EXAMPLE : RESEARCH ARTICLES **=**

The *p*-Adic Order of the *k*-Fibonacci and *k*-Lucas Numbers*

A. Kreutz^{1**}, J. Lelis^{1***}, D. Marques¹, E. Silva^{1****}, and P. Trojovský^{2*****}

¹Departamento de Matemática, Universidade de Brasília, Brasília, 70910-900, Brazil ²Department of Mathematics, Faculty of Science, University of Hradec Králové, Rokitanského 62, Hradec Králové 50003, Czech Republic Received October 1, 2016

Abstract—Let $(F_{k,n})_n$ and $(L_{k,n})_n$ be the *k*-Fibonacci and *k*-Lucas sequence, respectively, which satisfies the same recursive relation $a_{n+1} = ka_n + a_{n-1}$ with initial values $F_{k,0} = 0$, $F_{k,1} = 1$, $L_{k,0} = 2$ and $L_{k,1} = k$. In this paper, we characterize the *p*-adic orders $\nu_p(F_{k,n})$ and $\nu_p(L_{k,n})$ for all primes *p* and all positive integers *k*.

DOI: 10.1134/S2070046617010022

Key words: *k*-*Fibonacci sequence*, *p*-adic order, rank of apparition of prime *p* in the *k*-*Fibonacci sequence*.

1. INTRODUCTION

Let $(F_n)_{n\geq 0}$ be the Fibonacci sequence given by $F_{n+2} = F_{n+1} + F_n$, for $n \geq 0$, where $F_0 = 0$ and $F_1 = 1$. Let k be a positive integer and denote $(F_{k,n})_{n\geq 0}$, the k-Fibonacci sequence whose terms satisfy the recurrence relation

$$F_{k,n} = kF_{k,n-1} + F_{k,n-2}, \tag{1.1}$$

with initial conditions $F_{k,0} = 0$ and $F_{k,1} = 1$. In the same way, the companion k-Lucas sequence $(L_{k,n})_{n\geq 0}$ is defined by satisfying the same recursive relation with initial values $L_{k,0} = 2$ and $L_{k,1} = k$.

The above sequences are among the several generalizations of Fibonacci and Lucas numbers (case k = 1) and they were extensively studied in the series of papers due to Falcon and Plaza [2–5].

The *p*-adic order, $\nu_p(r)$, of *r* is the exponent of the highest power of a prime *p* which divides *r*. The *p*-adic order of Fibonacci numbers and Lucas numbers was completely characterized, see [7–9, 14].

In this paper we characterized the p-adic order of the k-Fibonacci numbers and k-Lucas numbers. Our main results are

Theorem 1.1. (*i*) If k is an even integer, then

$$\nu_2(L_{k,n}) = \begin{cases} 1, & \text{if } n \equiv 0 \pmod{2}; \\ \nu_2(k), & \text{if } n \equiv 1 \pmod{2}. \end{cases}$$

(*ii*) If k is an odd integer, then

^{*}The text was submitted by the authors in English.

^{**}E-mail: A.Kreutz@mat.unb.br

^{****}E-mail: jeancarlos@mat.unb.br

^{*****} E-mail: elainecris@mat.unb.br

^{******}E-mail: pavel.trojovsky@uhk.cz

$$\nu_2(L_{k,n}) = \begin{cases} 0, & if \ n \equiv 1,2 \pmod{3}; \\ 2, & if \ n \equiv 3 \pmod{6}; \\ 1, & if \ n \equiv 0 \pmod{6}. \end{cases}$$

Theorem 1.2. (*i*) If k is an even integer, then

$$\nu_2(F_{k,n}) = \begin{cases} 0, \ if \ n \equiv 1 \pmod{2}; \\ \nu_2(k) + \nu_2(n) - 1, \ if \ n \equiv 0 \pmod{2}. \end{cases}$$

(*ii*) If k is an odd integer, then

$$\nu_2(F_{k,n}) = \begin{cases} 0, & if \ n \equiv 1,2 \pmod{3}; \\ 1, & if \ n \equiv 3 \pmod{6}; \\ 3, & if \ n \equiv 6 \pmod{12}; \\ \nu_2(n) + 2, & if \ n \equiv 0 \pmod{12}. \end{cases}$$

Theorem 1.3. For $p \neq 2$ and $p \mid k^2 + 4$, we have that $\nu_p(F_{k,n}) = \nu_p(n)$ and $\nu_p(L_{k,n}) = 0$.

