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1. INTRODUCTION

Methods of operator algebra and noncommutative geometry were applied to Mumford curves in
[5, 7–9], using graph C∗-algebras associated to quotients of Bruhat-Tits trees by p-adic Schottky
groups and boundary algebras associated to the action of the p-adic Schottky group on its limit set
in the conformal boundary of the Bruhat-Tits tree. In particular, in [5], invariants of Mumford curves are
obtained via modular index theory on the graph C∗-algebra of the quotient of the Bruhat-Tits tree by
a p-adic Schottky group. The modular index theory depends on the construction of KMS weights for
a suitable time evolution on the C∗-algebra. These are obtained via a combinatorial equation defining
graph weights. The goal of this paper is to develop a similar theory of KMS weights for higher order
buildings.

We refer the reader to [1] and [27] for any background material and basic definitions from the theory
of higher rank buildings that we use in this paper.

We focus in particular on the case of rank 2 buildings. In the case of buildings of type Ã2 and their
quotients by type rotating automorphisms, a class of C∗-algebras generalizing the graph C∗-algebras
were constructed in [24, 25], as higher rank Cuntz-Krieger algebras, which generalize the usual Cuntz-
Krieger algebras [10]. For Γ a group of type rotating automorphisms of an Ã2-building B, which acts
freely on vertices with finitely many orbits, the buildings C∗-algebra of [24, 25] has the very natural
property of being isomorphic to the boundary algebra C(∂B)� Γ describing the action of the group on
the totally disconnected boundary at infinity ∂B. In more recent years, C∗-algebras associated to higher
rank buildings, with particular attention to the construction of KMS states, were studied in [2, 12–14]
(see also references therein for a broader perspective on this research topic).

In this paper, by considering simple generalizations of the combinatorial equations defining graph
weights, we introduce other possible C∗-algebras associated to rank 2 buildings, which generalize the
Cuntz-Krieger (CK) relations of graph C∗-algebras. We first recall some facts about graph weights and
we give a cohomological interpretation of the graph weight equation. We then consider two-dimensional
analogs of graph weights.

Our construction applies to an arbitrary finite CW complex (in particular this includes the case
of spherical buildings and of certain quotients of affine buildings). The algebra we associate to 2-
dimensional CW complex B is just the tensor product of two graph algebras, respectively associated
to the 1-skeleton B(1) of B and to a suitably defined boundary complex B∂ , which, respectively, account
for the incidence relations in codimension one and two. Under suitable conditions on the graphs, these
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are also higher rank Cuntz-Krieger algebras, although of a simpler kind than those considered in [24, 25].
We introduce a suitable notion of weights, the 2D CW weights, on 2-dimensional CW complexes that
generalize the graph weights. We construct such weights on the resulting C∗-algebras and we show
that they are KMS weights with respect to a natural time evolution.

We compare the construction of KMS weights on the algebras of 2-dimensional CW complexes with
possible constructions of KMS weights on the higher rank CK algebras of affine Ã2 buildings of [24, 25].
We present explicit examples illustrating the general constructions.

We then discuss the case of spherical buildings of rank at least three, where a crucial result of Tits
shows that such a building B is entirely determined by its foundation E2(C), where C is a chamber
of B, which is an amalgam of rank two buildings. This result is the key to the classification of spherical
buildings [31, 33]. Higher rank affine buildings can in turn be classified in terms of their spherical building
at infinity, [34].

We then describe a splicing construction for graph weights and we show that it can be applied to the
2D CW weights. We show that this splicing construction applied to 2D CW weights on the generalized
mij-gons Σij in the blueprint of a higher rank spherical building can be spliced to obtain a 2D CW
weight on the entire foundation E2(C).

The question of extending the results of [5] from (quotients of) Bruhat-Tits trees to higher rank
buildings was posed to the second author by Ludmil Katzarkov, in relation to the recent work [15]. While
at the moment we do not see a direct connection between the operator algebraic approach described here
and the construction of [15], the present work is motivated by this longer term goal.

2. GRAPH C∗-ALGEBRAS, GRAPH WEIGHTS, AND KMS WEIGHTS

In this section we recall some essential aspects of the construction of graph weights and KMS
weights on graph C∗-algebras, as obtained in [5]. We also give a more geometric description of the
combinatorial graph weight equation, in terms of a cohomological condition.

2.1. Graph C∗-Algebras

We associate to any directed graph E = (E0, E1, s, r) the C∗-algebra C∗(E) generated by the
projections {Pv |v ∈ E0} and the partial isometries {Se|e ∈ E1}, with the following properties

• The projections Pv are mutually orthogonal, PvPw = 0 for v �= w.

• The partial isometries Se satisfy S∗
eSe′ = 0 for e �= e′ and

S∗
eSe = Pr(e) (2.1)

and SeS
∗
e ⊆ Ps(e), for all e ∈ E1.

• For every v ∈ E0 such that {e ∈ E1 | s(e) = v} is finite and non-empty,

Pv =
∑

s(e)=v

SeS
∗
e . (2.2)

We refer the reader to [16, 22, 32] for a survey of graph C∗-algebras.
In particular, it is known [17] that the graph C∗-algebra C∗(E) of a directed finite graph E with no

sources and no sinks is a Cuntz-Krieger algebra, as defined in [10]. These are algebras generated by
partial isometries Sa, for an element a ∈ A of a finite alphabet A, with relations

S∗
aSa =

∑

b

Aab SbS
∗
b ,

∑

a

SaS
∗
a = 1, (2.3)

where A = (Aab) is an #A×#A-matrix with entries in {0, 1}.
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2.2. States, Weights, and Time Evolutions

We recall the notion of states and weights on C∗-algebras, time evolutions, and the KMS condition
for equilibrium states. There are several slight variants of the definition of KMS state in the literature.
Here we adopt the following convention, see §V.1 of [11].

Definition 2.1. A state on a unital C∗-algebra A is a continuous linear functional ϕ : A → C

satisfying normalization ϕ(1) = 1 and positivity ϕ(x∗x) ≥ 0 for all x ∈ A. Let σ : R → Aut(A)
be a continuous 1-parameter family of automorphisms (a time evolution). A state ϕ is a KMSβ

state, for some β ∈ R+, if for all x, y ∈ A there exists a function Fx,y that is analytic on the strip
Iβ = {z ∈ C | 0 < �(z) < β} and continuous on the boundary ∂Iβ , satisfying Fx,y(t) = ϕ(σt(x)y)
and Fx,y(t+ iβ) = ϕ(yσt(x)).

For details on the properties of KMS states, we refer the reader to the extensive treatment in [4].
An equivalent formulation of the KMS condition is obtained by requiring the existence of a dense
subalgebra Aan ⊂ A of analytic elements, invariant under the time evolution, where the identity ϕ(xy) =
ϕ(yσiβ(x)) holds for all x, y ∈ Aan.

Weights on C∗-algebras are defined as follows, see [6]. As in the case of states, there is a GNS
representation associated to weights on C∗-algebras.

Definition 2.2. A weight on a C∗-algebra A is a function ψ : A+ → [0,∞], such that ψ(x+ y) =
ψ(x) + ψ(y) for all x, y ∈ A+ and ψ(λx) = λψ(x) for all λ ∈ R+ and all x ∈ A+. A weight extends
to a unique linear functional ψ : Mψ → C, where Mψ is the span of all elements a ∈ A+ with
ψ(x) < ∞. The weight is densely defined if Mψ is dense in A. The weight is lower semi-continuous
if the set {x ∈ A+ |ψ(x) ≤ λ} is closed, for all λ ∈ R+. A non-zero weight is proper if it is both
densely defined and lower semi-continuous.

Let Nψ = {x ∈ A |ψ(x∗x) < ∞}, so that Mψ = N ∗
ψNψ. Suppose given a continuous 1-parameter

family σt of automorphisms of A. A proper weight ψ on A is a KMS weight, with respect to the time
evolution σt if ψ is an equilibrium weight, ψ ◦ σt = ψ, and, for all x, y ∈ Nψ ∩ N ∗

ψ, there is a function
Fx,y that is analytic on the strip I1 = {z ∈ C | 0 < �(z) < 1} and continuous on the boundary ∂I1,
satisfying Fx,y(t) = ψ(σt(x)y) and Fx,y(t+ i) = ψ(yσt(x)). Notice how this definition matches the
KMS1 condition for states discussed above.

