= RESEARCH ARTICLES =

An Analogue of the Titchmarsh Theorem for the Fourier Transform on Locally Compact Vilenkin Groups*

Sergey S. Platonov**

Institute of Mathematics, Petrozavodsk State University, 185910, Lenina av., 33, Petrozavodsk, Russia Received September 12, 2017

Abstract—In this paper for functions on locally compact Vilenkin groups, we prove an analogue of one classical Titchmarsh theorem on the image under the Fourier transform of a set of functions satisfying the Lipschitz condition in L^2 .

DOI: 10.1134/S2070046617040057

Key words: harmonic analysis on Vilenkin groups, Titchmarsh theorem, modulus of continuity, Fourier transform on groups, Vilenkin groups, Lipschitz condition.

1. INTRODUCTION AND FORMULATION OF THE MAIN RESULTS

In this article, using the Fourier transform on a locally compact Vilenkin group, we obtain an analogue of one classical Titchmarsh theorem on description of the image under the Fourier transform of a class of functions satisfying the Lipschitz condition in L^2 . We now give the exact statement of this theorem.

Suppose that f(x) is a function in the $L^2(\mathbb{R})$ space (all functions below are complex-valued), $\|\cdot\|_{L^2(\mathbb{R})}$ is the norm of $L^2(\mathbb{R})$, and α is an arbitrary number in the interval (0, 1).

Definition 1.1. A function f(x) belongs to the Lipschitz class $Lip(\alpha, 2)$ if

$$||f(x-t) - f(x)||_{L^2(\mathbb{R})} = O(t^{\alpha})$$

as $t \to 0$.

Theorem 1.2 ([1, Theorem 85]). If $f(x) \in L^2(\mathbb{R})$ and $\hat{f}(\lambda)$ is its Fourier transform then the conditions

$$f \in Lip(\alpha, 2), \qquad 0 < \alpha < 1,$$

and

$$\int_{|\lambda| \ge r} |\widehat{f}(\lambda)|^2 \, d\lambda = O(r^{-2\alpha})$$

as $r \to \infty$ are equivalent.

There are many analogues of Theorem 1.2: for the Fourier transform on noncompact Riemannian rang 1 symmetric spaces, in particular for the Fourier transform on the Lobachevsky plane; for the Fourier-Jacobi transform; for the Fourier-Dunkl transform and etc. (for example, see [2–5]). For the Fourier transform on the group \mathbb{Q}_p of *p*-adic numbers an analogue of Theorem 1.2 was proved in [6]. In this paper we obtain an analogue of Theorem 1.2 for the Fourier transform on an arbitrary locally

^{*}The text was submitted by the author in English.

^{**}E-mail: ssplatonov@yandex.ru

compact Vilenkin group. Let us present necessary definitions from harmonic analysis on locally compact Abelian groups (see, for example, [7] and [8]).

Let *G* be a locally compact Abelian group. A character of *G* is a continuous complex-valued function $\chi(x)$ on *G* such that $|\chi(x)| = 1$ and $\chi(x + y) = \chi(x)\chi(y)$ for any $x, y \in G$. Let Γ be the set of all characters of *G*. The set Γ equipped with the compact-open topology and the operation of point-wise multiplication of characters becomes an LCA-group which is said to be the dual group of *G*. We note that the group operation in the group *G* is always written additively and the operation in the dual group Γ is written multiplicatively.

Definition 1.3. A locally compact Abelian group G is said to be a locally compact Vilenkin group if there exists a strictly decreasing sequence of compact open subgroups $\{G_n\}_{n\in\mathbb{Z}}$ such that $\bigcup_{n\in\mathbb{Z}} G_n = G$ and $\bigcap_{n\in\mathbb{Z}} G_n = \{0\}$.

