = ϕs(x− h) =

{

1 if x ∈ Gs(h),

0 if x /∈ Gs(h).
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Note that Gs(h) = Gs if h ∈ Gs and Gs(h) ∩Gs = ∅ if h /∈ Gs, which implies that

‖ϕs − τhϕs‖22 =
{

0 if h ∈ Gs,

2μ(Gs) if h /∈ Gs.
(2.11)

It follows from the definition of the modulus continuity (see (1.8)) and from (2.11) that

(ω2(ϕs;n))
2 =

{

0 if n ≥ s,

2μ(Gs) if n < s.
(2.12)

If n ≥ s then it follows from (2.11) that
∫

Gn

‖ϕs − τhϕs‖22 dh = 0, (2.13)

and if n < s, taking into account (2.12), we have
∫

Gn

‖ϕs − τhϕs‖22 dh =

∫

Gn\Gs

2μ(B−s) dh

= 2μ(Gs)(μ(Gn)− μ(Gs)) = (ω2(ϕs;n))
2 (μ(Gn)− μ(Gs)). (2.14)

On the other hand, it follows from (2.9) that
∫

Gn

‖ϕs − τhϕs‖22 dh = 2μ(Gn)

∫

Γ\Γn

|ϕ̂s(χ)|2 dχ,

which implies, taking to account (2.13), (2.14) and (1.2), that
∫

Γ\Γn

|ϕ̂s(χ)|2 dχ =

{

1
2

(

1− mn
ms

)

(ω2(ϕs;n))
2 if n < s,

0 if n ≥ s,
(2.15)

where mn and ms are defined in (1.1). Since mn
ms

≤ 2n−s, then it follows from (2.15) that, for any n ∈ N

and ε > 0, for sufficiently large s we have the inequality
( ∫

Γ\Γn

|ϕ̂s(χ)|2 dχ
)1/2

≥ 1√
2
(1− ε)ω2(ϕs;n),

which implies that the constant 1√
2

in (1.10) is exact. �

We note that the proof of the inequality (1.10) from Theorem 1.5 is similar to the proof of
N. Ya. Vilenkin and A. I. Rubinstein in [16], where they proved an analogue of some S. B. Stechkin
inequality for Fourier-Vilenkin series on zero-dimensional compact Abelian groups (see, also, [17,
Th. 4.3]).

Proposition 2.1. Let {ωn}n∈N be a sequence of real numbers monotonously decreasing to zero.
Then there exists a function f ∈ L2(G) such that

ω2(f ;n) = ωn ∀n ∈ N. (2.16)

Proof.
A compact Abelian group U is said to be a compact Vilenkin group if there exists a strictly decreasing

sequence of compact open subgroups {Un}n∈N such that
⋂∞

n=1 Un = {0}. Using the system {Un}n∈N,
for any function g ∈ L2(U) its modulus of continuity defines as in (1.8), that is,

ω2(g;n) := sup{‖g − τhg‖2 : h ∈ Un},
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where τh is is the translation operator (see (1.6)).
It was proved by Rubinstein [18] that for any compact Vilenkin group U and for any sequence

{ωn}n∈N of real numbers monotonously decreasing to zero, there exists a function g ∈ L2(U) such that
ω2(g;n) = ωn for any n ∈ N. If G is a locally compact Vilenkin group then its subgroup G0 is a compact
Vilenkin group with the sequence of subgroups {Gn}n∈N. Then there exists a function g ∈ L2(G0) such
that ω2(g;n) = ωn for any n ∈ N.

We define a function f on G by the formula

f(x) =

{

g(x) if x ∈ G0,

0 if x /∈ G0.

Then f ∈ L2(G) and ω2(f ;n) = ωn for any n ∈ N. �

Corollary 2.1. For any nonzero sequence {ωn}n∈N of real numbers monotonously decreasing to
zero the space Hω

2 (G) is nonzero.

Proposition 2.2. Let ω = {ωn}n∈N and ω′ = {ω′
n}n∈N be sequences of real numbers monotonously

decreasing to zero. Then Hω
2 (G) = Hω′

2 (G) if and only if the sequences ω and ω′ are equivalent.

Proof. It is obvious that if the sequences ω are ω′ are equivalent then Hω
2 (G) = Hω′

2 (G). Suppose
that the sequences ω and ω′ are not equivalent. For definiteness let sup{ωn

ω′
n
: n ∈ N} = +∞ (we

assume that 0
0 = 0 and a

0 = +∞ if a > 0). By Proposition 2.1 there exists a function f ∈ L2(G) such
that ω2(f ;n) = ωn for any n ∈ N. It is obvious that f ∈ Hω

2 (G). Suppose that f ∈ Hω′
2 (G), then we

have ωn = ω2(f ;n) ≤ c ω′
n, n ∈ N, whence ωn/ω

′
n ≤ c, which is impossible. Hence f /∈ Hω′

2 (G) and
Hω

2 (G) �= Hω′
2 (G).

Proof of Theorem 1.6
It follows from Theorem 1.5 that (1.11) entails (1.12).
Let f ∈ L2(G) and we assume that (1.12) holds. Arguing as in the proof of Theorem 1.5, we obtain

that for any h ∈ Gn the equality (2.4) holds. It follows from (2.4), using the inequalities |1− χ(h)| ≤ 2
and (1.12), that

‖f − τhf‖22 =
∫

Γ\Γn

|1− χ(h)|2| ̂f(χ)|2 dχ ≤ 4

∫

Γ\Γn

| ̂f(χ)|2 dχ ≤ 4c2ω2
n (2.17)

for h ∈ Gn, n ∈ N. Taking in (2.17) the supremum over all h ∈ Gn, we obtain that

ω2(f ;n) ≤ 2c ωn, n ∈ N,

that is the condition (1.11) holds.
Hence the conditions (1.11) and (1.12) are equivalent. �
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