A different way of defining the KMS condition for weights would be by requiring that ψ ◦ σt = ψ and
that, for all x in the domain of σi and xy ∈ Mψ, one has ψ(xy) = ψ(yσi(x)). If the weight is faithful, the
time evolution σ is uniquely determined by ψ and the KMS condition and is referred to as the modular
group of ψ.

See [6] and [18] for more details on KMS weights and for the equivalence of various different
definitions. For recent results on KMS weights on graph C∗-algebras, see also [29].

2.3. Graph Weights and KMS Weights on Graph Algebras

In [5] a construction of KMS weights on graph C∗-algebras is obtained in terms of a combinatorial
notion of graph weights and the construction of explicit solutions to the corresponding graph weight
equation.

Let E be a finite graph, E0 = {v1, . . . , vn} with vr+1, . . . , vn the sinks. As usual, let s, r : E1 → E0

be the source and range maps. For any vertex v ∈ E0, we define the edge bundle at v to be the set
Bv = {e ∈ E1|s(e) = v}.

Definition 2.3. A generalized graph weight on E is a pair of R-valued functions (g, λ) on E0 and
E1, respectively, satisfying

g(v) =
∑

e∈Bv

λ(e)g(r(e)) (2.4)

for each v ∈ E0 that is not a sink. A generalized graph weight (g, λ) is called
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(i) faithful if g is never zero and

(ii) special if λ is constant.

The word “generalized” is dropped and (g, λ) is simply called a graph weight if g and λ are
nonnegative.

Let μ = μ1 · · · μn denote a sequence of oriented edges in E1 with s(μi+1) = r(μi). The linear span of
elements of the form SμS

∗
ν , for oriented paths μ and ν with r(μ) = r(ν), is dense in the graph C∗-algebra

C∗(E), see [16].
As shown in Theorem 4.5 of [5], there is a one-to-one correspondence between faithful graph weights

on a locally finite directed graph E and faithful proper weights on C∗(E), with span{SμS
∗
ν} ⊆ Mψ, that

are invariant under the gauge action defined by γz(Se) = zSe, for z ∈ U(1). For the reader’s convenience,
we sketch below both directions of the implication, and also the KMS condition satisfied by these
weights.

Let (g, λ) be a faithful graph weight on E. Consider the linear functional

ψ(g,λ) : span{SμS
∗
ν} → C, ψ(g,λ)(SμS

∗
ν) = δμ,ν λ(ν) g(r(ν)), (2.5)

where for a path ν = ν1 . . . νn we set λ(ν) := λ(ν1) · · ·λ(νn). It follows from Proposition 4.4 of [5] that
this ψ(g,λ) is a KMS weight on C∗(E), with respect to the time evolution defined on the generators as

σt(Se) = λ(e)it Se. (2.6)

The KMS condition follows from the graph weight equation, the relations (2.1), (2.2), and

σt(SμS
∗
ν) =

(
λ(μ)

λ(ν)

)it

SμS
∗
ν .

Conversely, if ψ : span{SμS
∗
ν} → C is a proper faithful gauge invariant weight, then setting

g(v) = ψ(Pv), and λ(e) =
ψ(SeS

∗
e )

ψ(S∗
eSe)

determines a faithful graph weight.
Thus, the question of constructing KMS weights with respect to suitable time evolutions, is phrased

in [5] in terms of the following combinatorial questions. The second question is especially interesting in
view of the cases studied in [5].

Question 2.4. Does there exist a faithful special graph weight on E? Can one construct such
special graph weights with a constant λ ∈ (0, 1)?

In [5] a method for constructing solutions is presented, which is adapted to the type of graphs that
occur as quotients of Bruhat-Tits trees by p-adic Schottky groups, namely graphs that consist of a finite
graph (the dual graph of the special fiber of the Mumford curve) with infinite trees attached to (some of)
its vertices, [20]. We discuss here a cohomological method of addressing the same question.

2.4. Graph Weights: Cohomological Approach

The approach is as follows. Fix λ ∈ R (or restrict to (0, 1) if preferred). Construct a chain complex
and dual cochain complex, whose 0-cocycles are precisely the special generalized graph weights
with parameter λ. The existence of nontrivial special generalized graph weights is equivalent to the
nontriviality of the 0-cohomology group, H0. We then inspect the boundary map to check whether such
nontrivial special generalized graph weights are faithful special graph weights.

Let the 0-chains be

C0 =
⊕

v∈E0

Rv
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the n-dimensional R-vector space with the vertices as a basis. Let the 1-chains be

C1 =
⊕

v∈E0

RBv

the n-dimensional R-vector space with the edge bundles as a basis. We have a chain complex

0 −→ C1
∂−→ C0 −→ 0

where

∂(Bv) =

{
0 if Bv = ∅
λ
∑

e∈Bv
r(e)− v otherwise.

Now dualize to obtain the cochain complex

0 ←− C1 δ←− C0 ←− 0

Lemma 2.5. The elements of the subspace Z0 = ker(δ) ≤ C0 are the special generalized graph
weights.

Proof. It is easy to see that the 0-cocycles (the subspace Z0 = ker(δ) ≤ C0) are precisely the special
generalized graph weights, because for all v ∈ E1

0 = δg(Bv) = g(∂Bv) =

{
0 if Bv = ∅
λ
∑

e∈Bv
g(r(e)) − g(v) otherwise

(2.7)

gives the relation in Equation 2.4 in the case where v is not a sink and λ is constant. When v is a sink
(2.7) imposes no additional constraint on g(v) (compare this, for instance, with Lemma 4.6 of [5]).

Proposition 2.6. There are nontrivial special generalized graph weights if and only if H0 �= 0.
This happens if and only if det(∂) = 0.

Proof. We always have the trivial special graph weight with g = 0. There are nontrivial special general-
ized graph weights if and only if H0 = Z0 is nontrivial if and only if H0 is nontrivial if and only if ∂ is not
surjective (or equivalently not injective). This is the case if and only if det(∂) = 0.

With respect to the ordered bases {Bv1 , . . . , Bvn} for C1 and {v1, . . . , vn} for C0, the matrix
representation of ∂ is

M = (λmi,j)− (Ir ⊕ 0n−r) (2.8)

where mi,j is the number of edges from vi to vj .

Now suppose (xj) ∈ ker(∂). Then g ∈ C0 defined by g(vj) = xj is in fact a cocycle and hence a
special generalized graph weight. Conversely, if g ∈ Z0, then (g(vj)) ∈ ker(∂). In particular, there exists
a faithful special graph weight with parameter λ if and only if

ker(M) ∩ R
n
>0 �= ∅

or, equivalently, 1 is an eigenvalue of M + I that has an eigenvector with strictly positive components.
This second equivalence is precisely the statement of Lemma 4.6 from [5].

Remark 2.7. This reasoning is easily generalized to (not necessarily special) graph weights. The matrix
M simply becomes

M =

⎛

⎜⎜⎜⎝
∑

s(e)=vi,
r(e)=vj

λ(e)

⎞

⎟⎟⎟⎠ − (Ir ⊕ 0n−r). (2.9)
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3. 2-DIMENSIONAL CW COMPLEXES

In this section we consider a first approach to generalizing the previous construction from graphs
to higher dimensional combinatorial objects, with particular focus on the 2-dimensional case. Here we
consider the general setting of a 2-dimensional CW complex. We introduce a generalization of graph
weights, which combine a graph weight on the 1-skeleton of the CW complex, with a graph weight on
a “boundary graph" of the 2-dimensional complex. We then discuss a construction of a C∗-algebra of
the 2-dimensional complex, which combines the graph C∗-algebras of the 1-skeleton and the boundary
graph. We consider finite 2-dimensional CW complexes, oriented in the following sense.

Definition 3.1. Let B be a finite 2-dimensional CW complex. We say B is oriented if its 1-skeleton,
B(1), is a directed graph with range and source maps r, s : B1 → B0 and there is a map

ν : B2 →
⊔

n

(
n∏

B1

)
/γn

where γn ≤ Sn is the subgroup of cyclic permutations, i.e. generated by (12 . . . n). We further
require if ν(σ) = (e1, . . . , en), then r(ei) = s(ei+1), i ∈ Z/nZ.

Now to any finite 2-dimensional CW complex, we associate a notion of a boundary graph.

Definition 3.2. Let B = (B0,B1,B2, r, s, ν) be an oriented finite 2-dimensional CW complex. Define
the boundary graph of B to be the directed graph B∂ with B0

∂ = B1 and an edge from e1 to e2 for
each instance that e2 follows e1 over all ν(σ), σ ∈ B2. The corresponding range and source maps
are denoted ∂r, ∂s, respectively.