Let z := z(k, p) be the smallest positive index for which $F_{k,n} \equiv 0 \pmod{p}$. This index is often called the *rank of apparition of p* in the *k*-Fibonacci sequence (the *z* function for k = 1 was extensively studied in the series of papers [10–13]). The order of *p* in $F_{k,z}$ will be denoted by e := e(k, p).

Theorem 1.4. For $p \neq 2$ and $p \nmid k^2 + 4$, we have that

$$(i) \quad \nu_p(F_{k,n}) = \begin{cases} \nu_p(n) + \nu_p(F_{k,z}), & \text{if } n \equiv 0 \pmod{z}; \\ 0, & \text{if } n \not\equiv 0 \pmod{z}. \end{cases}$$
$$(ii) \quad \nu_p(L_{k,n}) = \begin{cases} \nu_p(n) + \nu_p(F_{k,z}), & \text{if } n \not\equiv 0 \pmod{z} \text{ and } 2n \equiv 0 \pmod{z}; \\ 0, & \text{otherwise.} \end{cases}$$

2. AUXILIARY RESULTS

In this section, we shall provide some useful results in order to prove the theorems. The first result provides an addition formula for k-Fibonacci numbers (see [2]).

Lemma 2.1. $F_{k,n+m} = F_{k,n+1}F_{k,m} + F_{k,n}F_{k,m-1}$.

By using Lemma 2.1 is possible to show the next lemma.

Lemma 2.2. If $n \mid m$ then $F_{k,n} \mid F_{k,m}$.

Lemma 2.3. $F_{k,n} \equiv 0 \pmod{p}$ if and only if $z \mid n$, where z := z(k, p).

Proof. If $z \mid n$ then we get that $F_{k,z} \mid F_{k,n}$, by Lemma 2.2. Since $p \mid F_{k,z}$, we have that $p \mid F_{k,n}$. Conversely, if $z \nmid n$, thus n = tz + r for some integer t and $0 \le r < z$, by using the addition formula of Lemma 2.1, we get that $F_{k,tz+1}F_{k,r} \equiv 0 \pmod{p}$. Since $gcd(F_{k,tz+1}, F_{k,tz}) = 1$, we infer that $p \mid F_{k,r}$ and by the minimality of z we arrive at r = 0.

Lemma 2.4. It holds that

$$F_{k,an} \equiv aF_{k,n}F_{k,n+1}^{a-1} \pmod{F_{k,n}^2}$$

and

$$F_{k,an+1} \equiv F_{k,n+1}^a \pmod{F_{k,n}^2},$$

where a is a positive integer.

Proof. Firstly, by the recurrence relation we get that $F_{k,n+1} \equiv F_{k,n-1} \pmod{F_{k,n}}$. Then, by using the addition formula of Lemma 2.1, we obtain

$$F_{k,2n} = F_{k,n}F_{k,n+1} + F_{k,n-1}F_{k,n} \equiv 2F_{k,n}F_{k,n+1} \pmod{F_{k,n}^2}.$$

Similarly,

$$F_{k,2n+1} = F_{k,n+1}^2 + F_{k,n}^2 \equiv F_{k,n+1}^2 \pmod{F_{k,n}^2}$$

Now, suppose that

$$F_{k,an} \equiv aF_{k,n}F_{k,n+1}^{a-1} \pmod{F_{k,n}^2}$$

and

$$F_{k,an+1} \equiv F_{k,n+1}^a \pmod{F_{k,n}^2},$$

are true. Then let us prove for the case a + 1.

$$F_{k,(a+1)n} = F_{k,an+n} = F_{k,an+1}F_{k,n} + F_{k,an}F_{k,n-1}$$

$$\equiv F_{k,n+1}^{a}F_{k,n} + aF_{k,n}F_{k,n+1}^{a-1}F_{k,n-1} \pmod{F_{k,n}^{2}}$$

$$\equiv (a+1)F_{k,n}F_{k,n+1}^{a} \pmod{F_{k,n}^{2}},$$

and similarly to $F_{k,(a+1)n+1}$.