The factor group G_n/G_{n+1} is a finite Abelian group. Let d_n be the order of the group G_n/G_{n+1} , then $d_n \geq 2$. Note that in the definition of a Vilenkin group is often added the condition $\sup\{d_n : n \in \mathbb{Z}\} < \infty$ (see, for example, [9, 10]), but in the present paper this condition is not required. Examples of locally compact Vilenkin groups are the group \mathbb{Q}_p of *p*-adic numbers and, more generally, the additive group K^+ of any local field K (see [11]), the groups $\mathbb{Q}_p^d = \mathbb{Q}_p \times \cdots \times \mathbb{Q}_p$ (*d* times) and $(K^+)^d = K^+ \times \cdots \times K^+$.

We note, that in the papers on the wavelet theory on groups is often used the following definition of Vilenkin group (see, for example, [12–14]). Let $m \ge 2$ be integer and $\mathbb{Z}/m\mathbb{Z}$ be the additive groups of integers modulo m. The Vilenkin group G consists of the sequences $x = (x_j)$, where $j \in \mathbb{Z}, x_j \in \mathbb{Z}/m\mathbb{Z}$ and there exists at most a finite number of negative j such that $x_j \ne 0$. The group operation on G is defined as the coordinatewise addition modulo m. The topology on G is introduced via the complete system of neighborhoods of zero

$$G_n = \{ (x_j) \in G : x_j = 0 \text{ for } j \le n \}, \quad n \in \mathbb{Z}.$$

For the case m = 2 the group G is the locally compact Cantor dyadic group.

These Vilenkin groups are the special case of the Vilenkin groups in sence of Definition **1.3**.

In what follows G is an arbitrary locally compact Vilenkin group, Γ its dual group. For any $n \in \mathbb{Z}$ let Γ_n be the annihilator of G_n , that is

$$\Gamma_n = \{ \chi \in \Gamma : \chi(x) = 1 \text{ for any } x \in G_n \}.$$

It follows from the properties of dual groups and the annihilators of subgroups (see [7, (23.24), (23.29)]) that Γ_n is a compact open subgroup of Γ , the sequence of subgroups $\{\Gamma_n\}_{n\in\mathbb{Z}}$ is strictly increasing, $\bigcap_{n\in\mathbb{Z}}\Gamma_n = \{1\}$ and $\bigcup_{n\in\mathbb{Z}}\Gamma_n = \Gamma$.

We choose Haar measures dx on G and $d\chi$ on Γ so that

$$\int_{G_0} dx = \int_{\Gamma_0} d\chi = 1.$$

We denote by $\mu(A)$ the Haar measure of a subset $A \subset G$, and by $\lambda(B)$ the Haar measure of a subset $B \subset \Gamma$.

For every $n \in \mathbb{Z}$ we define the number m_n by

$$m_n := \begin{cases} d_1 d_2 \dots d_n & \text{if } n > 0, \\ 1 & \text{if } n = 0, \\ d_0^{-1} d_{-1}^{-1} \dots d_{-n+1}^{-1} & \text{if } n < 0. \end{cases}$$
(1.1)

Then

$$\mu(G_n) = \frac{1}{m_n}, \quad \lambda(\Gamma_n) = m_n. \tag{1.2}$$

Let $L^p(G)$, $1 \le p < \infty$, be a Banach space of all measurable \mathbb{C} -valued functions f(x) on G with finite norm

$$||f||_p = ||f||_{L^p(G)} := \left(\int_G |f(x)|^p \, dx\right)^{1/p}.$$

Similarly, let $L^p(\Gamma)$ be a Banach space of all measurable \mathbb{C} -valued functions $g(\chi)$ on Γ with finite norm

$$||g||_p = ||g||_{L^p(\Gamma)} := \left(\int_{\Gamma} |g(\chi)|^p d\chi\right)^{1/p}$$

As usual, functions from the spaces L^p are considered up to their values on a set of measure 0.