An example of 2-dimensional CW complex with the associated boundary graph is given in Figures 1
and 2 below.

3.1. Rank 2 Graph Weights and 2D CW Weights

We now propose some notions of 2D CW weights, for finite 2-dimensional CW complex, which
generalize the notion of graph weights recalled above.

The idea is to consider, separately, graph weight equations for the 1-skeleton B(1) of the 2-
dimensional CW complex and for the boundary graph B∂ , and then impose a relation between the edge
function λ of the graph weight of B(1) and the vertex function λ̃ of the graph weight for B∂ .

Definition 3.3. Let B be an oriented finite 2-dimensional CW complex. A quadruple of nonnega-
tive real functions (g, λ̃, λ, η) on B0, B1, B1 and B2 respectively, is a rank 2 graph weight on B if they
satisfy

g(v) =
∑

s(e)=v

λ̃(e)g(r(e)) (3.1)

λ(e) =
∑

ν(σ)�e
η(σ)λ(e′) (3.2)

for all v ∈ B0 and e ∈ B1 where the first sum is taken over all e ∈ B1 with s(e) = v and the second
sum is taken over all σ ∈ B2 and all appearances of e in ν(σ) and e′ is the edge following that
appearance of e in ν(σ).

Remark 3.4. Note that Condition 3.2 is precisely Condition 3.1 for B∂ . This gives us an alternate
formulation of a rank 2 graph weight.

Definition 3.5. A rank 2 graph weight on the oriented finite 2-dimensional CW complex B is a
quadruple of nonnegative real functions (g, λ̃, λ, η) on (B0,B1,B1,B2) such that (g, λ̃) is a graph
weight on the 1-skeleton B(1) and (λ, η) is a graph weight on B∂ .
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In Definitions 3.3 and 3.5, we have not imposed any relation between the solutions of Condition 3.1
and 3.2. However, it is natural to require that the functions λ(e) and λ̃(e) on B1 are related. We consider
two possible choices of relations between these functions.

Definition 3.6. Let B be an oriented finite 2-dimensional CW complex. A tight 2D CW weight on B
is a rank 2 graph weight, as in Definition 3.3 where λ(e) = λ̃(e) for all e ∈ B1. A 2D CW weight on
B is a rank 2 graph weight where λ(e) = λ̃(e)g(r(e)), for all e ∈ B1.

We can then refer to a 2D CW weight (or tight 2D CW weight) as a triple of functions (g, λ, η) on
(B0,B1,B2). In analogy to the graph case we make the following definition.

Definition 3.7. A 2D CW weight (or tight 2D CW weight) (g, λ, η) on an oriented finite 2-
dimensional CW complex B is called

(i) faithful if g, λ, and η are never zero and

(ii) special if η is constant.

If we loosen the definition of a (tight) 2D CW weight and we only require that (g, λ, η) is a
(possibly negative) triple of real functions, we say (g, λ, η) is a generalized (tight) 2D CW weight
on B.

Examples of (tight) 2D CW weights are presented in §3.2 below, so as to illustrate more precisely the
difference between the notions introduced in the preceding definitions in the case of a very simple explicit
2-dimensional CW complex.

The strategy for constructing faithful special 2D CW weights (or tight 2D CW weights) is then
summarized as follows. Let B be a finite 2-dimensional CW complex. Starting at the top dimension and
moving down, we obtain a similar result as Lemma 4.6 in [5]. We are interested in determining whether
B admits a faithful special (tight) 2D CW weight. Inspired by Definition 3.5, we first want to determine
whether the graph B∂ admits a special graph weight. By §2.4 , we have a bijective correspondence
between the space of faithful special graph weights (λ, η) on B∂ and ker(MB∂

) ∩ R
n
+ where MB∂

is the
matrix from 2.8 corresponding to B∂ .

Remark 3.8. If every edge in B1 belongs to a face in B2, then there are no sinks in B∂ , hence det(MB∂
)

is a polynomial in η and each generalized faithful special graph weight (up to scalar multiples of λ) on B∂

corresponds to a root of this polynomial, of which there are finitely many. The unique generalized faithful
graph weights are parameterized by the elements of the set

{(cλi, ηi)|1 ≤ i ≤ k, c ∈ R}.

Since we are interested only in faithful special graph weights, we do not consider any pairs with ηi ≤ 0
or cλi not everywhere positive.

This gives a list (finite up to positive scalar multiplication of λ) of graph weights on B∂. We may then
use Remark 2.7 to check which of these assignments of λ extends to a graph weight on B(1). Here we
use either the condition that the function λ(e) itself has to be the edge function of a graph weight on B(1)

(tight 2D CW weight) or the condition that there should be a nowhere vanishing vertex function g(v)

such that, λ(e)/g(r(e)) should be the edge function of a graph weight on B(1) with vertex function g(v)
(2D CW weight). The assignments that do satisfy these conditions are, respectively, the tight 2D CW
weights and the 2D CW weights on B.
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Fig. 1. The rank 2 building B.

Fig. 2. The boundary graph B∂ of the rank 2 building B.

3.2. Examples of 2D CW Weights and Tight 2D CW Weights

We now provide a simple example to illustrate the construction described above. Consider the
oriented finite 2-dimensional CW complex B given in Figure 1. This oriented 2-complex B has B0 =
{u, v, x, y, z}, B1 = {a, b, c, d, e, f}, and B2 = {α, β} with range and source maps as shown in Figure 1.
The two chambers α, β in B2 have, respectively, ν(α) = (a, b, c, d) and ν(β) = (d, e, f). The boundary
graph B∂ is given in Figure 2. It has B0

∂ = {a, b, c, d, e, f} = B1 with range and source maps as shown
in the figure.

Lemma 3.9. The faithful special graph weights on the boundary graph B∂ of Figure 2 are pairs
(λ, η) where η is the unique positive root of the polynomial p(η) = 1− η3 − η4 and λ = Cλ0, for an
arbitrary C ∈ R

∗
+ and λ0 is the function

λ0 : (a, b, c, d, e, f) �→ (η3, η2, η, 1, η2, η). (3.3)

Proof. If (λ, η) is a special graph weight on B∂ , then Condition 2.4 gives the following linear system of
equations

λ(a) = η λ(b)

λ(b) = η λ(c)

λ(c) = η λ(d)
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λ(d) = η λ(a) + η λ(e)

λ(e) = η λ(f)

λ(f) = η λ(d)

which has a nontrivial solution in λ if and only if

0 = det

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −η 0 0 0 0

0 1 −η 0 0 0

0 0 1 −η 0 0

−η 0 0 1 −η 0

0 0 0 0 1 −η

0 0 0 −η 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 1− η3 − η4 = p(η). (3.4)

One can easily check that the polynomial p has only one positive root η0 ∈ (0, 1) so we have η = η0. Now
λ must be a scalar multiple of the function (3.3), say λ = Cλ0, C ∈ R

∗
+.

When we consider the condition for 2D CW weights, we look for pairs of functions (g, λ̃) satisfying
the graph weight equation on the 1-skeleton B(1), with the relation λ̃(e)g(r(e)) = λ(e). We obtain the
following result.

Proposition 3.10. The faithful special 2D CW weights on the finite 2-dimensional CW complex of
Figure 1 are quadruples (g, λ̃, λ, η) with η = η0 the positive root of p(η) = 1− η3 − η4 = 0,

g : (x, y, z, u, v) �→ (Cη2, Cη,Cη,Cη−1, C) (3.5)

λ : (a, b, c, d, e, f) �→ (Cη3, Cη2, Cη,C,Cη2, Cη) (3.6)

and with λ̃ the function constant equal to η = η0 on all edges.

Proof. By Definition 3.6, in order to obtain a faithful special 2D CW weight from a graph weight (λ, η)
on B∂ , we look for a faithful graph weight (g, λ̃) on B(1) with λ̃(e)g(r(e)) = λ(e). The latter condition
gives equations

λ̃(a) g(x) = Cη3

λ̃(b) g(y) = Cη2

λ̃(c) g(v) = Cη

λ̃(d) g(u) = C

λ̃(e) g(z) = Cη2

λ̃(f) g(v) = Cη,

while the graph weight requirement gives the equations

g(v) = λ̃(d) g(u)

g(u) = λ̃(a) g(x) + λ̃(e) g(z)

g(x) = λ̃(b) g(y)

g(y) = λ̃(c) g(v)

g(z) = λ̃(f) g(v).