Lemma 2.5. If p is an odd prime, then

(i)
$$L_{k,p} \equiv k \pmod{p}$$
;
(ii) $F_{k,p} \equiv \left(\frac{k^2+4}{p}\right) \pmod{p}$, where, as usual, $\left(\frac{\cdot}{p}\right)$ denotes the Legendre symbol

Proof. By using the combinatorial formulas for k-Lucas number and k-Fibonacci number (see [5]) we get that

$$2^{p-1}L_{k,p} = \sum_{i=0}^{\lfloor \frac{p}{2} \rfloor} {p \choose 2i} k^{p-2i} (k^2 + 4)^i$$
$$\equiv k^p \equiv k \pmod{p},$$

where in the last congruence we used the Fermat Little Theorem. Then, since p > 2 we get that $L_{k,p} \equiv k \pmod{p}$.

Similarly, by Euler criterion, we get that

$$2^{p-1}F_{k,p} = \sum_{i=0}^{\frac{p-1}{2}} {p \choose 2i+1} k^{p-1-2i} (k^2+4)^i$$

p-ADIC NUMBERS, ULTRAMETRIC ANALYSIS AND APPLICATIONS Vol. 9 No. 1 2017

n-1

$$\equiv (k^2 + 4)^{\frac{p-1}{2}} \equiv \left(\frac{k^2 + 4}{p}\right) \pmod{p},$$

then, by Fermat Little Theorem we arrive at $F_{k,p} \equiv \left(\frac{k^2+4}{p}\right) \pmod{p}$.

Lemma 2.6. $F_{k,an} = 2^{1-a} F_{k,n} (MF_{k,n}^2 + aL_{k,n}^{a-1})$, where *M* is an integer.

Proof. By solving the Binet's formulas $F_{k,n} = (\sigma_1^n - \sigma_2^n)/(\sigma_1 - \sigma_2)$ and $L_{k,n} = \sigma_1^n + \sigma_2^n$ (see [2, 5]) for σ_1^n and σ_2^n in terms of $F_{k,n}$ and $L_{k,n}$ (where σ_1 and σ_2 satisfy $x^2 = kx + 1$), expanding $(\sigma_1^n)^a$ and $(\sigma_2^n)^a$ by the binomial theorem, and recombining, we obtain the relation

$$F_{k,an} = (\sigma_1^{an} - \sigma_2^{an})/(\sigma_1 - \sigma_2)$$

= $2^{-a}[(L_{k,n} + (\sigma_1 - \sigma_2)F_{k,n})^a - (L_{k,n} - (\sigma_1 - \sigma_2)F_{k,n})^a]/(\sigma_1 - \sigma_2)$
= $2^{1-a}\sum_{j \text{ odd}} {a \choose j} (\sigma_1 - \sigma_2)^{(j-1)/2} F_{k,n}^j L_{k,n}^{a-j} = 2^{1-a}F_{k,n}(MF_{k,n}^2 + aL_{k,n}^{a-1}),$

where M is an integer depending on k, a and n.

Now, we are ready to deal with the proof of the theorems.

3. PROOF OF THEOREM 1.1

(i) Let's prove simultaneously that

$$u_2(L_{k,2m}) = 1 \text{ and } \nu_2(L_{k,2m+1}) = \nu_2(k)$$

by induction on m.

When m = 0 then $\nu_2(L_{k,0}) = \nu_2(2) = 1$ and $\nu_2(L_{k,1}) = \nu_2(k)$. Now assuming that the result is true for all l < m and knowing that $\nu_2(a + b) = \min\{\nu_2(a), \nu_2(b)\}$ if $\nu_2(a) \neq \nu_2(b)$, we have by recurrence relation, that

$$\nu_2(L_{k,2m}) = \nu_2(kL_{k,2(m-1)+1} + L_{k,2(m-1)}).$$

Now, by the induction hypothesis and since k is even

$$\nu_2(kL_{k,2(m-1)+1}) = \nu_2(k) + \nu_2(L_{k,2(m-1)+1}) = 2\nu_2(k) \ge 2 > \nu(L_{k,2(m-1)}) = 1,$$

then

$$\nu_2(L_{k,2m}) = \nu_2(L_{k,2(m-1)}) = 1.$$
(3.1)

Since $\nu_2(kL_{k,2m}) = \nu_2(k) + \nu_2(L_{k,2m}) = \nu_2(k) + 1$ by (3.1) and by induction hypothesis $\nu_2(L_{k,2(m-1)+1}) = \nu_2(k)$, we have that

$$\nu_2(L_{k,2m+1}) = \nu_2(kL_{k,2m} + L_{k,2(m-1)+1}) = \nu_2(L_{k,2(m-1)+1}) = \nu_2(k).$$

This concludes the proof when k is even.

