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1. INTRODUCTION

Theories of functions and operators from Qn
p into R or C play an important role in the p-adic quantum

mechanics, in p-adic analysis [6, 8, 22, 28, 29]. p-Adic analysis and non-Archimedean geometry can be
used not only for the description of geometry at small distances, but also for describing chaotic behavior
of complicated systems such as spin glasses and fractals in the framework of traditional theoretical and
mathematical physics (see [13, 19, 20, 28, 29] and the references therein). As far as we know, the studies
of the p-adic Hardy operators and p-adic Hausdorff operators are also useful for p-adic analysis [8–
10, 17, 27, 30, 31].

Let us give a brief history of results on these operators. In 1984, C. Carton-Lebrun and M. Fosset [3]
considered a Hausdorff operator of special kind, which is called the weighted Hardy operator Uψ, such
as the following

Uψf(x) =

1∫

0

f(tx)ψ(t)dt, x ∈ Rn. (1.1)

The authors showed the boundedness of Uψ on Lebesgue spaces and BMO(Rn) space. In 2001, J. Xiao
[32] obtained that Uψ is bounded on Lp(Rn) if and only if

1∫

0

t−n/pψ(t)dt < ∞. (1.2)

Meanwhile, the corresponding operator norm was worked out. The result seems to be of interest as
it is related closely to the classical Hardy integral inequality. In addition, J. Xiao also obtained the
BMO(Rn)-bounds of Uψ, which sharpened and extended the main result of C. Carton-Lebrun and
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M. Fosset in [3]. In 2006, K.S. Rim and J. Lee [27] proved analogue results of J. Xiao on p-adic fields.
They introduce the p-adic form of Uψ as the following

Up
ψf(x) =

∫
Z�
p

f(tx)ψ(t)dt, x ∈ Qn
p . (1.3)

Here Qp is the field of all p-adic numbers and Z�
p = {x ∈ Qp : 0 < |x|p ≤ 1}.

In 2012, N. M. Chuong and H. D. Hung [11] introduced the weighted Hardy-Cesàro operator, a more
general form of Uψ in the real case as

Definition 1.1. Let ψ : [0, 1] → [0,∞), s : [0, 1] → R be measurable functions. The weighted Hardy-
Cesàro operator Uψ,s, associated to the parameter curve s(x, t) := s(t)x, is defined by

Uψ,sf(x) =

∫ 1

0
f (s(t)x)ψ(t)dt, (1.4)

for all measurable complex valued functions f on Rn.

With certain conditions on functions s and ω, the authors [11] proved Uψ,s is bounded on weighted
Lebesgue spaces and weighted BMO spaces. The corresponding operator norms are worked out, too.
The authors also give a necessary condition on the weight function ψ, for the boundedness of the
commutators of operator Uψ,s on Lr

ω (R
n) with symbols in BMOω (Rn).

Motivated from above, H. D. Hung [17] considered the form of Hardy-Cesàro operator in p-adic
analysis

Up
ψ,sf(x) =

∫
Z�
p

f (s(t)x)ψ(t)dt, (1.5)

where s : Z�
p → Qp and ψ : Z�

p → [0;∞) are measurable functions. In [17], by applying the boundedness
of Uψ,s on p-adic weighted Lebesgue spaces, the author gives an interesting relations between p-adic
Hardy operators and discrete Hardy inequalities on the real field.

For further informations on p-adic operators of Hardy type, we refer readers to [9, 11, 17, 27, 30, 31,
34, 36] and references therein. Notice that the classical Morrey spaces were introduced by C. B. Morrey
in [26] to investigate the local behavior of solutions to second order elliptic partial differential equations.
Moreover, it is well-known that Morrey spaces are useful to study the boundedness of Hardy-Littlewood
maximal operator, the fractional integral operator and singular integral operators in the Morrey spaces
(see [1, 5, 21]). The weighted Morrey spaces were firstly introduced by Y. Komori and S. Shirai with
applications in studying classical operators of harmonic analysis. In p-adic cases, recently, some authors
pay much attention to the (weighted) spaces of Morrey type in p-adic settings and use it to study the
boundedness of p-adic fractional integral operators, p-adic weighted Hardy operators Up

ψ (for examples
see [7, 17, 31, 36]). As pointed out in [17], the boundedness of p-adic weighted Hardy-Cesàro operator
has an interesting and important application in discrete Hardy inequalities, in this paper we study the
bounds of p-adic weighted Hardy-Cesàro operator on p-adic weighted spaces of Morrey type. More
concretely, we obtain the sharp bounds of those operators and their commutators on p-adic central
Morrey spaces and p-adic central BMO spaces. Specially, our results are able to have applications to
discrete Hardy inequalities.