These have solutions

λ̃(a) = λ̃(b) = λ̃(c) = λ̃(e) = λ̃(f) = η, λ̃(d) = (η3 + η2)−1
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g(x) = Cη2, g(y) = Cη, g(z) = Cη, g(u) = C(η3 + η2), g(v) = C.

Since η = η0 is a root of p(η) = 0, it satisfies η3 + η2 = η−1, hence we obtain the statement.

Similarly, we find that the solutions above fit into a larger 2-parameter family of faithful 2D CW
weights that have possibly different values η(σ1) �= η(σ2) for the two faces of Figure 1.

Corollary 3.11. The faithful 2D CW weights are quadruples of functions (g, λ̃, λ, η) with η(σ1) = η1
and η(σ2) = η2, where η1, η2 ∈ R

∗
+ satisfy η41 + η32 = 1 and with

g : (x, y, z, u, v) �→ (Cη21, Cη1, Cη2, C(η31 + η22), C) (3.7)

λ̃ : (a, b, c, d, e, f) �→ (η1, η1, η1, (η
3
1 + η22)

−1, η2, η2) (3.8)

λ̃ : (a, b, c, d, e, f) �→ (η31 , η
2
1 , η1, 1, η

2
2 , η2). (3.9)

Proof. The argument is exactly as before with graph weight equations on B∂ giving

λ(a) = η(σ1)λ(b)

λ(b) = η(σ1)λ(c)

λ(c) = η(σ1)λ(d)

λ(d) = η(σ1)λ(a) + η(σ2)λ(e)

λ(e) = η(σ2)λ(f)

λ(f) = η(σ2)λ(d)

which has a nontrivial solution in λ if and only if

0 = det

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −η(σ1) 0 0 0 0

0 1 −η(σ1) 0 0 0

0 0 1 −η(σ1) 0 0

−η(σ1) 0 0 1 −η(σ2) 0

0 0 0 0 1 −η(σ2)

0 0 0 −η(σ2) 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 1− η(σ2)
3 − η(σ1)

4. (3.10)

The solutions are multiples λ = Cλ0 of the function

λ0 : (a, b, c, d, e, f) �→ (η31 , η
2
1 , η1, 1, η

2
2 , η2), (3.11)

where η1 = η(σ1) and η2 = η(σ2), satisfying η41 + η32 = 1. We then consider the system of equations

λ̃(a) g(x) = Cη31

λ̃(b) g(y) = Cη21

λ̃(c) g(v) = Cη1

λ̃(d) g(u) = C

λ̃(e) g(z) = Cη22

λ̃(f) g(v) = Cη2,

which express the condition λ̃(e)g(r(e)) = λ(e) of the 2D CW weights, as well as the condition

g(v) = λ̃(d) g(u)

g(u) = λ̃(a) g(x) + λ̃(e) g(z)
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g(x) = λ̃(b) g(y)

g(y) = λ̃(c) g(v)

g(z) = λ̃(f) g(v).

that (g, λ̃) is a graph weight on B(1). These have solutions as in (3.7) and (3.8). This gives a 2-parameter
family of solutions depending on C, η1, η2 ∈ R

∗
+ with the relation η41 + η32 = 1.

In the case of tight 2D CW weights, we consider solutions (Cλ0, η0) of the faithful special graph
weight equation on B∂ , as in Lemma 3.9, and we impose the condition that the same function λ = Cλ0

extends to a graph weight (g, λ) on the 1-skeleton B(1). Thus, we can characterize the faithful special
tight 2D CW weights as follows.

Proposition 3.12. The faithful special tight 2D CW weights on the finite 2-dimensional CW
complex of Figure 1 are of the form (g,Cλ0, η), with η the unique positive root of p(η) = 1− η3 − η4,
the function λ0 as in (3.3), C is a positive root of q(C) = 1−C3η3 −C4η6 and g(v) is a solution of

g(u) = Cη3 g(x) + Cη2 g(z)

g(x) = Cη2 g(y)

g(y) = Cη g(v)

g(v) = C g(u)

g(z) = Cη g(v)

Proof. Condition 2.4 on the 1-skeleton B(1) gives the system of equations above. These have a
nontrivial solution in g if and only if

0 = det

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −Cη3 0 0 −Cη2

0 1 −Cη2 0 0

0 0 1 −Cη 0

−C 0 0 1 0

0 0 0 −Cη 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 1− C3η3 − C4η6 = q(C). (3.12)

Since η > 0, q has a positive root. Positive roots are the values of C for which there is a nontrivial faithful
special tight 2D CW weight (g,Cλ0, η0).

3.3. C∗-Algebras for Finite 2-Dimensional CW Complexes

We consider here a class of C∗-algebras C∗(B) of 2-dimensional CW complexes B, obtained as
products of graph C∗-algebras for the 1-skeleton and the boundary graph of B.

Definition 3.13. Let B be an oriented finite 2-dimensional CW complex. Let C∗(B(1)) and C∗(B∂)

be the graph C∗-algebras associated to the 1-skeleton B(1) and the boundary graph B∂ . Let
C∗(B) = C∗(B(1))⊗ C∗(B∂).

In terms of generators and relations, the algebra C∗(B) is then generated by two independent
and commuting CK families, {Pv , Se} for the graph B(1) and {Pe, Sσ,e} for the boundary graph B∂ ,
respectively, satisfying the relations

S∗
eSe = Pr(e), Pv =

∑

e : s(e)=v

SeS
∗
e , (3.13)
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when v is not a sink,

S∗
σ,eSσ,e = Pe′ , Pe =

∑

σ : e∈ν(σ)
Sσ,eS

∗
σ,e, (3.14)

where e′ follows e in ν(σ). This construction immediately suggests a natural extension to higher ranks.

Remark 3.14. If the finite graphs B(1) and B∂ have neither sources nor sinks, the algebras C∗(B(1)) and
C∗(B∂) are Cuntz-Krieger algebras. In that case C∗(B) = C∗(B(1))⊗ C∗(B∂) is a higher rank Cuntz-
Krieger algebras (in the sense of [24]) of rank two.

Definition 3.15. Let MB be the linear span of elements of C∗(B) of the form SμS
∗
νSΩS

∗
Λ, for a pair

of multi-indices (μ, ν) consisting of two paths of oriented edges in B(1) with r(μ) = r(ν) and a
pair of multi-induces (Ω,Λ) consisting of two paths of oriented edges in B∂ with r(Ω) = r(Λ).

Lemma 3.16. The subspace MB is dense in C∗(B).

Proof. It is known that, for a graph algebra C∗(E), the span of the elements SμS
∗
ν , associated to paths

of oriented edges with r(μ) = r(ν), is dense in C∗(E). In the case of a product of two graph algebras, we
similarly have a dense span of products SμS

∗
νSΩS

∗
Λ, with (μ, ν) and (Ω,Λ) respectively given by oriented

paths in the two graphs.

Lemma 3.17. Let B be an oriented finite 2-dimensional CW complex. Suppose given functions
η : B2 → R

∗
+ and λ̃ : B1 → R

∗
+. Setting σt(Se) = λ̃(e)itSe and σt(Sσ,e) = η(σ)itSσ,e determines a

time evolution on the C∗-algebra C∗(B).

Proof. The time evolution acts on elements SμS
∗
ν by

σt(SμS
∗
ν) =

(
λ̃(μ)

λ̃(ν)

)it

SμS
∗
ν ,

σt(SΩS
∗
Λ) =

(
η(Ω)

η(Λ)

)it

SΩS
∗
Λ,

where λ̃(μ) := λ̃(e1) · · · λ̃(en) for an oriented path μ = e1 · · · en and η(Ω) = η(σ1) · · · η(σn) for an
oriented path Ω = (σ1, e1) · · · (σn, en). This extends continuously to a time evolution on the C∗-algebra,
as can be seen by arguing as in the proof of Theorem 4.5 of [5], using Theorem 2.1 of [3], applied to the
graph algebras C∗(B(1)) and C∗(B∂).