(ii) Now, if k is an odd integer, it is equivalent to prove that

$$\nu_2(L_{k,6m+i}) = \begin{cases} 0, & \text{if } i = 1, 2, 4, 5, \\ 1, & \text{if } i = 0, \\ 2, & \text{if } i = 3. \end{cases}$$
(3.2)

We proceed by simultaneously induction on m. When m = 0 the results are easily checked using that k is odd. Now, we assume that the equation (3.2) is true for all l < m. To prove that (3.2) is true for m we

need to use the recurrence relations until to be able to use the fact that $\nu_2(a+b) = \min\{\nu_2(a), \nu_2(b)\}$ if $\nu_2(a) \neq \nu_2(b)$ and the induction hypotheses. Therefore,

$$\nu_2(L_{k,6m}) = \nu_2((k^2+1)L_{k,6(m-1)+4} + kL_{k,6(m-1)+3})$$

= $\nu_2((k^2+1)L_{k,6(m-1)+4}) = 1,$

because $\nu_2(k^2 + 1) = \nu_2(2(2t^2 + 2t + 1)) = 1$, since k = 2t + 1 is odd. Moreover,

$$\nu_2(L_{k,6m+1}) = \nu_2(kL_{k,6m} + L_{k,6(m-1)+5})$$
$$= \nu_2(kL_{k,6(m-1)+5}) = 0$$

and similarly we can prove that $\nu_2(L_{k,6m+2}) = \nu_2(L_{k,6m+4}) = \nu_2(L_{k,6m+5}) = 0.$

Finally, using the recurrence relation and noting that for k = 2t + 1, we have

$$\nu_2(k^5 + 4k^3 + 3k) \ge 3 > 0 = \nu_2(k^4 + 3k^2 + 1),$$

then

$$\nu_2(L_{k,6m+3}) = \nu_2((k^5 + 4k^3 + 3k)L_{k,6(m-1)+4} + (k^4 + 3k^2 + 1)L_{k,6(m-1)+3})$$

= $\nu_2((k^4 + 3k^2 + 1)L_{k,6(m-1)+3}) = 2,$

which ends the proof.

4. PROOF OF THEOREM 1.2

(i) Firstly, let us prove that $F_{k,2m-1} \equiv 1 \pmod{2}$ for all $m \ge 1$ by induction on m. The basis step, i.e., when m = 1, is easily checked. Suppose that the result is true for m = j and let us prove for m = j + 1.

Note that, using that k is even, we have that $F_{k,2j+1} = kF_{k,2j} + F_{k,2j-1} \equiv 1 \pmod{2}$. Thus, the result is true for $n \equiv 1 \pmod{2}$ and k even.

Now we will prove that $\nu_2(F_{k,n}) = \nu_2(k) + \nu_2(n) - 1$ when $n \equiv 0 \pmod{2}$. Since *n* is even we have that $\nu_2(n) \ge 1$ and we will proceed by induction on $\nu_2(n)$.

For the basis step, when $\nu_2(n) = 1$, we have that n = 2(2m + 1) for some non-negative integer m. Then, by using the known fact that $F_{k,2l} = F_{k,l}L_{k,l}$ (see in [1]) we can show that $F_{k,n} = F_{k,2m+1}L_{k,2m+1}$.

Thus

$$\nu_2(F_{k,n}) = \nu_2(F_{k,2m+1}) + \nu_2(L_{k,2m+1})$$

and by using the case proved previously and the Theorem 1.1, we conclude that the basis step is true.

Suppose that for $\nu_2(n) = j$ the result is true. Then, for $\nu_2(n) = j + 1$ we have that $n = 2^{j+1}(2m+1)$ for some non-negative integer m, and again by the fact $F_{k,2l} = F_{k,l}L_{k,l}$ and by the Theorem 1.1 and using the induction hypothesis we conclude that

$$\nu_2(F_{k,n}) = \nu_2(F_{k,2^j(2m+1)}) + \nu_2(L_{k,2^j(2m+1)})$$

= $\nu_2(k) + j = \nu_2(k) + \nu_2(n) - 1.$

(ii)We will deal with the case where $n \equiv 0 \pmod{12}$, the other cases are similar to the case in which k is odd of Theorem 1.1, so to avoid repetition will leave the details to the reader.

