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Abstract—Let (Fk,n)n and (Lk,n)n be the k-Fibonacci and k-Lucas sequence, respectively, which
satisfies the same recursive relation an+1 = kan + an−1 with initial values Fk,0 = 0, Fk,1 = 1,
Lk,0 = 2 and Lk,1 = k. In this paper, we characterize the p-adic orders νp(Fk,n) and νp(Lk,n) for
all primes p and all positive integers k.
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1. INTRODUCTION

Let (Fn)n≥0 be the Fibonacci sequence given by Fn+2 = Fn+1 + Fn, for n ≥ 0, where F0 = 0 and
F1 = 1. Let k be a positive integer and denote (Fk,n)n≥0, the k-Fibonacci sequence whose terms satisfy
the recurrence relation

Fk,n = kFk,n−1 + Fk,n−2, (1.1)

with initial conditions Fk,0 = 0 and Fk,1 = 1. In the same way, the companion k-Lucas sequence
(Lk,n)n≥0 is defined by satisfying the same recursive relation with initial values Lk,0 = 2 and Lk,1 = k.

The above sequences are among the several generalizations of Fibonacci and Lucas numbers (case
k = 1) and they were extensively studied in the series of papers due to Falcon and Plaza [2–5].

The p-adic order, νp(r), of r is the exponent of the highest power of a prime p which divides r. The
p-adic order of Fibonacci numbers and Lucas numbers was completely characterized, see [7–9, 14].

In this paper we characterized the p-adic order of the k-Fibonacci numbers and k-Lucas numbers.
Our main results are

Theorem 1.1. (i) If k is an even integer, then

ν2(Lk,n) =

⎧
⎨

⎩

1, if n ≡ 0 (mod 2);

ν2(k), if n ≡ 1 (mod 2).

(ii) If k is an odd integer, then
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ν2(Lk,n) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, if n ≡ 1, 2 (mod 3);

2, if n ≡ 3 (mod 6);

1, if n ≡ 0 (mod 6).

Theorem 1.2. (i) If k is an even integer, then

ν2(Fk,n) =

⎧
⎨

⎩

0, if n ≡ 1 (mod 2);

ν2(k) + ν2(n)− 1, if n ≡ 0 (mod 2).

(ii) If k is an odd integer, then

ν2(Fk,n) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0, if n ≡ 1, 2 (mod 3);

1, if n ≡ 3 (mod 6);

3, if n ≡ 6 (mod 12);

ν2(n) + 2, if n ≡ 0 (mod 12).

Theorem 1.3. For p �= 2 and p | k2 + 4, we have that νp(Fk,n) = νp(n) and νp(Lk,n) = 0.

Let z := z(k, p) be the smallest positive index for which Fk,n ≡ 0 (mod p). This index is often called
the rank of apparition of p in the k-Fibonacci sequence (the z function for k = 1 was extensively
studied in the series of papers [10–13]). The order of p in Fk,z will be denoted by e := e(k, p).

Theorem 1.4. For p �= 2 and p � k2 + 4, we have that

(i) νp(Fk,n) =

⎧
⎨

⎩

νp(n) + νp(Fk,z), if n ≡ 0 (mod z);

0, if n �≡ 0 (mod z).

(ii) νp(Lk,n) =

⎧
⎨

⎩

νp(n) + νp(Fk,z), if n �≡ 0 (mod z) and 2n ≡ 0 (mod z);

0, otherwise.

2. AUXILIARY RESULTS

In this section, we shall provide some useful results in order to prove the theorems. The first result
provides an addition formula for k-Fibonacci numbers (see [2]).

Lemma 2.1. Fk,n+m = Fk,n+1Fk,m + Fk,nFk,m−1.

By using Lemma 2.1 is possible to show the next lemma.

Lemma 2.2. If n | m then Fk,n | Fk,m.

Lemma 2.3. Fk,n ≡ 0 (mod p) if and only if z | n, where z := z(k, p).
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THE p-ADIC ORDER 17

Proof. If z | n then we get that Fk,z | Fk,n, by Lemma 2.2. Since p | Fk,z, we have that p | Fk,n.
Conversely, if z � n, thus n = tz + r for some integer t and 0 ≤ r < z, by using the addition formula of
Lemma 2.1, we get that Fk,tz+1Fk,r ≡ 0 (mod p). Since gcd(Fk,tz+1, Fk,tz) = 1, we infer that p | Fk,r

and by the minimality of z we arrive at r = 0.