Our paper is organized as followed. In Section 2 we give the notation and definitions that we shall
use in the sequel. We define the weighted Morrey spaces Lq,λ

ω

(
Qn

p

)
, the weighted central Morrey spaces

Ḃq,λ
ω

(
Qn

p

)
and the p-adic weighted central BMO spaces CMOq,λ

ω

(
Qn

p

)
. Some useful lemmas for the

proofs of main theorems are proved. In Section 3 we state the main results on the boundedness of Up
ψ,s

on the above weighted spaces. We also work out the norms of Up
ψ,s on such spaces. We note here that,

our results generalize those obtained in [34, 36], where the authors proved such results only for Up
ψ but

without weights for functional spaces. In Section 4, by generalizing Lemma 15 of [36], we obtain the
sufficient and necessary results for the boundedness of commutator operators Up,b

ψ,s with symbols in the
weighted central Morrey spaces and in weighted central BMO spaces. Those will generalize such results
obtained in [34, 36].
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2. BASIC NOTIONS AND LEMMAS

Let p be a prime in Z and let r ∈ Q�. Write r = pγ a
b where a and b are integers not divisible by p.

Define the p-adic absolute value | · |p on Q by |r|p = p−γ and |0|p = 0. The absolute value | · |p gives a
metric on Q defined by dp(x, y) = |x− y|p. We denote by Qp the completion of Q with respect to the
metric d. Qp with natural operations and topology induced by the metric dp is a locally compact, non-
discrete, complete and totally disconnected field. A non-zero element x of Qp, is uniquely represented as
a canonical form x = pγ

(
x0 + x1p+ x2p

2 + · · ·
)

where xj ∈ {0, 1, ..., p − 1} and x0 �= 0. We then have
|x|p = p−γ . Define Zp = {x ∈ Qp : |x|p ≤ 1} and Z�

p = Zp \ {0}.

Qn
p = Qp × · · · ×Qp contains all n-tuples of Qp. The norm on Qn

p is |x|p = max
1≤k≤n

|xk|p for x =

(x1, . . . , xn) ∈ Qn
p . The space Qn

p is complete metric locally compact and totally disconnected space.
For each a ∈ Qp and x = (x1, . . . , xn) ∈ Qn

p , we denote ax = (ax1, . . . , axn). For γ ∈ Z, we denote Bγ

as a γ-ball of Qn
p with center at 0, containing all x with |x|p ≤ pγ , and Sγ = Bγ \Bγ−1 its boundary.

Also, for a ∈ Qn
p , Bγ(a) consists of all x with x− a ∈ Bγ , and Sγ(a) consists of all x with x− a ∈ Sγ .

Since Qn
p is a locally-compact commutative group with respect to addition, there exists the Haar

measure dx on the additive group of Qn
p normalized by

∫
B0

dx = 1. Then d(ax) = |a|npdx for all a ∈ Q�
p,

|Bγ(x)| = pnγ and |Sγ(x)| = pnγ (1− p−n).

Let ω be any weight function on Qn
p , that is a nonnegative, locally integrable function from Qn

p into
R. Let Lr

ω

(
Qn

p

)
(1 ≤ r < ∞) be the space of complex-valued functions f on Qn

p so that

‖f‖Lr
ω(Qn

p)
=

(∫
Qn

p

|f(x)|rω(x)dx
)1/r

< ∞.

For further readings on p-adic analysis, see [29]. Here, some often used computational principles are
worth mentioning at the outset. Firstly, if f ∈ L1

ω (Qp) we can write∫

Qn
p

f(x)ω(x)dx =
∑
γ∈Z

∫

Sγ

f(y)ω(y)dy. (2.1)

Secondly, we also often use the fact that∫

Qn
p

f (ax) dx =
1

|a|np

∫

Qn
p

f(x)dx, (2.2)

if a ∈ Qn
p \ {0} and f ∈ L1(Qn

p ).

The weighted BMO spaces BMOω(R
n) was firstly introduced by B. Muckenhoupt and R. Wheeden

[24], where they proved that BMOω(R
n) is the dual of weighted Hardy spaces. The p-adic BMO type

spaces appeared in some recent papers (cf. [7, 9, 17, 27, 34, 36]), where they were used to study the
boundedness of p-adic operators of Hardy type. The p-adic weighted spaces BMOω

(
Qn

p

)
are defined as

the follows.

‖f‖BMOω(Qn
p)

= sup
B

1

ω(B)

∫
B
|f(x)− fB,ω|ω(x)dx < ∞, (2.3)

where supremum is taken over all ball B of Qn
p . Here, ω(B) =

∫
B ω(x)dx, and fB,ω is the mean value of

f on B with weight ω:

fB,ω =
1

ω(B)

∫
B
f(x)ω(x)dx. (2.4)

In whole paper, to be simple we denote fγ,ω = fBγ ,ω.
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Let s : Z�
p → Qp and ψ : Z�

p → R+ be measurable functions and ω : Qn
p → R+ be a locally integrable

function. For a function f on Qn
p , we define the p-adic weighted Hardy-Cesàro operator Up

ψ,s on Qn
p as

Up
ψ,sf(x) =

∫
Z�
p

f (s(t)x)ψ(t)dt. (2.5)

We shall consider the class of weights Wα, which consists of all nonnegative locally integrable function
ω on Qn

p so that ω(tx) = |t|αpω(x) for all x ∈ Qn
p and t ∈ Q�

p and 0 <
∫
S0

ω(x)dx < ∞. It is easy to see
that ω(x) = |x|αp is in Wα if and only if α > −n. It is given in [17] that, for any ω ∈ Wα, then Up

ψ,s is

bounded on BMOω

(
Qn

p

)
if and only if

∫
Z�
p
ψ(t)dt is finite (see theorem 3.3 [17]). The following lemma

will be useful in the sequel.