Writing n = 12m we will prove by induction on m. The basis step when m = 1 can be checked after a straightforward calculation. Suppose that $\nu_2(F_{k,12j}) = \nu_2(12j) + 2$ for all $j \leq m$. Let us check to j = m + 1.

By Theorem 1.1 we get that

$$\nu_2(F_{k,12(m+1)}) = \nu_2(F_{k,6(m+1)}) + \nu_2(L_{k,6(m+1)}) = \nu_2(F_{k,6(m+1)}) + 1.$$
(4.1)

Then, if 2 divides m + 1 we can write (4.1) as

$$\nu_2(F_{k,12(m+1)}) = \nu_2(F_{k,12(\frac{m+1}{2})}) + 1$$

p-ADIC NUMBERS, ULTRAMETRIC ANALYSIS AND APPLICATIONS Vol. 9 No. 1 2017

KREUTZ et al.

$$= \nu_2 \left(12 \left(\frac{m+1}{2} \right) \right) + 2 + 1$$

= $\nu_2 (12(m+1)) + 2,$

where in the second equality we use the induction hypothesis since $(m + 1)/2 \le m$.

Now, if 2 not divides m + 1, we get that $6(m + 1) \equiv 6 \pmod{12}$ and by the previously cases we arrive that

$$\begin{split} \nu_2(F_{k,12(m+1)}) &= \nu_2(F_{k,6(m+1)}) + 1 \\ &= 3+1 \\ &= \nu_2(12(m+1)) + 2, \end{split}$$

which concludes the proof.

5. PROOF OF THEOREM 1.3

(i) By using the combinatorial formula for k-Fibonacci number, we have that

$$2^{n-1}F_{k,n} = \sum_{i=0}^{\lfloor \frac{n-1}{2} \rfloor} {n \choose 2i+1} k^{n-1-2i} (k^2+4)^i,$$
(5.1)

where $p \nmid k$, since $p \mid k^2 + 4$ and $p \neq 2$.

Observe that $\nu_p(\binom{n}{2i+1}k^{n-1-2i}(k^2+4)^i) = \nu_p(\binom{n}{2i+1}(k^2+4)^i)$ and $\binom{n}{2i+1} = n/(2i+1)\binom{n-1}{2i}$, hence $\nu_p(\binom{n}{2i+1}(k^2+4)^i) = \nu_p(n) - \nu_p(2i+1) + \nu_p(\binom{n-1}{2i}(k^2+4)^i) \ge \nu_p(n) - \nu_p(2i+1) + i > \nu_p(n)$, except for k = 0 when $\nu_p(\binom{n}{2i+1}k^{n-1-2i}(k^2+4)^i) = \nu_p(n)$. Note that the identity 5.1 implies in $\nu_p(F_{k,n}) = \nu_p(n)$.

(ii) By using combinatorial formula for k-Lucas number, we have that

$$2^{n-1}L_{k,n} = \sum_{i=0}^{\lfloor \frac{n}{2} \rfloor} {n \choose 2i} k^{n-2i} (k^2 + 4)^i,$$
(5.2)

since $p \mid {n \choose 2i} k^{n-2i} (k^2 + 4)^i$ for all $i \ge 1$, but $p \nmid k^n$, we conclude that $\nu_p(L_{k,n}) = 0$.

6. PROOF OF THEOREM 1.4

Firstly, by Lemma 2.3, if $n \not\equiv 0 \pmod{z}$ then $\nu_p(F_{k,n}) = 0$.

Now, if $n \equiv 0 \pmod{z}$ write $n = czp^{\alpha}$ with gcd(c, p) = 1 and an integer α . By using Lemma 2.6 for a = p we have that

$$F_{k,czp^{\alpha}} = 2^{1-p} F_{k,czp^{\alpha-1}} (MF_{k,czp^{\alpha-1}}^2 + pL_{k,czp^{\alpha-1}}^{p-1}).$$

Since $z \mid czp^{\alpha-1}$, by Lemma 2.2, $F_{k,z} \mid F_{k,czp^{\alpha-1}}$ then $p \mid F_{k,czp^{\alpha-1}}$. Moreover, since $gcd(F_{k,m}, L_{k,m}) = 1$ or 2 and $p \neq 2$ we get that

$$\nu_p(F_{k,czp^{\alpha}}) = \nu_p(F_{k,czp^{\alpha-1}}) + \nu_p(M'p^2 + pL_{k,czp^{\alpha-1}}^{p-1}) = \nu_p(F_{k,czp^{\alpha-1}}) + \nu_p(p) = \nu_p(F_{k,czp^{\alpha-1}}) + 1.$$

By induction, we arrive at

$$\nu_p(F_{k,czp^{\alpha}}) = \nu_p(F_{k,cz}) + \alpha. \tag{6.1}$$

Observe that, by Lemma 2.4, we have

$$F_{k,cz} \equiv cF_{k,z}F_{k,z+1}^{c-1} \pmod{F_{k,z}^2}$$

and since $\nu_p(F_{k,z}) = e$, we get that $\nu_p(F_{k,cz}) = e$.