Lemma 2.4. It holds that

Fk,an ≡ aFk,nF
a−1
k,n+1 (mod F 2

k,n)

and

Fk,an+1 ≡ F a
k,n+1 (mod F 2

k,n),

where a is a positive integer.

Proof. Firstly, by the recurrence relation we get that Fk,n+1 ≡ Fk,n−1 (mod Fk,n). Then, by using the
addition formula of Lemma 2.1, we obtain

Fk,2n = Fk,nFk,n+1 + Fk,n−1Fk,n ≡ 2Fk,nFk,n+1 (mod F 2
k,n).

Similarly,

Fk,2n+1 = F 2
k,n+1 + F 2

k,n ≡ F 2
k,n+1 (mod F 2

k,n).

Now, suppose that

Fk,an ≡ aFk,nF
a−1
k,n+1 (mod F 2

k,n)

and

Fk,an+1 ≡ F a
k,n+1 (mod F 2

k,n),

are true.Then let us prove for the case a+ 1.

Fk,(a+1)n = Fk,an+n = Fk,an+1Fk,n + Fk,anFk,n−1

≡ F a
k,n+1Fk,n + aFk,nF

a−1
k,n+1Fk,n−1 (mod F 2

k,n)

≡ (a+ 1)Fk,nF
a
k,n+1 (mod F 2

k,n),

and similarly to Fk,(a+1)n+1.

Lemma 2.5. If p is an odd prime, then

(i) Lk,p ≡ k (mod p);

(ii) Fk,p ≡
(
k2+4
p

)
(mod p), where, as usual,

(
·
p

)
denotes the Legendre symbol.

Proof. By using the combinatorial formulas for k-Lucas number and k-Fibonacci number (see [5]) we
get that

2p−1Lk,p =

� p
2
�

∑

i=0

(
p

2i

)

kp−2i(k2 + 4)i

≡ kp ≡ k (mod p),

where in the last congruence we used the Fermat Little Theorem. Then, since p > 2 we get that Lk,p ≡ k
(mod p).

Similarly, by Euler criterion, we get that

2p−1Fk,p =

p−1
2∑

i=0

(
p

2i+ 1

)

kp−1−2i(k2 + 4)i
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≡ (k2 + 4)
p−1
2 ≡

(
k2 + 4

p

)

(mod p),

then, by Fermat Little Theorem we arrive at Fk,p ≡
(
k2+4
p

)
(mod p).

Lemma 2.6. Fk,an = 21−aFk,n(MF 2
k,n + aLa−1

k,n ), where M is an integer.

Proof. By solving the Binet’s formulas Fk,n = (σn
1 − σn

2 )/(σ1 − σ2) and Lk,n = σn
1 + σn

2 (see [2, 5]) for
σn
1 and σn

2 in terms of Fk,n and Lk,n (where σ1 and σ2 satisfy x2 = kx+ 1), expanding (σn
1 )

a and (σn
2 )

a

by the binomial theorem, and recombining, we obtain the relation

Fk,an = (σan
1 − σan

2 )/(σ1 − σ2)

= 2−a[(Lk,n + (σ1 − σ2)Fk,n)
a − (Lk,n − (σ1 − σ2)Fk,n)

a]/(σ1 − σ2)

= 21−a
∑

j odd

(
a

j

)

(σ1 − σ2)
(j−1)/2F j

k,nL
a−j
k,n = 21−aFk,n(MF 2

k,n + aLa−1
k,n ),

where M is an integer depending on k, a and n.

Now, we are ready to deal with the proof of the theorems.

3. PROOF OF THEOREM 1.1

(i) Let’s prove simultaneously that

ν2(Lk,2m) = 1 and ν2(Lk,2m+1) = ν2(k)

by induction on m.
When m = 0 then ν2(Lk,0) = ν2(2) = 1 and ν2(Lk,1) = ν2(k). Now assuming that the result is true

for all l < m and knowing that ν2(a+ b) = min{ν2(a), ν2(b)} if ν2(a) �= ν2(b), we have by recurrence
relation, that

ν2(Lk,2m) = ν2(kLk,2(m−1)+1 + Lk,2(m−1)).