Lemma 2.1. Let ω ∈ Wα, α > −n. Then for any γ ∈ Z, we have

ω(Bγ) = p(n+α)γ · ω(B0) and ω(Sγ) = p(n+α)γ · ω(S0).

Since the proof of Lemma 2.1 is elementary, it will be omitted. The next lemma is proved in [17].

Lemma 2.2 ([17], Lemma 6.1). If ω belongs to W =
⋃

α>−n
Wα, then log |x|p ∈ BMOω

(
Qn

p

)
.

It is well-known that Morrey spaces are useful to study the local behavior of solutions to second-
order elliptic partial differential equations and the boundedness of Hardy-Littlewood maximal operator,
the fractional integral operators, singular integral operators (see [1, 5, 21]). We notice that the weighted
Morrey spaces in Euclide settings were firstly introduced by Y. Komori and S. Shirai [21], where they
used them to study the boundedness of some important classical operators in harmonic analysis like
Hardy-Littlewood maximal operator, Calderón-Zygmund operators. Their p-adic versions are given as
follows.

Definition 2.3. Let ω be a weight function on Qn
p , 1 ≤ q ≤ ∞, and λ be real numbers such that

−1
q ≤ λ < ∞. The weighted p-adic Morrey space Lq,λ

ω (Qn
p ) is defined as the set of all functions

f ∈ Lq
ω,loc(Q

n
p ) so that ‖f‖

Lq,λ
ω (Qn

p )
< ∞, where

‖f‖
Lq,λ
ω (Qn

p )
= sup

γ∈Z
sup
a∈Qn

p

(
1

ω (Bγ (a))
1+λq

∫
Bγ(a)

|f(x)|qω(x)dx
) 1

q

. (2.6)

With the norm ‖ · ‖
Lq,λ
ω (Qn

p )
, Lq,λ

ω (Qn
p ) becomes a Banach space. It is easy from Definition 2.3 that

L
q,− 1

q
ω

(
Qn

p

)
= Lq

ω

(
Qn

p

)
. Here we restrict our consideration in case when λ belongs to

[
−1

q ,∞
)

since

the fact that Lq,λ
ω

(
Qn

p

)
= {0} for any λ < −1

q . For some recent developments of Morrey spaces and their
related function spaces onRn, we refer the reader to [33]. One of useful example for functions from p-adic
weighted Morrey spaces is given in the following lemma.

Lemma 2.4. Let 1 < q < ∞,−1
q ≤ λ ≤ 0 and ω ∈ Wα, where α > −n. If f0(x) = |x|(n+α)λ

p then

f0 ∈ Lq,λ
ω (Qn

p ) and ‖f0‖Lq,λ
ω (Qn

p )
> 0.

Proof. Let a ∈ Qn
p and γ ∈ Z, we put

Ia,γ =
1

ω (Bγ (a))
1+λq

∫
Bγ(a)

|f0(x)|qω(x)dx.

Since f0(x) > 0 almost everywhere x ∈ Qn
p , it is enough to prove Ia,γ ≤ C, where C is a positive

constant that does not depend on a, γ. We consider two cases. First case if |a|p = pγ
′
> pγ . For each
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x ∈ Bγ(a), then |x|p = max{|a|p, |x− a|p} = |a|p. This implies Bγ(a) ⊂ Sγ′ . As a consequence, we
have that Ia,γ equals to

1

ω (Bγ (a))
1+λq

∫
Bγ(a)

|x|(n+α)λqω(x)dx =
(
|a|−(n+α)

p ω (Bγ (a))
)−λq

≤
(
|a|−(n+α)

p ω
(
Sγ′

))−λq

=(ω(S0))
−λq < ∞.

Now we consider the left case, when |a|p ≤ pγ . In that case, Bγ(a) = Bγ . Similarly, we get

Ia,γ ≤
(
p−(n+α)γω(Bγ)

)−λq
= (ω(B0))

−λq .

Thus, we obtain that Ia,γ ≤ max
{
(ω(S0))

−λq, (ω(B0))
−λq

}
for any (a, γ) ∈ Qn

p × Z. This completes

the proof of the lemma.