Proposition 3.18. Let (g, λ̃, λ, η) be a rank 2 graph weight (as in Definition 3.3) which is faithful
(the functions g, λ̃, λ, η are nowhere vanishing). Set

ψ(SμS
∗
νSΩS

∗
Λ) = δμ,νδΩ,Λ λ̃(e1) · · · λ̃(en)g(r(en)) η(σ1) · · · η(σm)λ(a′m), (3.15)

where μ = e1 · · · en and Ω = (σ1, a1) · · · (σm, am) with a′m following am in ν(σm). This uniquely
defines a weightψ : MB → C that is gauge invariant and satisfies the KMS condition with respect
to the time evolution determined by σt(Se) = λ̃(e)itSe and σt(Sσ,e) = η(σ)itSσ,e. Conversely, given
a faithful gauge invariant weight ψ : MB → C, with the property that the ratio ψ(Sσ,eS

∗
σ,e)/ψ(Pe)

only depends on σ and not on the chosen edge e in ν(σ), setting

g(v) = ψ(Pv), λ̃(e) =
ψ(SeS

∗
e )

ψ(S∗
eSe)

, λ(e) = ψ(Pe), η(σ) =
ψ(Sσ,eS

∗
σ,e)

ψ(S∗
σ,eSσ,e)

determines a faithful rank 2 graph weight.
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Proof. In particular we have ψ(SeS
∗
e ) = λ̃(e)g(r(e)) and ψ(Sσ,eS

∗
σ,e) = η(σ)λ(e′), with e′ following e

in ν(σ). The KMS condition implies that ψ(S∗
σ,eSσ,e) = g(r(e)) = ψ(Pr(e)). The graph weight equation

g(v) =
∑

s(e)=v λ̃(e)g(r(e)) makes this compatible with the CK relation (3.13). Similarly for the CK
relation (3.14) and the graph weight equation λ(e) =

∑
e∈ν(σ) η(σ)λ(e

′). Note that the weight (3.15) is

a product ψ = ψ1 ⊗ ψ2 of KMS weights on the graph algebras C∗(B(1)) and C∗(B∂), respectively. The
argument is then analogous to the case of graph weights discussed in Proposition 4.4 and Theorem 4.5
of [5].

3.4. A Comment on 2D CW Weights and Algebras

In the construction of the algebra C∗(B) and the KMS weights associated to rank 2 graph weights,
there are no relations between the projectors Pe of (3.14) and the projectors in (3.13), hence the resulting
algebra C∗(B) is just a product of two independent CK algebras, the graph algebras C∗(B(1)) and
C∗(B∂). Similarly, at the level of weights, we considered the general form of rank 2 graph weights, with
no a priori relation between the functions λ̃ and λ. It would seem more natural to require, in addition to
the CK relations (3.14) and (3.13), that the projectors Pe associated to the edges in the boundary graph
B∂ are related to the projections SeS

∗
e in the graph B(1). For example, a relation of the form Pe = SeS

∗
e

would reflect, at the level of KMS states, the 2D CW weight relation λ̃(e)g(r(e)) = ψ(SeS
∗
e ) = λ(e) =

ψ(Pe). However, in general it is not possible to impose additional relations on the algebra C∗(B). In fact,
doing so would correspond to taking a quotient of C∗(B) with respect to a two-sided ideal I generated by
the additional relations. However, it is not always possible to have nontrivial quotients of C∗(B). Indeed,
let E be a graph without sinks, satisfying the following conditions:

1. every loop in E has an exit

2. given any vertex v ∈ E0 and any infinite path γ, there is a k ∈ N such that there is an oriented
path from the vertex v to the vertex s(γk) (cofinality).

Then it is known that graph C∗-algebras C∗(E) is simple, see Theorem 1.23 of [32]. The C∗-tensor
product of simple C∗-algebras with identity is again a simple C∗-algebra (Theorem 1.22.6 of [28]).
Thus, if both graphs B(1) and B∂ satisfy the two conditions above, the algebra C∗(B) does not have
any nontrivial two-sided ideals. One should therefore regard the special cases of 2D CW weights and
tight 2D CW weights discussed above simply as arising from KMS weights for some special choices of
time evolutions on C∗(B) where the phase factors λ̃(e) that rotate the isometries Se are related to the
values ψ(Pe) = λ(e).

4. C∗-ALGEBRAS AND WEIGHTS FOR Ã2-BUILDINGS
The construction described in the previous section is very simple and quite general, and it applies

to arbitrary finite 2-dimensional CW complexes. In the present section, we consider the case of Ã2-
buildings, for which a different construction of a C∗-algebra, which is a rank two generalization of graph
algebras, exists [24], see also [12]. We discuss how one can construct KMS weights compatible with the
algebras of [24]. We refer the reader to §9 of [27] for a general description of the affine Ãn−1 buildings.

Let B be a locally finite thick affine rank 2 building of type Ã2. In order to move to the realm of finite
buildings, we wish to consider quotients of B by finite index Ã2 groups.

Such a building B is a rank 2 chamber system whose chambers are triangles. The apartments of B
are the subcomplexes isomorphic to the Euclidean plane tesselated by triangles. The Weyl chambers are
the π/3-angled sectors composed of the chambers in some apartment. We define an equivalence relation
on the sectors of B. We say sectors A and B are equivalent and write AB if and only if A∩B is a sector.

The boundary Ω of B is defined to be the set of equivalence classes of sectors in B. Fix some vertex
O in B of type 0. For each ω ∈ Ω there is a unique sector [O, ω) ∈ ω with vertex O, see [27], Theorem
9.6. We endow Ω with the topology with the collection indexed by vertices v in B

Ω(v) = {ω ∈ Ω | v ∈ [O, ω)} (4.1)
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as a base for the topology. In this topology, Ω is a totally disconnected compact Hausdorff space.

Let Γ be a group of type rotating automorphisms of B that acts freely with finitely many orbits on B0.
There is a natural action of Γ on Ω. As with the graph case, where the C∗-algebra C∗(E) is Morita
equivalent to C(∂E)� π1(E), we have a C∗-algebra C∗(B/Γ) associated to B/Γ, which is Morita
equivalent to the crossed-product algebra C(Ω)� Γ. The latter is shown to be a higher rank Cuntz-
Krieger algebra, [24]. We first recall the construction of this algebra, from §1 of [24].

4.1. Higher Rank Cuntz-Krieger Algebras of Ã2 Buildings

Consider a Coxeter complex of type Ã2, isomorphic to the apartments in B. Each vertex is assigned
a type in Z/3. Fix a vertex of type 0 as the origin and coordinatize the vertices by Z

2 with the axes being
two of the three walls meeting at (0, 0). Let t be the model tile and pm the model parallelogram of shape
m = (m1,m2) based at (0, 0). That is, pm is the parallelogram spanned by (0,m2 + 1) and (m1 + 1, 0)
and t = p(0,0).

Now let Bm be the set of type rotating isometries pm → B. Then let

1. Wm = Γ\Bm,

2. B = ∪mBm,

3. W = ∪mWm.

In the special case of t, we call these sets

1. I = B(0,0), the set of type rotating isometries t → B,

2. A = Γ\I .

For any shape m ∈ Z
2
+, we have two maps t, o : Bm → I by t(p)(l) = p(m+ l) and o(p) = p |t.

Next we consider two {0, 1} matrices with entries indexed by A. For a, b ∈ A, let

Mi(a, b) =

{
1 if ∃p ∈ Bei such that a = Γo(p), b = Γt(p)

0 otherwise.
(4.2)

We then follow the construction of the C∗-algebra A from §1 of [24] with respect to the alphabet A
and transition matrices M1 and M2. It is shown in [24] that the words Wm correspond to Wm and the
decorated words W̄m correspond to W̄m. Now recall the corresponding C∗-algebra is generated by the
partial isometries {Su,v | u, v ∈ W̄ and t(u) = t(v)} subject to the relations

1. S∗
u,v = Sv,u,

2. Su,vSv,w = Su,w,

3. Su,v =
∑

w∈W ;σ(w)=ej,o(w)=t(u)=t(v)

Suw,vw, for 1 ≤ j ≤ r

4. Su,uSv,v = 0 for u �= v ∈ W̄0.
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4.2. Weights on Ã2 Buildings and Their Quotients

We now look for suitable generalizations of the graph weights equations, similar to the general case of
2-dimensional CW complexes considered in the previous section, but adapted to the relations of the rank
2 Cuntz-Krieger C∗-algebra A of [24] recalled above. We show that there is a very simple construction
of KMS weights for the algebra A that closely resembles the case of graph weights on trees.