For any function $f(x) \in L^1(G)$, by the Fourier transform of f we mean the function $\hat{f}(\xi)$ on Γ defined by the formula

$$\widehat{f}(\chi) := \int_{G} f(x) \,\chi(x) \,dx, \qquad \chi \in \Gamma.$$
(1.3)

If $f \in L^2(G)$, then its Fourier transform $\widehat{f}(\xi)$ can be defined as the limit in $L^2(G)$ of a sequence of the functions

$$\widehat{f}_n(\chi) := \int_{G_n} f(x) \,\chi(x) \,dx \tag{1.4}$$

as $n \to \infty$. The Fourier transform $F : f(x) \mapsto \widehat{f}(\chi)$ is a linear isomorphism of the space $L^2(G)$ into the space $L^2(\Gamma)$, and for any function $f \in L^2(G)$ we have the Parseval's identity

$$\|F(f)\|_{L^{2}(\Gamma)} = \|f\|_{L^{2}(G)}.$$
(1.5)

For a function f(x) on G and for any $h \in G$ let

$$(\tau_h f)(x) := f(x-h).$$
 (1.6)

The operator τ_h is called the translation operator. If $f \in L^2(G)$ and $F(f)(\chi) = \widehat{f}(\chi)$ is its Fourier transform, then we have:

$$F(\tau_h f)(\chi) = \chi(h) \hat{f}(\chi). \tag{1.7}$$

For $f \in L^2(G)$ and $n \in \mathbb{N}$ let

$$\omega_2(f;n) := \sup\{\|f - \tau_h f\|_2 : h \in G_n\}.$$
(1.8)

The sequence of numbers $\{\omega_2(f;n)\}_{n\in\mathbb{N}}$ is called the modulus continuity of f in the space $L^2(G)$.

Let $\omega = \{\omega_n\}_{n \in \mathbb{N}}$ be a sequence of real numbers monotonously decreasing to zero (that is (i) $\omega_n \ge 0$; (ii) $\omega_n \ge \omega_{n+1} \quad \forall n \in \mathbb{N}$; (iii) $\omega_n \to 0$ as $n \to \infty$).

Definition 1.4. A function f(x) belongs to the space $H_2^{\omega}(G)$, if $f \in L^2(G)$ and for some constant c = c(f) > 0 we have

$$\omega_2(f;n) \le c\,\omega_n, \qquad n \in \mathbb{N}.\tag{1.9}$$

Let $\omega = {\omega_n}_{n \in \mathbb{N}}$ and $\omega' = {\omega'_n}_{n \in \mathbb{N}}$ be sequences of real numbers monotonously decreasing to zero. The sequences ω and ω' will be called equivalent if we have

$$c_1 \,\omega_n \le \omega'_n \le c_2 \,\omega_n, \qquad n \in \mathbb{N}$$

for some positive constants c_1 and c_2 . It can be proved (see section 2) that for any nonzero sequence ω the space $H_2^{\omega}(\mathbb{Q}_p)$ is nonzero, and $H_2^{\omega}(G_p) = H_2^{\omega'}(G)$ if and only if the sequences ω and ω' are equivalent.

The main results of the paper are the next theorems.

Theorem 1.5. For every $f \in L^2(G)$ we have the inequality

$$\left(\int_{\Gamma\setminus\Gamma_n} |\widehat{f}(\chi)|^2 d\chi\right)^{1/2} \le \frac{1}{\sqrt{2}}\omega_2(f;n), \qquad n \in \mathbb{N},\tag{1.10}$$

where constant $\frac{1}{\sqrt{2}}$ in (1.10) is exact.

The following theorem is an analogue of the Tichmarsh theorem.

Theorem 1.6. Let $\omega = {\omega_n}_{n \in \mathbb{N}}$ be any sequence of real numbers monotonously decreasing to zero. Then the next conditions are equivalent:

$$f \in H_2^{\omega}(G) \tag{1.11}$$

and

$$\left(\int_{\Gamma\setminus\Gamma_n} |\widehat{f}(\chi)|^2 d\chi\right)^{1/2} \le c\,\omega_n, \qquad n \in \mathbb{N},\tag{1.12}$$

where c = c(f) is some positive constant.

For the case when G is the group of p-adic numbers the Theorems 1.5 and 1.6 were proved in [6]. Also we note that in the special case when G is the Cantor dyadic group and $\omega_n = 2^{-\alpha n}$, $\alpha > 0$, the results of the Theorem 1.6 follow from the description of Lipschitz classes in terms of the best approximations of functions by Walsh polynomials (see, for example, [15], p. 189).