In [2], J. Alvarez et al. studied the relationships between central BMO spaces and Morrey spaces.
Furthermore, they introduced λ-central bounded mean oscillation spaces and central Morrey spaces,
respectively. Next, we introduce their p-adic versions. Here we shall consider their p-adic weighted
versions and we will prove that such spaces are useful to study the boundedness of Up

ψ,s.

Definition 2.5. Let λ, q be real numbers so that 1 < q < ∞. We define the p-adic weighted central
Morrey space Ḃq,λ

ω

(
Qn

p

)
by the set of all functions f on Qn

p which f ∈ Lq
ω,loc(Q

n
p ) such that

‖f‖
Ḃq,λ

ω (Qn
p)

< ∞, where

‖f‖
Ḃq,λ

ω (Qn
p)

= sup
γ∈Z

(
1

ω (Bγ)
1+λq

∫
Bγ

|f(x)|qω(x)dx
) 1

q

. (2.7)

It is clear that Lq,λ
ω (Qn

p ) is continuously embedded in Ḃq,λ
ω

(
Qn

p

)
for all 1 < q < ∞, λ ∈ R. Moreover,

Ḃq,λ
ω

(
Qn

p

)
is a Banach space and reduce to zero when λ < −1

q . We remark that if 1 < q1 < q2 < ∞, then

Ḃq2,λ
ω

(
Qn

p

)
⊂ Ḃq1,λ

ω

(
Qn

p

)
for λ ∈ R. Indeed, this follows by applying Hölder’s inequality. On the other

hand, while b0(x) = log |x|p ∈ BMOω

(
Qn

p

)
, b0(x) �∈ Ḃq,λ

ω

(
Qn

p

)
where λ ≤ 0. To see this, just note that

1
ω(Bγ)

1+λq

∫
Bγ

|b0(x)|qω(x)dx ∼ γq and ω (Bγ)
1+λq ∼ p(n+α)(1+λq)γ when γ → ∞.

In proving the boundedness of commutators, we will need the following lemma.

Lemma 2.6. Let 1 < q < ∞,−1
q ≤ λ ≤ 0 and ω ∈ Wα, α > −n. Then the function f0(x) = |x|(n+α)λ

p

belongs to Ḃq,λ
ω (Qn

p ).

Proof. From Lemma 2.4, f0 belongs to Lq,λ
ω

(
Qn

p

)
. Since Lq,λ

ω

(
Qn

p

)
is continuously included in

Ḃq,λ
ω

(
Qn

p

)
, we get that f0 ∈ Ḃq,λ

ω

(
Qn

p

)
.

The spaces of bounded central mean oscillation CMOq
(
Rd

)
appears naturally when considering the

dual spaces of the homogeneous Herz type Hardy spaces (see [2, 4, 15, 25]). The p-adic weighted central
BMO spaces are defined as follows.

Definition 2.7. Let λ < 1
n and 1 < q < ∞ be two real numbers. The p-adic weighted space

CMOq,λ
ω

(
Qn

p

)
is defined as the set of all function f ∈ Lq

ω,loc

(
Qn

p

)
such that

‖f‖
CMOq,λ

ω (Qn
p)

= sup
γ∈Z

(
1

ω (Bγ)
1+λq

∫
Bγ

|f(x)− fγ,ω|qω(x)dx
) 1

q

< ∞. (2.8)
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It is clear that, CMOq,λ
ω

(
Qn

p

)
becomes a Banach space if we identify functions that differ from a

constant. When λ = 0, CMOq,λ
ω

(
Qn

p

)
reduce to CMOq

ω

(
Qn

p

)
with corresponding norm is

‖f‖CMOq
ω(Qn

p)
:= sup

γ∈Z

(
1

ω (Bγ)

∫
Bγ

|f(x)− fγ,ω|qω(x)dx
) 1

q

.

On the other hand, it follows from Definition 2.7 that, Ḃq,λ
ω

(
Qn

p

)
are Banach spaces continuously

included in CMOq
ω

(
Qn

p

)
spaces. By a simple argument one can see that CMOq,λ

ω

(
Qn

p

)
reduces to the

constant functions when λ < −1
q . In the sequel, we need the following result.

Lemma 2.8. Assume that ω ∈ Wα, α > −n. Then, for any 1 < q < ∞, there exists a positive
constant Cq such that

‖f‖CMOq
ω(Qn

p)
≤ Cq‖f‖BMOω(Qn

p)
. (2.9)

To prove the lemma, a usual way is to show that functions in BMO are locally exponentially
integrable. Since this fact is based on the theory of Calderón-Zygmund decompositions in p-adic
settings, which are systematically introduced in [9, 17, 18], we leave the proof of Lemma 2.8 to the
readers (also see [18] for a proof in case ω ≡ 1).

3. BOUNDS OF Up
ψ,s ON WEIGHTED SPACES OF MORREY TYPE

This section will be devoted to state and prove results on the bounds of Up
ψ,s on p-adic weighted

spaces of Morrey type. Throughout the whole paper, s : Z�
p → Qp will denote a measurable function. By

ω we will denote a weight from Wα, where α > −n. We also denote by ψ a nonnegative and measurable
function on Z�

p.