The partial isometries generating A are now parameterized by pairs of words corresponding to type
rotating isometries of parallelograms into B. Following the graph case, we define a state in the C∗-
algebra first on the span of elements of the form ST ∗ where S and T are partial isometries from the
usual generating set, i.e. of the form Su,w, u,w ∈ W . Following the graph case further, we would
like φ(Su,wS

∗
v,x) = 0 unless (u,w) = (v, x) in which case Su,wS

∗
v,x = Su,u by our initial projection. We

therefore first look for weights satisfying g̃(u) = φ(Su,u). We now have two final projections inducing
two relations on these weights:

g̃(u) =
∑

w∈W ;σ(w)=ei,
o(w)=t(u)

g̃(uw) (4.3)

for both i = 1, 2.
Notice that, unlike the case of the 2D CW weights considered in the previous section, these two

relations do not involve cells in different dimensions. They simply show how different partial isometry
weights relate as the embedded parallelogram is expanded to a new row of chambers in each of the two
directions. In the higher rank case of affine Ãn buildings one similarly expects the relations to explain how
embedded n-parallelepiped weights relate as the n-parallelepiped is expanded in each of the n possible
directions.

When Γ\B is compact, B is uniformly locally finite, hence there is some q ≥ 2 such that any edge
of B lies in at most q + 1 triangles, and exactly q + 1 for a Ã2 building, since the link of a vertex is a
generalized 3-gon, see §3.2 of [27] and §2 of [23].

Proposition 4.1. The positive cone of the #A-dimensional real space parameterized by {g̃(v) ∈
R+|v ∈ A} determines solutions of (4.3) of the form

g̃(u) = q−(m1+m2)g̃(o(u)), (4.4)

where (m1,m2) = σ(u), with q as above.

Proof. We construct two graphs, G1 and G2, that have vertex set W and an edge from u to uw for each
σ(w) = ei with o(w) = t(u). Using the transition matrices Mi, we already know how to find solutions
for graph weights. To search for g̃, we then can simply take the intersection of the space of graph weights
with all edge weights equal to 1 on G1 and on G2, respectively. As mentioned above (see §3.2 of [27]),
there are exactly q+1 faces adjacent to any given edge. Thus, each vertex (word of shape m = (m1,m2))
is the source of exactly q2 edges with distinct ranges in Gi, all of which are words of shape m+ ei. In
other words, each Gi is the union of directed trees of valence q2. Since the edge weights are all set to
be equal to one, we would expect the weights to decay exponentially with factor q−2. Graph weights on
trees are very easy to construct and to match up between G1 and G2. For example, one can take

g̃(u) = q−(m1+m2)

or more generally, any function of the form (4.4).

This case, as is clear from the fact that it is constructed using graph weights on trees with edge
weights equal to one, corresponds to a trivial time evolution on the algebra A. In order to see more
interesting and more general cases that correspond to non-trivial time evolutions, it is convenient to
reformulate the construction of the algebra A as in §3.4 of [26].

We consider triangle buildings where the group Γ acts simply transitively on the vertex set in a
type rotating way. A projective plane P of order q = pn, for some prime p, has q2 + q + 1 points, and
q2 + q + 1 lines L, with each point lying on q + 1 lines, and each line containing q + 1 points. As shown
in §3.3 of [26], the incidence relations of (P,L) determine a triangle presentation of a group Γ = {ax, x ∈
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b

x
c cd d

a b a

Fig. 3. Sectors defining the sets A±
a−1,b

.

P | axayaz = 1}, with the relations occurring whenever the points (x, y, z) satisfy y ∈ λ(x), where λ
is a bijection between the set of points and the set of lines in P . There is a corresponding triangle
building B, whose vertices and edges are the Cayley graph Cayley(Γ) and whose chambers correspond
to (g, ga−1

x , gay) with g ∈ Γ and (x, y, z) with y ∈ λ(x), as above.
As shown in §3.4 of [26], the algebra A can be equivalently described as generated by two families of

partial isometries s±
a−1,b

, where the pairs (a, b) range over generators a, b ∈ P with b ∈ λ(a). There are

(q + 1)(q2 + q + 1) such elements. Let A+
a−1,b

denote the set of elements (c, d) obtained in the following

way: there are (q2 + q + 1)− (q + 1) = q2 choices of an element d /∈ λ(b); for each such d there is then
a unique c satisfying x ∈ λ(c) and d ∈ λ(c) with a, b, c, d, x in a sector as in the first diagram of Figure 3.
The set A−

a−1,b
is similarly defined for a sector as in the second diagram of Figure 3, with a /∈ λ(c). In

both cases #A±
a−1,b

= q2.

Let pa−1,b denote the projection on C(Ω)� Γ determined by the characteristic function χΩ(a−1,b) of
the clopen subset Ω(a−1, b) ⊂ Ω. The partial isometries s±

a−1,b
respectively satisfy the Cuntz-Krieger

relations

s+
a−1,b

s+
∗
a−1,b = pa−1,b and s+

∗
a−1,b s

+
a−1,b

=
∑

s+
c−1,d

s+
∗
c−1,d, (4.5)

with the sum ranging over pairs (c, d) ∈ A+
a−1,b

, and

s−
a−1,b

s−
∗
a−1,b = pa−1,b and s−

∗
a−1,b s

−
a−1,b

=
∑

s−
c−1,d

s−
∗
c−1,d, (4.6)

summed over pairs (c, d) ∈ A−
a−1,b

. We also use the notation q±
a−1,b

= s±∗
a−1,b s

±
a−1,b

.
Using this presentation of the algebra A, we can reduce the construction of KMS weights forA to the

construction of graph weights. Given a triangle building B constructed as above, we construct graphs
G±

B with set of vertices and edges

V (G±
B ) = {(a, b) ∈ P : b ∈ λ(a)},

E(G±
B ) = ∪(a,b)∈V (G±

B )A
±
a−1,b

.

The graphs have (q + 1)(q2 + q + 1) and q2 edges out of each vertex.

Proposition 4.2. Let {(g±, λ±)} be the set of faithful graph weights on the graphs G±
B . Then pairs

of solutions (g±, λ±) satisfying

λ+(a
−1, b) g+(a

−1, b) = λ−(a
−1, b) g−(a

−1, b), (4.7)

for all (a, b) ∈ V (G±
B ), determine a KMS weight on the algebra A, with respect to the time

evolution determined by

σt(s
±
a−1,b

) = λ±(a
−1, b)it s±

a−1,b
. (4.8)
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Proof. Set ψ(q±
a−1,b

) = g±(a−1, b). Condition (4.7) ensures that setting

ψ(pa−1,b) = λ+(a
−1, b) g+(a

−1, b)

is well defined. Equivalently, this means

λ±(a
−1, b) =

ψ(pa−1,b)

ψ(q±
a−1,b

)
.

By construction, ψ determines a KMS weight on the CK algebras A± generated, respectively, by the
partial isometries s±

a−1,b
, with respect to the time evolution (4.8), as discussed in §2.3 . Condition (4.7)

ensures that the weight ψ and the time evolution (4.8) extend compatibly to the algebra A. We extend ψ
linearly to A by setting

ψ(sαμs
β∗
ν) = δμ,νδα,β λα1(a

−1
1 , b1) · · · λαn(a

−1
n , bn) gαn(a

−1
n , bn)

on monomials of the form sαμs
β∗
ν for multi-indices μ = μ1, . . . , μn, ν = ν1, . . . , νm with μi = (ai, bi),

νj = (cj , dj), as above, and with multi-indices α, β with αi, βj ∈ {±}.

4.3. Triangular 2D CW Weights

Another possible construction of weights generalizing graph weights to rank 2 buildings of type Ã2

can be obtained by adapting the idea of 2D CW weights discussed in §3 to the triangular structure of
Ã2-buildings.

Definition 4.3. A triangular 2D CW weight is a 5-uple of functions (g, λ, λ̃, ηA, ηB), with g defines
on the set of vertices, λ, λ̃ on the set of edges, ηA, ηB on the set of faces, satisfying

g(v) =
∑

s(e)=v

λ̃(e)g(r(e)), (4.9)

λ(e) =
∑

σ : e∈ν(σ)
ηA(σ)λ(e

′′) =
∑

σ : e∈ν(σ)
ηB(σ)λ(e

′), (4.10)

where e′ is the edge preceding e in ν(σ) and e′′ is the edge following e in ν(σ). A tight triangular
2D CW weight is as above, with λ̃ = λ and ηA = ηB . A triangular 2D CW weight is faithful if all
the functions take strictly positive values and special if η = ηA = ηB is a constant.

We show this construction in one sufficiently simple illustrative example.

Proposition 4.4. The group

Γ = 〈xi, 0 ≤ i ≤ 6 | x0x0x6, x0x2x3, x1x2x6, x1x3x5, x1x5x4, x2x4x5, x3x4x6〉 (4.11)

determines an Ã2-building with 7 egdes ei, 7 faces σi, and 1 vertex v. Then the set of all possible
special faithful tight triangular 2D CW weights on this building is a one-parameter family given
by {g(v) = g ∈ R

∗
+, λ(ei) = 1/7, η(σi) = 1/3}.