Now, by the induction hypothesis and since k is even

ν2(kLk,2(m−1)+1) = ν2(k) + ν2(Lk,2(m−1)+1) = 2ν2(k) ≥ 2 > ν(Lk,2(m−1)) = 1,

then

ν2(Lk,2m) = ν2(Lk,2(m−1)) = 1. (3.1)

Since ν2(kLk,2m) = ν2(k) + ν2(Lk,2m) = ν2(k) + 1 by (3.1) and by induction hypothesis
ν2(Lk,2(m−1)+1) = ν2(k), we have that

ν2(Lk,2m+1) = ν2(kLk,2m + Lk,2(m−1)+1)

= ν2(Lk,2(m−1)+1) = ν2(k).

This concludes the proof when k is even.
(ii) Now, if k is an odd integer, it is equivalent to prove that

ν2(Lk,6m+i) =

⎧
⎪⎪⎨

⎪⎪⎩

0, if i = 1, 2, 4, 5,

1, if i = 0,

2, if i = 3.

(3.2)

We proceed by simultaneously induction on m. When m = 0 the results are easily checked using that
k is odd. Now, we assume that the equation (3.2) is true for all l < m. To prove that (3.2) is true for m we
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need to use the recurrence relations until to be able to use the fact that ν2(a+ b) = min{ν2(a), ν2(b)} if
ν2(a) �= ν2(b) and the induction hypotheses. Therefore,

ν2(Lk,6m) = ν2((k
2 + 1)Lk,6(m−1)+4 + kLk,6(m−1)+3)

= ν2((k
2 + 1)Lk,6(m−1)+4) = 1,

because ν2(k
2 + 1) = ν2(2(2t

2 + 2t+ 1)) = 1, since k = 2t+ 1 is odd. Moreover,

ν2(Lk,6m+1) = ν2(kLk,6m + Lk,6(m−1)+5)

= ν2(kLk,6(m−1)+5) = 0

and similarly we can prove that ν2(Lk,6m+2) = ν2(Lk,6m+4) = ν2(Lk,6m+5) = 0.
Finally, using the recurrence relation and noting that for k = 2t+ 1, we have

ν2(k
5 + 4k3 + 3k) ≥ 3 > 0 = ν2(k

4 + 3k2 + 1),

then

ν2(Lk,6m+3) = ν2((k
5 + 4k3 + 3k)Lk,6(m−1)+4 + (k4 + 3k2 + 1)Lk,6(m−1)+3)

= ν2((k
4 + 3k2 + 1)Lk,6(m−1)+3) = 2,

which ends the proof.

4. PROOF OF THEOREM 1.2

(i) Firstly, let us prove that Fk,2m−1 ≡ 1 (mod 2) for all m ≥ 1 by induction on m. The basis step, i.e.,
when m = 1, is easily checked. Suppose that the result is true for m = j and let us prove for m = j + 1.

Note that, using that k is even, we have that Fk,2j+1 = kFk,2j + Fk,2j−1 ≡ 1 (mod 2). Thus, the
result is true for n ≡ 1 (mod 2) and k even.

Now we will prove that ν2(Fk,n) = ν2(k) + ν2(n)− 1 when n ≡ 0 (mod 2). Since n is even we have
that ν2(n) ≥ 1 and we will proceed by induction on ν2(n).

For the basis step, when ν2(n) = 1, we have that n = 2(2m + 1) for some non-negative inte-
ger m. Then, by using the known fact that Fk,2l = Fk,lLk,l (see in [1]) we can show that Fk,n =
Fk,2m+1Lk,2m+1.

Thus

ν2(Fk,n) = ν2(Fk,2m+1) + ν2(Lk,2m+1)

and by using the case proved previously and the Theorem 1.1, we conclude that the basis step is true.
Suppose that for ν2(n) = j the result is true. Then, for ν2(n) = j +1 we have that n = 2j+1(2m+ 1)

for some non-negative integer m, and again by the fact Fk,2l = Fk,lLk,l and by the Theorem 1.1 and
using the induction hypothesis we conclude that

ν2(Fk,n) = ν2(Fk,2j(2m+1)) + ν2(Lk,2j(2m+1))

= ν2(k) + j = ν2(k) + ν2(n)− 1.

(ii)We will deal with the case where n ≡ 0 (mod 12), the other cases are similar to the case in which
k is odd of Theorem 1.1, so to avoid repetition will leave the details to the reader.

Writing n = 12m we will prove by induction on m. The basis step when m = 1 can be checked
after a straightforward calculation. Suppose that ν2(Fk,12j) = ν2(12j) + 2 for all j ≤ m. Let us check to
j = m+ 1.