Theorem 3.1. Let 1 < q < ∞,−1
q ≤ λ ≤ 0 be real numbers. Let ψ be a nonnegative, measurable

function on Z�
p. Then, Up

ψ,s is bounded on Lq,λ
ω (Qn

p ) if and only if

A :=

∫
Z�
p

|s(t)|(n+α)λ
p ψ(t)dt < ∞. (3.1)

Moreover, in that case, the operator norm of Up
ψ,s on Lq,λ

ω (Qn
p ) equals to A.

Proof. Suppose that A is finite. Let f ∈ Lq,λ
ω (Qn

p ). Using Minkowski’s inequality (see [16]) and p-adic
change of variable (2.2), we have:

(
1

ω (Bγ (a))
1+λq

∫
Bγ(a)

|Up
ψ,sf(x)|

qω(x)dx

) 1
q

=

(
1

ω (Bγ (a))
1+λq

∫
Bγ(a)

|
∫
Z�
p

f(s(t)x)ψ(t)dt|qω(x)dx
) 1

q

≤
∫
Z�
p

(
1

ω (s(t)Bγ (a))
1+λq

∫
s(t)Bγ (a)

|f(y)|qω(y)dy
) 1

q

.|s(t)|(n+α)λ
p .ψ(t)dt

≤ ‖f‖
Lq,λ
ω (Qn

p )
.

∫
Z�
p

|s(t)|(n+α)λ
p .ψ(t)dt

< ∞.
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Thus, if A is finite then, Up
ψ,s is bounded on Lq,λ

ω (Qn
p ) and

‖Up
ψ,s‖Lq,λ

ω (Qn
p )→Lq,λ

ω (Qn
p )

≤ A. (3.2)

On the other hand, assume that Up
ψ,s is bounded on Lq,λ

ω (Qn
p ). Take f0(x) = |x|(n+α)λ

p , applying Lemma

2.4 , we have f0 ∈ Lq,λ
ω (Qn

p ) and ‖f0‖Lq,λ
ω (Qn

p )
> 0. Note that, Up

ψ,sf0(x) = f0(x) · A. So it follows that

‖Up
ψ,sf0‖Lq,λ

ω (Qn
p )

= A · ‖f0‖Lq,λ
ω (Qn

p )

≤ ‖Up
ψ,s‖Lq,λ

ω (Qn
p )→Lq,λ

ω (Qn
p )
.‖f0‖Lq,λ

ω (Qn
p )
.

Hence,

A ≤ ‖Up
ψ,s‖Lq,λ

ω (Qn
p )→Lq,λ

ω (Qn
p )
. (3.3)

From (3.2) and (3.3), we deduce the desired result.

Theorem 3.2. Let 1 < q < ∞,−1
q ≤ λ ≤ 0. Then, Up

ψ,s is bounded on Ḃq,λ
ω

(
Qn

p

)
if and only if A is

finite. Moreover,

‖Up
ψ,s‖Ḃq,λ

ω (Qn
p )→Ḃq,λ

ω (Qn
p )

= A. (3.4)

Proof. From the proof of Theorem 3.1, with a = 0, we obtain that

(
1

ω (Bγ)
1+λq

∫
Bγ

∣∣∣Up
ψ,sf(x)

∣∣∣q ω(x)dx
) 1

q

≤ A · ‖f‖
Ḃq,λ

ω (Qn
p)
,

for all f ∈ Ḃq,λ
ω

(
Qn

p

)
. This implies that Up

ψ,s is bounded on Ḃq,λ
ω

(
Qn

p

)
if A is finite. The converse is

similar to the proof of Theorem 3.1 since f0 ∈ Lq,λ
ω

(
Qn

p

)
, implies that f0 ∈ Ḃq,λ

ω

(
Qn

p

)
, and the result

follows immediately.

We note here that Theorem 3.2 has a nice application to discrete Hardy inequalities. In fact when
λ = −1

q then Ḃq,λ
ω

(
Qn

p

)
reduces to Lq

ω

(
Qn

p

)
, thus as pointed out in ([17]), Corollary 3.2 in [17] is a

corollary of this Theorem.