2. PROOFS OF THEOREMS 1.5 AND 1.6

Lemma 2.1. Let χ be a character of group $G, n \in \mathbb{Z}$. Then

$$\int_{G_n} \chi(x) \, dx = \begin{cases} \mu(G_n), & \text{if } \chi \in \Gamma_n, \\ 0, & \text{if } \chi \notin \Gamma_n. \end{cases}$$

Proof. Let $I_n = \int_{G_n} \chi(x) dx$. If $\chi \in \Gamma_n$ then

$$I_n = \int\limits_{G_n} 1 \, dx = \mu(G_n).$$

If $\chi \notin \Gamma_n$ then $\chi(x_0) \neq 1$ for some element $x_0 \in G_n$. It follows from invariance of the Haar measure that

$$\int_{G_n} \chi(x) \, dx = \int_{G_n} \chi(x+x_0) \, dx = \int_{G_0} \chi(x) \, \chi(x_0) \, dx = \chi(x_0) \int_{G_n} \chi(x) \, dx.$$
(a) I_n and hence $I_n = 0$.

Then $I_n = \chi(x_0)I_n$ and hence $I_n = 0$.

Proof of Theorem 1.5

1) Let $f \in L^2(G)$, $h \in G_n$, $n \in \mathbb{N}$. By definition of the modulus of continuity we have

$$\omega_2(f;n) := \sup\{\|f - \tau_h f\|_2 : h \in G_n\}.$$
(2.1)

It follows from (1.7) that

$$F(f - \tau_h f)(\xi) = (1 - \chi_p(\xi h)) \,\widehat{f}(\xi), \qquad (2.2)$$

p-ADIC NUMBERS, ULTRAMETRIC ANALYSIS AND APPLICATIONS Vol. 9 No. 4 2017

then, using the Parseval's identity (1.5), we have

$$||f - \tau_h f||_2^2 = \int_{\Gamma} |1 - \chi(h)|^2 |\widehat{f}(\chi)|^2 d\chi.$$
(2.3)

If $\chi \in \Gamma_n$, $h \in G_n$, then $\chi(h) = 1$. Hence, equality (2.3) can be rewritten in the form

$$\|f - \tau_h f\|_2^2 = \int_{\Gamma \setminus \Gamma_n} |1 - \chi(h)|^2 |\widehat{f}(\chi)|^2 d\chi.$$
(2.4)

Integrating the equality (2.4) with respect to $h \in G_n$, we obtain

$$\int_{G_n} \|f - \tau_h f\|_2^2 dh = \int_{\Gamma \setminus \Gamma_n} \left(\int_{G_n} |1 - \chi(h)|^2 dh \right) |\widehat{f}(\chi)|^2 d\chi.$$
(2.5)

It follows from $|\chi(h)| = 1$ that

$$|1 - \chi(h)|^2 = 2 - 2 \operatorname{Re} \chi(h).$$
(2.6)

It follows from Lemma 2.1 that

$$\int_{G_n} \chi(h) \, dh = 0 \quad \text{if } \chi \in \Gamma \setminus \Gamma_n, \tag{2.7}$$

hence it follows from (2.6) and (2.7) that

$$\int_{G_n} |1 - \chi(h)|^2 \, dh = \int_{G_n} (2 - \operatorname{Re} \chi(h)) \, dh = 2 \int_{G_n} dh = 2\mu(G_n).$$
(2.8)

From (2.5) and (2.8) it follows that

$$\int_{G_n} \|f - \tau_h f\|_2^2 dh = 2\mu(G_n) \int_{\Gamma \setminus \Gamma_n} |\widehat{f}(\chi)|^2 d\chi.$$
(2.9)

On the other hand, since $||f - \tau_h f||_2 \le \omega_2(f; n)$ for $h \in G_n$, then

$$\int_{G_n} \|f - \tau_h f\|_2^2 dh \le (\omega_2(f;n))^2 \int_{G_n} dh = \mu(G_n) \ (\omega_2(f;n))^2 \,. \tag{2.10}$$

It follows from (2.9) and (2.10) that

$$2\mu(G_n) \int_{\Gamma \setminus \Gamma_n} |\widehat{f}(\chi)|^2 \, d\chi \le \mu(G_n) \, \left(\omega_2(f;n)\right)^2,$$

which implies that the inequality (1.10) holds.