Proof. The group Γ of (4.11) is an Ã2 group of order q = 2, hence it has q2 + q+ 1 = 7 generators. Now
consider the Γ-action on Cayley(Γ). Two triangles lie in the same Γ-orbit if and only if they have the
same edge labels. Let B = Cayley(Γ)/Γ. The building B has exactly 7 edges {x0, . . . , x6} and 7 faces
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given by the relations in the presentation of Γ. Equation (4.10) for a triangular 2D CW weight consists
of two sets of seven linear relations. A nontrivial solution in λ exists if and only if

0 = det

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1− ηA 0 −ηA 0 0 0 −ηA

0 1 −ηA −ηA 0 −ηA 0

0 0 1 −ηA −ηA 0 −ηA

−ηA 0 0 1 −ηA −ηA 0

0 −ηA 0 0 1 −ηA −ηA

0 −ηA −ηA 0 −ηA 1 0

−ηA −ηA 0 −ηA 0 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= (−1 + 3ηA)(1 + ηA + 2η2A)
2(−1 + 2η2A).

The matrix for ηB is just the transpose, so one obtains the same equation. Both give possible positive
values {1/3, 1/

√
2} for ηA and ηB . By adding rows one obtains the relations

6∑

i=0

λ(xi) = 3ηA

6∑

i=0

λ(xi) = 3ηB

6∑

i=0

λ(xi).

Thus, the only case that gives rise to faithful weights is ηA = ηB = 1/3. Any constant function λ(ei) =
λ > 0 is then a solution. In fact, since the matrix has rank 6, these are the only solutions. For the
one vertex, (4.9) gives g(v) =

∑
i λ(xi)g(v), so this fixes the choice of λ to be λ(xi) = λ = 1/7 for all

i = 0, . . . , 6, while any arbitrary g(v) = g ∈ R
∗
+ will be a solution.

These are tight 2D CW weights in the sense discussed in §3, hence they correspond to KMS weights
for time evolutions on the algebra C∗(B(1))⊗ C∗(B∂) as in §3.

5. HIGHER RANK BUILDINGS, RESIDUES, AND FOUNDATIONS

We now consider cases of buildings for rank greater than two. A classification of spherical buildings
of rank at least three was given in [30]. A simpler proof based on the classification of Moufang Polygons,
[31], is given in [33].

One associates to a spherical building B an edge-colored graph GB, whose vertex set V = V (GB) is
the set of chambers of B, with two chambers connected by an edge whenever they have a common panel
(codimension one faces of chambers). The set I of types is the set of edge coloring. If a panel has type
I � {i}, then the corresponding edge in E = E(GB) is labelled with the color i ∈ I . Spherical buildings
have finite apartments. Moreover, the building is thick if every panel is a face of at least three chambers.
The rank of B is the cardinality of I . See [27] and [33] for more details.

A spherical building of rank two corresponds in this way to a generalized n-gon GB, namely a
connected bipartite graph with diameter n and girth 2n, where the diameter is the maximum distance
between two vertices and the girth is the length of a shortest circuit. In the thick case, vertices of the
same type have the same valence and if n is odd all vertices have the same valence. Moreover, for thick
spherical buildings, n is constrained to take values in the set {2, 3, 4, 6, 8}, and the valencies are also
constraints, see §3.2 of [27] for a detailed account.

5.1. Foundations, Residues, and Amalgams

More generally, a rank N spherical building B determines an N-partite graph GB, where the
neighborhood of any vertex is the graph of a rank N − 1 spherical building. Via this reduction process,
the fundamental blocks that determine the structure of rank N buildings are identified with certain
rank 2 cases, which are special types of rank two incidence geometries (generalized n-gons): the
Moufang polygons. More precisely, given a subset J ⊂ I , the J -residue GB,J = ResJ (GB) of GB is
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the (multi-connected) graph obtained from GB by removing all edges whose color label is not in J .
Panels correspond to J -residues of GB with #J = 1. The residues GB,J in turn correspond to buildings
BJ = ResJ(B). Given a chamber C ∈ B, that is, a vertex vC ∈ V (GB), the subgraph E2(C) ⊂ GB given
by the union of the rank two residues containing C is called the foundation of B. It is known that for
thick spherical buildings of rank at least three, B is uniquely determined by E2(C). The foundation
E2(C) is an amalgam of buildings of rank two, and can be decomposed into a gluing of Moufang
Polygons. This reduces the classification to a (difficult, but known) classification of Moufang Polygons,
obtained in [31]. This provides a quick sketch of the main idea in how one obtains a classification of
spherical buildings, [33]. This also suggests that, in order to construct C∗-algebras, quantum statistical
mechanical systems, and KMS weights, associated to the geometry of higher rank spherical buildings,
for rank at least three, it would suffice to have a suitable construction of such objects associated to the
Moufang Polygons.

We proceed by constructing a C∗-algebra, obtained as described in §3, associated to the foundation
E2(C) of a spherical building B. We identify E2(C) with the 2-dimensional CW-complex determined by
the incidence relation of chambers, codimension one panels and codimension two panels of B. We then
construct KMS weights on the C∗-algebra C∗(E2(C)) obtained in this way, by assembling tight 2D
CW weights (in the sense of §3) associated to the rank two buildings given by the residues of B, whose
amalgam gives E2(C).

5.2. Amalgams of Rank Two Buildings
Let B be a spherical building of rank at least three. As we recalled above, by a theorem of Tits, B is

completely determined by its foundation E2(C) which is obtained as an amalgam of rank 2 buildings,
given by the union of the residues of rank two containing the chamber C.

A blueprint for a spherical building B over I , with rank N = #I , consists of data {Σi,Σij}i,j∈I ,
where {Σi}i∈I is a labeling system, namely a system that parameterizes the i-residues ofB. This means
that, for each residue Resi(B) there is a bijection

φi : Σi
�→ Resi(B).

The {Σij}i,j∈I are a collection of generalized nij-gons with labelling by (Si, Sj), [27] §7.1.
In general, an amalgam of rank two buildings is given by data {Σi,Σij}i,j∈I as above such that there

is a system of bijections

φij : Σi
�→ Resi(Σij) (5.1)

onto the i-th residue of Σij , see §7.3 of [27].
The amalgam Σ = �i,jΣij is obtained by gluing the generalized nij-gons Σij along the identifica-

tions

φij(Σi) ∼= φik(Σi), (5.2)

that implement the i-adjacency relation. The foundation E2(C) is the amalgam of the data {Σi,Σij}i,j∈I
of the blueprint.

5.3. Splicing Graph Weights
We first discuss a construction of graph weights that reflects the operation of splicing together two

directed graphs along a common directed subgraph.

Proposition 5.1. Let Γ1 and Γ2 be directed graphs, and let Γ be a directed graph with embeddings
fi : Γ ↪→ Γi, for i = 1, 2, as a directed subgraph. Suppose given faithful graph weights (gi, λi) on
the graphs Γi. Consider the graph Γ1 ∪Γ Γ2 obtained by gluing together the Γi along the common
subgraph Γ. Then setting

g(v) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

g1(v) v ∈ V (Γ1)� V (Γ)

g2(v) v ∈ V (Γ2)� V (Γ)

g1(v) + g2(v) v ∈ V (Γ)

(5.3)
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λ(e) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ1(e) e ∈ E(Γ1 � Γ), r(e) ∈ V (Γ1 � Γ)

λ2(e) e ∈ E(Γ2 � Γ), r(e) ∈ V (Γ2 � Γ)

λ1(e)g1(r(e))

g1(r(e)) + g2(r(e))
e ∈ E(Γ1 � Γ), r(e) ∈ V (Γ)

λ2(e)g2(r(e))

g1(r(e)) + g2(r(e))
e ∈ E(Γ2 � Γ), r(e) ∈ V (Γ)

λ1(e)g1(r(e)) + λ2(e)g2(r(e))

g1(r(e)) + g2(r(e))
e ∈ E(Γ)

(5.4)

determines a faithful graph weight (g, λ) on the graph Γ1 ∪Γ Γ2.

Proof. Since the (gi, λi) are faithful graph weights on the Γi, at a vertex v ∈ V (Γ) we have

g(v) = g1(v) + g2(v) =
∑

e∈E(Γ1�Γ):s(e)=v

λ1(e)g1(r(e))

+
∑

e∈E(Γ2�Γ):s(e)=v

λ2(e)g2(r(e))

+
∑

e∈E(Γ):s(e)=v

(λ1(e)g1(r(e)) + λ2(e)g2(r(e)).