Theorem 3.3. Let 1 < q < ∞, 0 ≤ λ < 1
n . Then Up

ψ,s is bounded on CMOq,λ
ω

(
Qn

p

)
if and only if A is

finite. Moreover,

‖Up
ψ,s‖CMOq,λ

ω (Qn
p )→CMOq,λ

ω (Qn
p)

= A. (3.5)

Proof. Suppose that A is finite, and f ∈ CMOq,λ
ω

(
Qn

p

)
. Let γ be any integer number. Using Fubini

theorem ( see [29]) and change of variable, for any f ∈ CMOq,λ
ω

(
Qn

p

)
, we have

(
Up
ψ,sf

)
γ,ω

=
1

ω (Bγ)

∫
Bγ

(∫
Z�
p

f(s(t)x)ψ(t)dt

)
ω(x)dx

=

∫
Z�
p

fs(t)Bγ ,ωψ(t)dt.
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Applying Minkowski’s inequality, we get
(

1

ω (Bγ)
1+λq

∫
Bγ

∣∣∣∣Up
ψ,sf(x)−

(
Up
ψ,sf

)
γ,ω

∣∣∣∣
q

ω(x)dx

) 1
q

=

(
1

ω (Bγ)
1+λq

∫
Bγ

∣∣∣∣∣
∫
Z�
p

(
f(s(t)x)− fs(t)Bγ ,ω

)
ψ(t)dt

∣∣∣∣∣
q

ω(x)dx

) 1
q

≤
∫
Z�
p

(
1

ω (Bγ)
1+λq

∫
s(t)Bγ

∣∣f(y)− fs(t)Bγ ,ω

∣∣q ω(y)dy
) 1

q

|s(t)|(n+α)λ
p .ψ(t)dt

≤ ‖f‖
CMOq,λ

ω (Qn
p)
A

< ∞.

Therefore, Up
ψ,s is bounded on CMOq,λ

ω

(
Qn

p

)
and

‖Up
ψ,s‖CMOq,λ

ω (Qn
p )→CMOq,λ

ω (Qn
p)

≤ A. (3.6)

Conversely, if Up
ψ,s is bounded on CMOq,λ

ω

(
Qn

p

)
. Take f0(x) = |x|(n+α)λ

p then by Lemma 2.6, f0 ∈
CMOq,λ

ω

(
Qn

p

)
. On the other hand,

(
1

ω (Bγ)
1+λq

∫
Bγ

∣∣∣∣Up
ψ,sf0(x)−

(
Up
ψ,sf0

)
Bγ ,ω

∣∣∣∣
q

ω(x)dx

) 1
q

=

(
1

ω (Bγ)
1+λq

∫
Bγ

∣∣f0(x)− (f0)Bγ ,ω

∣∣q ω(x)dx
) 1

q

A.

Therefore, ‖Up
ψ,sf0‖CMOq,λ

ω (Qn
p)

= ‖f0‖CMOq,λ
ω (Qn

p)
A, which implies immediately that

‖Up
ψ,s‖CMOq,λ

ω (Qn
p )→CMOq,λ

ω (Qn
p)

≥ A. (3.7)

Thus A is finite. From this together with (3.6) and (3.7), the proof of Theorem 3.3 will be completely
demonstrated.

4. CHARACTERIZATIONS OF WEIGHT FUNCTIONS FOR COMMUTATORS

More recently, a great attention was paid to the study on commutators of operators. A well-known
result of R. R. Coifman, R. Rochberg and G. Weiss [12] states that the commutator Tbf = bTf − T (bf)
(where T is a Calderón-Zygmund singular integral operator) is bounded on Lp(Rn), 1 < p < ∞, if and
only if b ∈ BMO(Rn). Many results have been generalized to commutators of other operators, not only
Calderón-Zygmund singular integral operators. In p-adic settings, commutators of integral operators of
Hardy type were recently investigated in various papers (see e.g. [7, 17, 34–36] and references therein).
Recently, H. D. Hung [17] considered the commutator of Up

ψ,s as follows

Up,b
ψ,sf := bUψ,sf − Uψ,s(bf). (4.1)

In [17], the author gave a necessary condition on ψ so that the Up,b
ψ,s is bounded on weighted Lebesgue

spaces with symbols in BMOω(Q
n
p ). In case s(t) = t, Up,b

ψ,s reduce to Up,b
ψ the commutator of Up

ψ, which

is considered by Q. Y. Wu, Z. W. Fu and L. Mi [34–36] where they proved the boundedness of Up,b
ψ on

p-adic central Morrey and BMO spaces. This section aims to extend known results in [34–36] to Up,b
ψ,s

operator and in case of weighted spaces.

p-ADIC NUMBERS, ULTRAMETRIC ANALYSIS AND APPLICATIONS Vol. 8 No. 1 2016



BOUNDS OF p-ADIC WEIGHTED HARDY-CESÀRO OPERATORS 39

Theorem 4.1. Let q, q1, q2 be real numbers such that 1 < q < q1 < ∞, 1
q = 1

q1
+ 1

q2
and − 1

q1
≤ λ < 0.