2) We claim that the constant $\frac{1}{\sqrt{2}}$ in (1.10) is exact.

For any $n \in \mathbb{Z}$ and $a \in G$ let $G_n(a) := a + G_n = \{x \in G : x - a \in G_n\}$. In particular, $G_n(0) = G_n$. For every $s \in \mathbb{N}$ we define the function φ_s on G by

$$\varphi_s(x) := \begin{cases} 1 & \text{if } x \in G_s, \\ 0 & \text{if } x \notin G_s, \end{cases}$$

that is, φ_s is the characteristic function of the subset G_s . Then $\|\varphi_s\|_2^2 = \mu(G_s)$ and

$$(\tau_h \varphi_s)(x) = \varphi_s(x - h) = \begin{cases} 1 & \text{if } x \in G_s(h), \\ 0 & \text{if } x \notin G_s(h). \end{cases}$$

Note that $G_s(h) = G_s$ if $h \in G_s$ and $G_s(h) \cap G_s = \emptyset$ if $h \notin G_s$, which implies that

$$\|\varphi_s - \tau_h \varphi_s\|_2^2 = \begin{cases} 0 & \text{if } h \in G_s, \\ 2\mu(G_s) & \text{if } h \notin G_s. \end{cases}$$
(2.11)

It follows from the definition of the modulus continuity (see (1.8)) and from (2.11) that

$$(\omega_2(\varphi_s; n))^2 = \begin{cases} 0 & \text{if } n \ge s, \\ 2\mu(G_s) & \text{if } n < s. \end{cases}$$
(2.12)

If $n \ge s$ then it follows from (2.11) that

$$\int_{G_n} \|\varphi_s - \tau_h \varphi_s\|_2^2 dh = 0, \qquad (2.13)$$

and if n < s, taking into account (2.12), we have

$$\int_{G_n} \|\varphi_s - \tau_h \varphi_s\|_2^2 dh = \int_{G_n \setminus G_s} 2\mu(B_{-s}) dh$$

= $2\mu(G_s)(\mu(G_n) - \mu(G_s)) = (\omega_2(\varphi_s; n))^2 (\mu(G_n) - \mu(G_s)).$ (2.14)

On the other hand, it follows from (2.9) that

$$\int_{G_n} \|\varphi_s - \tau_h \varphi_s\|_2^2 \, dh = 2\mu(G_n) \int_{\Gamma \setminus \Gamma_n} |\widehat{\varphi}_s(\chi)|^2 \, d\chi,$$

which implies, taking to account (2.13), (2.14) and (1.2), that

$$\int_{\Gamma \setminus \Gamma_n} |\widehat{\varphi}_s(\chi)|^2 d\chi = \begin{cases} \frac{1}{2} \left(1 - \frac{m_n}{m_s} \right) (\omega_2(\varphi_s; n))^2 & \text{if } n < s, \\ 0 & \text{if } n \ge s, \end{cases}$$
(2.15)

where m_n and m_s are defined in (1.1). Since $\frac{m_n}{m_s} \leq 2^{n-s}$, then it follows from (2.15) that, for any $n \in \mathbb{N}$ and $\varepsilon > 0$, for sufficiently large s we have the inequality

$$\left(\int_{\Gamma\setminus\Gamma_n} |\widehat{\varphi}_s(\chi)|^2 \, d\chi\right)^{1/2} \ge \frac{1}{\sqrt{2}} (1-\varepsilon) \, \omega_2(\varphi_s;n),$$

which implies that the constant $\frac{1}{\sqrt{2}}$ in (1.10) is exact.

We note that the proof of the inequality (1.10) from Theorem **1.5** is similar to the proof of N. Ya. Vilenkin and A. I. Rubinstein in [16], where they proved an analogue of some S. B. Stechkin inequality for Fourier-Vilenkin series on zero-dimensional compact Abelian groups (see, also, [17, Th. 4.3]).