By Theorem 1.1 we get that

ν2(Fk,12(m+1)) = ν2(Fk,6(m+1)) + ν2(Lk,6(m+1)) = ν2(Fk,6(m+1)) + 1. (4.1)

Then, if 2 divides m+ 1 we can write (4.1) as

ν2(Fk,12(m+1)) = ν2(Fk,12(m+1
2

)) + 1
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= ν2

(

12

(
m+ 1

2

))

+ 2 + 1

= ν2(12(m + 1)) + 2,

where in the second equality we use the induction hypothesis since (m+ 1)/2 ≤ m.
Now, if 2 not divides m+1, we get that 6(m+1) ≡ 6 (mod 12) and by the previously cases we arrive

that

ν2(Fk,12(m+1)) = ν2(Fk,6(m+1)) + 1

= 3 + 1

= ν2(12(m + 1)) + 2,

which concludes the proof.

5. PROOF OF THEOREM 1.3

(i) By using the combinatorial formula for k-Fibonacci number, we have that

2n−1Fk,n =

�n−1
2

�
∑

i=0

(
n

2i+ 1

)

kn−1−2i(k2 + 4)i, (5.1)

where p � k, since p | k2 + 4 and p �= 2.

Observe that νp(
(

n
2i+1

)
kn−1−2i(k2 +4)i) = νp(

(
n

2i+1

)
(k2 +4)i) and

(
n

2i+1

)
= n/(2i+1)

(
n−1
2i

)
, hence

νp(
( n
2i+1

)
(k2 + 4)i) = νp(n)− νp(2i+ 1) + νp(

(n−1
2i

)
(k2 + 4)i) ≥ νp(n)− νp(2i+ 1) + i > νp(n), ex-

cept for k = 0 when νp(
(

n
2i+1

)
kn−1−2i(k2 +4)i) = νp(n). Note that the identity 5.1 implies in νp(Fk,n) =

νp(n).

(ii) By using combinatorial formula for k-Lucas number, we have that

2n−1Lk,n =

�n
2
�

∑

i=0

(
n

2i

)

kn−2i(k2 + 4)i, (5.2)

since p |
(n
2i

)
kn−2i(k2 + 4)i for all i ≥ 1, but p � kn, we conclude that νp(Lk,n) = 0.

6. PROOF OF THEOREM 1.4

Firstly, by Lemma 2.3, if n �≡ 0 (mod z) then νp(Fk,n) = 0.

Now, if n ≡ 0 (mod z) write n = czpα with gcd(c, p) = 1 and an integer α. By using Lemma 2.6 for
a = p we have that

Fk,czpα = 21−pFk,czpα−1(MF 2
k,czpα−1 + pLp−1

k,czpα−1).

Since z | czpα−1, by Lemma 2.2, Fk,z | Fk,czpα−1 then p | Fk,czpα−1. Moreover, since gcd(Fk,m, Lk,m) =
1 or 2 and p �= 2 we get that

νp(Fk,czpα) = νp(Fk,czpα−1) + νp(M
′p2 + pLp−1

k,czpα−1)

= νp(Fk,czpα−1) + νp(p)

= νp(Fk,czpα−1) + 1.

By induction, we arrive at

νp(Fk,czpα) = νp(Fk,cz) + α. (6.1)
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Observe that, by Lemma 2.4, we have

Fk,cz ≡ cFk,zF
c−1
k,z+1 (mod F 2

k,z),

and since νp(Fk,z) = e, we get that νp(Fk,cz) = e.

Now, we need show that νp(n) = νp(czp
α) = α, i.e, gcd(z, p) = 1.

Since Lk,p = Fk,p+1 + Fk,p−1 = kFk,p + 2Fk,p−1 (see [5]) by using Lemma 2.5 we get that

Fk,p−1 ≡
k
(
1−

(
k2+4
p

))

2
(mod p)

and

Fk,p+1 ≡
k
(
1 +

(
k2+4
p

))

2
(mod p).

Then, if
(
k2+4
p

)
= 1 we get that Fk,p−1 ≡ 0 (mod p), and if

(
k2+4
p

)
= −1 we have that Fk,p+1 ≡ 0

(mod p). In other words, p | F
k,p−

(
k2+4

p

). Thus, by Lemma 2.3, we get that gcd(z, p) = 1 which

concludes the proof for the k-Fibonacci case.

For p-adic order of Lk,n, it is enough to write Lk,n =
Fk,2n

Fk,n
and to use the result for k-Fibonacci

sequences.
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