Let s : Z�
p → Qp be a measurable function such that s(t) �= 0 almost everywhere t ∈ Z�

p. We assume

that b ∈ CMOq2
ω

(
Qn

p

)
. If both A,B are finite then the commutatorUp,b

ψ,s is determined as a bounded

operator from Ḃq1,λ
ω

(
Qn

p

)
to Ḃq,λ

ω

(
Qn

p

)
. Conversely, if Up,b

ψ,s is bounded Ḃq1,λ
ω

(
Qn

p

)
to Ḃq2,λ

ω

(
Qn

p

)
then B� is finite. Here and after,

B =

∫
Z�
p

|s(t)|(n+α)λ
p ·

∣∣logp |s(t)|p∣∣ · ψ(t)dt, (4.2)

and

B� =

∣∣∣∣∣
∫
Z�
p

|s(t)|(n+α)λ
p · logp |s(t)|p · ψ(t)dt

∣∣∣∣∣ . (4.3)

Moreover, ⎛
⎝ ‖f0‖Ḃq,λ

ω (Qn
p)

‖f0‖Ḃq1,λ
ω (Qn

p)
· B�

⎞
⎠ · ‖b‖

CMO
q2,λ2
ω (Qn

p )
≤‖Up,b

ψ,s‖Ḃq1,λ
ω (Qn

p)→Ḃq,λ
ω (Qn

p)

≤
(
2A+ pn+αB

)
· ‖b‖CMO

q2
ω (Qn

p)
.

We notice that logp |s(t)|p is integer for any t ∈ Z�
p. So if |s(t)|p �= 1 almost everywhere on Z�

p, then
B ≥ A. On the other hand, if |s(t)|p ≥ 1 a.e t ∈ Z�

p or |s(t)|p ≤ 1 a.e t ∈ Z�
p then B� = B. These imply

the following interesting corollary.

Corollary 4.2. Let q, q1, q2 be real numbers such that 1 < q < q1 < ∞, 1
q = 1

q1
+ 1

q2
and− 1

q1
≤ λ < 0.

Let s : Z�
p → Qp be a measurable function such that |s(t)|p > 1 a.e t ∈ Z�

p or |s(t)|p < 1 a.e t ∈ Z�
p.

We assume that b ∈ CMOq2
ω

(
Qn

p

)
. Then the commutatorUp,b

ψ,s is determined as a bounded operator

from Ḃq1,λ
ω

(
Qn

p

)
to Ḃq,λ

ω

(
Qn

p

)
if and only if B is finite.

We note here that A < ∞ does not imply B < ∞. Indeed, we can find an easy counterexample as the
following: let s(t) = pt, ψ(t) = 1

|pt|1+(n+α)λ
p (logp |pt|p)

2 , then (2.1) and (2.2) imply

A =

∫
Z�
p

1

|pt|p
(
logp |pt|p

)2 dt =
∑
k≤0

∫
Sk

dt

pk−1 (k − 1)2
=

∑
k≤0

1

(k − 1)2
· (p− 1) < ∞,

and

B =

∫
Z�
p

1

|pt|p
∣∣logp |pt|p∣∣dt =

∑
k≤0

∫
Sk

dt

pk−1 |k − 1| =
∑
k≤0

1

|k − 1| · (p− 1) = ∞.

Proof. In order to prove Theorem 4.1, firstly we prove the following key lemma.

Lemma 4.3. Suppose that b is a function in CMOq,λ
ω

(
Qn

p

)
and γ, γ′ are integer numbers. Here

λ ∈ R so that λ ≤ 1
n , 1 < q < ∞ and ω ∈ Wα, with α > −n. Then∣∣∣bBγ ,ω − bBγ′ ,ω

∣∣∣ ≤ pn+α ·
∣∣γ′ − γ

∣∣ ·max{ω (Bγ)
λ , ω

(
Bγ′

)λ} · cλ · ‖b‖
CMOq,λ

ω
.

Here and after

cλ =

⎧⎨
⎩

1 if λ = 0

(n+ α) ln p · p(n+α)λ

|p(n+α)λ−1| · |λ| if λ �= 0.
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Proof of Lemma 4.3. It is clear that is enough to prove the lemma for γ′ > γ. Applying Hölder’s
inequality, we have

∣∣bBγ+1,ω − bBγ ,ω

∣∣ ≤ 1

ω (Bγ)

∫
Bγ

∣∣b(x)− bBγ+1,ω

∣∣ω(x)dx

≤ 1

ω (Bγ)

∫
Bγ+1

∣∣b(x)− bBγ+1,ω

∣∣ω(x)dx

≤ ω (Bγ+1)
q−1
q

ω (Bγ)

(∫
Bγ+1

∣∣b(x)− bBγ+1,ω

∣∣q ω(x)dx
)1/q

= pn+α · ω (Bγ+1)
λ · ‖b‖

CMOq,λ
ω (Qn

p)
.

Therefore, ∣∣bBγ+1,ω − bBγ ,ω

∣∣ ≤ pn+α · ω (Bγ+1)
λ · ‖b‖

CMOq,λ
ω (Qn

p)
. (4.4)

Now we have
∣∣∣bBγ′ ,ω − bBγ ,ω

∣∣∣ ≤
γ′−1∑
k=γ

∣∣bBk+1,ω − bBk,ω

∣∣

≤ pn+α‖b‖
CMOq,λ

ω (Qn
p)

·
γ′−1∑
k=γ

ω (Bk+1)
λ

= pn+α‖b‖
CMOq,λ

ω (Qn
p)

· ω
(
Bγ′

)λ γ′−γ−1∑
j=0

p−(n+α)λj .