The first sum, in turn, splits as two sums
∑

e∈E(Γ1�Γ):s(e)=v,r(e)∈V (Γ1�Γ)

λ1(e)g1(r(e)) +
∑

e∈E(Γ1�Γ):s(e)=v,r(e)∈V (Γ)

λ1(e)g1(r(e)).

The first of these two sums is equal to
∑

e∈E(Γ1�Γ):s(e)=v,r(e)∈V (Γ1�Γ)

λ(e)g(r(e))

while the second is equal to
∑

e∈E(Γ1�Γ):s(e)=v,r(e)∈V (Γ)

λ1(e)g1(r(e))

g1(r(e)) + g2(r(e))
g(r(e)) =

∑

e∈E(Γ1�Γ):s(e)=v,r(e)∈V (Γ)

λ(e)g(r(e)).

The case of the sum over e ∈ E(Γ2 � Γ) : s(e) = v is similar. The last sum is
∑

e∈E(Γ):s(e)=v

(λ1(e)g1(r(e)) + λ2(e)g2(r(e)) =
∑

e∈E(Γ):s(e)=v

λ(e)(g1(r(e)) + g2(r(e)).

Since, if e ∈ E(Γ) then also r(e) ∈ V (Γ) the latter is also
∑

e∈E(Γ):s(e)=v

λ(e)g(r(e)).

Thus, the graph weight equation for the pair (g, λ) defined as in (5.3), (5.4) is satisfied at all vertices
v ∈ V (Γ). For a vertex v ∈ V (Γ1 � Γ) we have

g(v) = g1(v) =
∑

e∈E(Γ1�Γ),s(e)=v,r(e)∈V (Γ)

λ1(e)g1(r(e)) +
∑

e∈E(Γ1�Γ),s(e)=v,r(e)∈V (Γ1�Γ)

λ1(e)g1(r(e)).

The first sum is clearly equal to
∑

e∈E(Γ1�Γ),s(e)=v,r(e)∈V (Γ)

λ(e)g(r(e))
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and the second sum is also equal to
∑

e∈E(Γ1�Γ),s(e)=v,r(e)∈V (Γ1�Γ)

λ1(e)g1(r(e))

g1(r(v)) + g2(r(e))
g(r(e)) =

∑

e∈E(Γ1�Γ),s(e)=v,r(e)∈V (Γ1�Γ)

λ(e)g(r(e)).

The case of a vertex in V (Γ2 � Γ) is analogous.

5.4. Algebras and KMS Weights

Following the construction described in §3, we can assign to a foundation E2(C) of the building B a
C∗-algebra C∗(E2(C)), given by the higher rank Cuntz-Krieger C∗-algebra

C∗(E2(C)) = C∗(E2(C)(1))⊗ C∗(E2(C)∂),

where we identify E2(C) with a 2-dimensional CW complex and we take E2(C)(1) to be the 1-
skeleton, and E2(C)∂ to be the boundary complex as in §3. These are, respectively, amalgams of the

Σ
(1)
ij and the Σij, ∂ , with respect to the residues Σi and the identifications (5.2), where the residues

φij(Σi) = Resi(Σij) of (5.1) are seen as subcomplexes of Σ(1)
ij . They also induce subcomplexes of the

Σij, ∂ .

Proposition 5.2. Let Σij be the rank two residues in the blueprint {Σi,Σij}i,j∈I of a spherical
building B. Let (gij , λij , ηij) be faithful 2D CW weights constructed on the complexes Σij as in §3.
Then the following functions determines a faithful 2D CW weight on the foundation E2(C) of B:

g(v) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

gij(v) v ∈ V (Σ
(1)
ij )� V (φij(Σi))

gik(v) v ∈ V (Σ
(1)
ik )� V (φik(Σi))

gij(v) + gik(v) v ∈ V (φij(Σi)) = V (φik(Σi))

(5.5)

λ(e) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

λij(e) e ∈ V (Σij, ∂)� E(φij(Σi))

λik(e) e ∈ V (Σik, ∂)� E(φik(Σi))

λij(e) + λik(e) e ∈ E(φij(Σi)) = E(φik(Σi)),

(5.6)

where V (Σij, ∂) = E(Σ
(1)
ij ) and V (Σik, ∂) = E(Σ

(1)
ik ), and

η(σ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ηij(σ) (e, σ, e′) ∈ E(Σij,∂ � φij(Σi)∂),

e′ ∈ V (Σij,∂ � φij(Σi)∂)

ηij(σ)λij(e
′)

λij(e′) + λik(e′)
(e, σ, e′) ∈ E(Σij,∂ � φij(Σi)∂),

e′ ∈ V (φij(Σi)∂ = φik(Σi)∂)

ηik(σ)λik(e
′)

λij(e′) + λik(e′)
(e, σ, e′) ∈ E(Σik,∂ � φik(Σi)∂),

e′ ∈ V (φij(Σi)∂ = φik(Σi)∂)

ηij(σ)λij(e
′) + ηik(σ)λik(e

′)

λij(e′) + λik(e′)
(e, σ, e′) ∈ E(φij(Σi)∂ = φik(Σi)∂),

e′ ∈ V (φij(Σi)∂ = φik(Σi)∂).

(5.7)
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Proof. The result follows directly by applying the splicing construction of Proposition 5.1 for graph
weights to the pairs (gij , λ̃ij) and (λij , ηij), which are, respectively, faithful graph weights on the 1-

skeleta Σ
(1)
ij and on the boundary complexes Σij, ∂ , spliced together along the residues Σi via the identi-

fications of (5.1), (5.2). More precisely, recall that a 2D CW weight on E2(C) consists of data (g, λ̃, λ, η),
where λ(e) = λ̃(e)g(r(e)) and the pairs (g, λ̃) and (λ, η) are, respectively, graph weights on the 1-
skeleton E2(C)(1) and on the boundary complex E2(C)∂ . On the 2-dimensional complex determined by
each generalized mij-gon Σij we have a 2D CW weight, which means data (gij , λ̃ij , λij , ηij) satisfying

λij(e) = λ̃ij(e)gij(r(e)), and such that (gij , λ̃ij) is a faithful graph weight on Σ
(1)
ij and (λij , ηij) is a

faithful graph weight on Σij, ∂ . We apply the splicing construction to the gluing of the Σ
(1)
ij and of the

Σij, ∂ along the φij(Σi) = φik(Σi). This gives, respectively, functions of the form (5.5) and

λ̃(e) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ̃ij(e) e ∈ E(Σ
(1)
ij � φij(Σi)),

r(e) ∈ V (Σ
(1)
ij � φij(Σi))

λ̃ij(e)gij(r(e))

gij(r(e)) + gik(r(e))
e ∈ E(Σ

(1)
ij � φij(Σi)),

r(e) ∈ V (φij(Σi) = φik(Σi))

λ̃ik(e)gik(r(e))

gij(r(e)) + gik(r(e))
e ∈ E(Σ

(1)
ik � φik(Σi)),

r(e) ∈ V (φij(Σi) = φik(Σi))

λ̃ij(e)gij(r(e)) + λ̃ik(e)gik(r(e))

gij(r(e)) + gik(r(e))
e ∈ E(φij(Σi) = φik(Σi)),

r(e) ∈ V (φij(Σi) = φik(Σi))

(5.8)

and functions of the form (5.6) and (5.7). It remains to check that the compatibility condition λ(e) =

λ̃(e)g(r(e)) is satisfied, knowing that λij(e) = λ̃ij(e)gij(r(e)) on each Σij . This means checking that,
given g and λ̃ as in (5.5) and (5.8), the function λ̃(e)g(r(e)) satisfies

λ̃(e)g(r(e)) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

λ̃ij(e)gij(r(e)) e ∈ E(Σ
(1)
ij � φij(Σi))

λ̃ik(e)gik(r(e)) e ∈ E(Σ
(1)
ik � φik(Σi))

λ̃ij(e)gij(r(e)) + λ̃ik(e)gik(r(e)) e ∈ E(φij(Σi)) = E(φik(Σi))

(5.9)

This is indeed the case, by direct inspection, combining (5.6) and (5.7).

Remark 5.3. The splicing construction of Proposition 5.2 works for 2D CW weights, but would not
work for tight 2D CW weight, because the different splicing conditions (5.6) and (5.8) would not allow
for the tight matching condition λ(e) = λ̃(e).
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