Proposition 2.1. Let $\{\omega_n\}_{n\in\mathbb{N}}$ be a sequence of real numbers monotonously decreasing to zero. Then there exists a function $f \in L^2(G)$ such that

$$\omega_2(f;n) = \omega_n \qquad \forall n \in \mathbb{N}. \tag{2.16}$$

Proof.

A compact Abelian group U is said to be a compact Vilenkin group if there exists a strictly decreasing sequence of compact open subgroups $\{U_n\}_{n\in\mathbb{N}}$ such that $\bigcap_{n=1}^{\infty} U_n = \{0\}$. Using the system $\{U_n\}_{n\in\mathbb{N}}$, for any function $g \in L^2(U)$ its modulus of continuity defines as in (1.8), that is,

$$\omega_2(g;n) := \sup\{\|g - \tau_h g\|_2 : h \in U_n\},\$$

p-ADIC NUMBERS, ULTRAMETRIC ANALYSIS AND APPLICATIONS Vol. 9 No. 4 2017

where τ_h is is the translation operator (see (1.6)).

It was proved by Rubinstein [18] that for any compact Vilenkin group U and for any sequence $\{\omega_n\}_{n\in\mathbb{N}}$ of real numbers monotonously decreasing to zero, there exists a function $g \in L^2(U)$ such that $\omega_2(g;n) = \omega_n$ for any $n \in \mathbb{N}$. If G is a locally compact Vilenkin group then its subgroup G_0 is a compact Vilenkin group with the sequence of subgroups $\{G_n\}_{n\in\mathbb{N}}$. Then there exists a function $g \in L^2(G_0)$ such that $\omega_2(g;n) = \omega_n$ for any $n \in \mathbb{N}$.

We define a function f on G by the formula

$$f(x) = \begin{cases} g(x) & \text{if } x \in G_0, \\ 0 & \text{if } x \notin G_0. \end{cases}$$

Then $f \in L^2(G)$ and $\omega_2(f; n) = \omega_n$ for any $n \in \mathbb{N}$.

Corollary 2.1. For any nonzero sequence $\{\omega_n\}_{n\in\mathbb{N}}$ of real numbers monotonously decreasing to zero the space $H_2^{\omega}(G)$ is nonzero.

Proposition 2.2. Let $\omega = {\omega_n}_{n \in \mathbb{N}}$ and $\omega' = {\omega'_n}_{n \in \mathbb{N}}$ be sequences of real numbers monotonously decreasing to zero. Then $H_{\omega}^{\omega'}(G) = H_{\omega'}^{\omega'}(G)$ if and only if the sequences ω and ω' are equivalent.

Proof. It is obvious that if the sequences ω are ω' are equivalent then $H_2^{\omega}(G) = H_2^{\omega'}(G)$. Suppose that the sequences ω and ω' are not equivalent. For definiteness let $\sup\{\frac{\omega_n}{\omega'_n}: n \in \mathbb{N}\} = +\infty$ (we assume that $\frac{0}{0} = 0$ and $\frac{a}{0} = +\infty$ if a > 0). By Proposition 2.1 there exists a function $f \in L^2(G)$ such that $\omega_2(f;n) = \omega_n$ for any $n \in \mathbb{N}$. It is obvious that $f \in H_2^{\omega}(G)$. Suppose that $f \in H_2^{\omega'}(G)$, then we have $\omega_n = \omega_2(f;n) \le c \omega'_n$, $n \in \mathbb{N}$, whence $\omega_n/\omega'_n \le c$, which is impossible. Hence $f \notin H_2^{\omega'}(G)$ and $H_2^{\omega}(G) \ne H_2^{\omega'}(G)$.

Proof of Theorem 1.6

It follows from Theorem 1.5 that (1.11) entails (1.12).