Now, we need show that $\nu_p(n) = \nu_p(czp^{\alpha}) = \alpha$, i.e, gcd(z, p) = 1. Since $L_{k,p} = F_{k,p+1} + F_{k,p-1} = kF_{k,p} + 2F_{k,p-1}$ (see [5]) by using Lemma 2.5 we get that

$$F_{k,p-1} \equiv \frac{k\left(1 - \left(\frac{k^2 + 4}{p}\right)\right)}{2} \pmod{p}$$

and

$$F_{k,p+1} \equiv \frac{k\left(1 + \left(\frac{k^2 + 4}{p}\right)\right)}{2} \pmod{p}.$$

Then, if $\left(\frac{k^2+4}{p}\right) = 1$ we get that $F_{k,p-1} \equiv 0 \pmod{p}$, and if $\left(\frac{k^2+4}{p}\right) = -1$ we have that $F_{k,p+1} \equiv 0 \pmod{p}$. In other words, $p \mid F_{k,p-\left(\frac{k^2+4}{p}\right)}$. Thus, by Lemma 2.3, we get that gcd(z,p) = 1 which concludes the proof for the *k*-Fibonacci case.

For *p*-adic order of $L_{k,n}$, it is enough to write $L_{k,n} = \frac{F_{k,2n}}{F_{k,n}}$ and to use the result for *k*-Fibonacci sequences.

ACKNOWLEDGEMENT

The fifth author thanks for support to Specific Research Project of Faculty of Science, University of Hradec Kralove, No 2101, 2017.

REFERENCES

- 1. P. Catarino, P. Vasco, A. Borges, H. Campos and A. P. Aires, "Sums, products and identities involving *k*-Fibonacci and *k*-Lucas sequences," JP J. Alg. Numb. Theory Appl. **32**, 63–77 (2014).
- 2. S. Falcon and A. Plaza, "On the Fibonacci k-numbers," Chaos Solit. Fract. 32 (5), 1615–1624 (2007).
- 3. S. Falcon and A. Plaza, "On *k*-Fibonacci numbers of arithmetic indexes," Appl. Math. Comp. **208**, 180–185 (2009).
- 4. S. Falcon and A. Plaza, "k-Fibonacci sequences modulo m," Chaos Solit. Fract. 38, 1-8 (2008).
- 5. S. Falcon, "On the *k*-Lucas numbers," Int. J. Contemp. Math. Sci. 6, 1039–1050 (2011).
- 6. R. L. Graram, D. E. Knuth and O. Patashnik, *Concrete Mathematics* (Addison-Wesley, Reading, MA, 1989).
- 7. J. H. Halton, "On the divisibility properties of Fibonacci numbers," Fibonacci Quart.
- 8. T. Lengyel, "The order of the Fibonacci and Lucas numbers," Fibonacci Quart. **33** (3), 234–239 (1995).
- 9. T. Lengyel and D. Marques, "The 2-adic order of the Tribonacci number and the equation $T_n = m!$," J. Integer Seq. 17, 10–14 (2014).
- D. Marques, "On integer numbers with locally smallest order of appearance in the Fibonacci sequence," Int. J. Math. Math. Sci., Article ID 407643, 4 pages (2011).
- D. Marques, "On the order of appearance of integers at most one away from Fibonacci numbers," Fibonacci Quart. 50 (1), 36–43 (2012).
- 12. D. Marques, "The order of appearance of product of consecutive Fibonacci numbers," Fibonacci Quart. **50** (2), 132–139 (2012).
- 13. D. Marques, "The order of appearance of powers Fibonacci and Lucas numbers," Fibonacci Quart. **50** (3), 239–245 (2012).
- 14. J. Vinson, "The relation of the period modulo *m* to the rank of apparition of *m* in the Fibonacci sequence," Fibonacci Quart. **1.2**, 37–45 (1963).