Let $f \in L^2(G)$ and we assume that (1.12) holds. Arguing as in the proof of Theorem 1.5, we obtain that for any $h \in G_n$ the equality (2.4) holds. It follows from (2.4), using the inequalities $|1 - \chi(h)| \le 2$ and (1.12), that

$$\|f - \tau_h f\|_2^2 = \int_{\Gamma \setminus \Gamma_n} |1 - \chi(h)|^2 |\widehat{f}(\chi)|^2 d\chi \le 4 \int_{\Gamma \setminus \Gamma_n} |\widehat{f}(\chi)|^2 d\chi \le 4c^2 \omega_n^2$$
(2.17)

for $h \in G_n$, $n \in \mathbb{N}$. Taking in (2.17) the supremum over all $h \in G_n$, we obtain that

$$\omega_2(f;n) \le 2c\,\omega_n, \qquad n \in \mathbb{N},$$

that is the condition (1.11) holds.

Hence the conditions (1.11) and (1.12) are equivalent.

REFERENCES

- 1. E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals (Clarendon Press, Oxford, 1937).
- 2. S. S. Platonov, "The Fourier transform of functions satisfying the Lipschitz condition on rank 1 symmetric spaces 1," Sib. Math. J. **46** (6), 1108–1118 (2005).
- 3. M. S. Younis, "Fourier transform of Lipschitz functions on the hyperbolic plane," Int. J. Math.& Math. Sci. **21** (2), 397–401 (1998).
- 4. R. Daher and M. Hamma, "An analog of Titchmarsh's theorem of Jacobi transform," Int. J. Math. Anal. 6 (17-20), 975–981 (2012).
- M. Maslouhi, "An analog of Titchmarsh's theorem for the Dunkl transform," Integ. Trans. Spec. Funct. 21 (10), 771–778 (2010).
- 6. S. S. Platonov, "An analogue of the Titchmarsh theorem for the Fourier transform on the group of *p*-adic numbers," *p*-Adic Numbers Ultrametric Anal. Appl. **9** (2), 158–164 (2017).

- 7. E. Hewitt and K. A. Ross, *Abstract Harmonic Analysis, vol. I: Structure of Topological Groups. Integration Theory, Group Representations, Grundlehren Math. Wiss., vol. 115* (Academic Press, Inc. Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963).
- 8. W. Rudin, Fourier Analysis on Groups (Interscience Publishers, New York and London, 1962).
- 9. T. S. Quek, "Multipliers of weak type on locally compact Vilenkin groups," Proc. Amer. Math. Soc. **124** (9), 2727–2736 (1996).
- 10. C. W. Onneweer, "Hörmander-type multipliers on locally compact Vilenkin groups: $L^1(G)$ -case," Anal. Math. 24 (3), 213–220 (1998).
- 11. M. H. Taibleson, Fourier Analysis on Local Fields, Math. Notes 15 (Prinston Univ. Press, 1975).
- 12. Yu. A. Farkov, "Biorthogonal wavelets on Vilenkin groups," Proc. Steklov Inst. Math. **265** (1), 101–114 (2009).
- 13. S. F. Lukomskii, G. S. Berdnikov and Yu. S. Kruss, "On the orthogonality of a system of shifts of the scaling function on Vilenkin groups," Math. Notes. **98** (2), 339–342 (2015).
- 14. Yu. Farkov, E. Lebedeva and M. Skopina, "Wavelet frames on Vilenkin groups and their approximation properties," Int. J. Wavel. Multir. Inf. Process. 13 (5), 155036 (2015).
- 15. F. Shipp, W. A. Wade and P. Simon, *Walsh Series. An Introduction to Dyadic Harmonic Analysis* (Académiai Kidaó, Budapest, 1990).
- N. Ya. Vilenkin and A. I. Rubinshtein, "A theorem of S. B. Stechkin on absolute convergence of a series with respect to systems of characters of zero-dimensional Abelian groups," Soviet Math. (Izvestiya VUZ. Matematika) 19 (9), 1–7 (1975).
- 17. G. N. Agaev, N. Ya. Vilenkin, G. M. Dzhafarli and A. I. Rubinshtein, *Multiplicative Systems of Functions* and Harmonic Analysis on Zero-Dimensional Groups (Elm, Baku, 1981) [in Russian].
- 18. A. I. Rubinshtein, "Moduli of continuity of functions, defined on a zero-dimensional group," Math. Notes. 23, 205–211 (1978).