Therefore, it suffices to prove lemma in case λ �= 0. For the first case when λ > 0, by using the elementary
inequality 1− e−x ≤ x in case x = (n+ α)λ (γ′ − γ) ln p, we obtain

∣∣∣bBγ′ ,ω − bBγ ,ω

∣∣∣ ≤ pn+α · p(n+α)λ

p(n+α)λ − 1
· (n+ α)λ

(
γ′ − γ

)
ln p‖b‖

CMOq,λ
ω (Qn

p)
· ω

(
Bγ′

)λ

= pn+α ·
∣∣γ′ − γ

∣∣ ·max{ω (Bγ)
λ , ω

(
Bγ′

)λ} · cλ · ‖b‖
CMOq,λ

ω (Qn
p)
.

For the rest case when λ < 0, the proof is similar, so we omit it.
Now we shall prove Theorem 4.1. We use the ideas of [12, 14, 17, 34, 36]. Let us assume that both A

and B are finite. By Minkowski’s inequality and change of variable, we have(
1

ω (Bγ)
1+λq

∫
Bγ

∣∣∣Up,b
ψ,sf(x)

∣∣∣q ω(x)dx
)1/q

≤
(

1

ω (Bγ)
1+λq

∫
Bγ

(∫
Z�
p

(|b(x)− b (s(t)x)|) |f (s(t)x)|ψ(t)dt
)q

ω(x)dx

)1/q

≤
(

1

ω (Bγ)
1+λq

∫
Bγ

(∫
Z�
p

(∣∣b(x)− bBγ ,ω

∣∣) |f (s(t)x)|ψ(t)dt
)q

ω(x)dx

)1/q

+

(
1

ω (Bγ)
1+λq

∫
Bγ

(∫
Z�
p

(∣∣bBγ ,ω − bs(t)Bγ ,ω

∣∣) |f (s(t)x)|ψ(t)dt
)q

ω(x)dx

)1/q

+

(
1

ω (Bγ)
1+λq

∫
Bγ

(∫
Z�
p

(∣∣b (s(t)x)− bs(t)Bγ ,ω

∣∣) |f (s(t)x)|ψ(t)dt
)q

ω(x)dx

)1/q
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=:I1 + I2 + I3.

To estimate I1 and I3, we use the fact that ω (tBγ) = |t|n+α
p ω (Bγ), and get by Minkowski’s inequality

and p-adic change of variable

I1 ≤ ω (Bγ)
− 1

q
−λ

∫
Z�
p

(∫
Bγ

∣∣b(x)− bBγ ,ω

∣∣q2 ω(x)dx
)1/q2

·
(∫

Bγ

|f (s(t)x)|q1 ω(x)dx
)1/q1

=

(
1

ω (Bγ)

∫
Bγ

∣∣b(x)− bBγ ,ω

∣∣q2 ω(x)dx
)1/q2

×
∫
Z�
p

(
1

ω (s(t)Bγ)
1+λq1

∫
s(t)Bγ

|f(y)|q1 ω(y)dy
)1/q1

|s(t)|(n+α)λ
p ψ(t)dt

≤ ‖b‖CMO
q2
ω (Qn

p)
· ‖f‖

Ḃ
q1,λ
ω (Qn

p )

∫
Z�
p

|s(t)|(n+α)λ
p ψ(t)dt.

Hence

I1 ≤ ‖b‖CMO
q2
ω (Qn

p )
· ‖f‖

Ḃ
q1,λ
ω (Qn

p)

∫
Z�
p

|s(t)|(n+α)λ
p ψ(t)dt. (4.5)

Similarly to estimate I1, we can deduce that

I3 ≤ ‖b‖CMO
q2
ω (Qn

p )
· ‖f‖

Ḃ
q1,λ
ω (Qn

p)

∫
Z�
p

|s(t)|(n+α)λ
p ψ(t)dt. (4.6)

For the term I2, applying Hölder’s inequality, we have

I2 ≤
∫
Z�
p

(
1

ω (Bγ)
1+λq

∫
Bγ

|f (s(t)x)|q ω(x)dx
)1/q

·
∣∣bBγ ,ω − bs(t)Bγ ,ω

∣∣ψ(t)dt

≤
∫
Z�
p

(
1

ω (Bγ)
1+λq1

∫
Bγ

|f (s(t)x)|q1 ω(x)dx
)1/q1

·
∣∣bBγ ,ω − bs(t)Bγ ,ω

∣∣ψ(t)dt

≤ ‖f‖
Ḃ

q1,λ
ω (Qn

p)
·
∫
Z�
p

|s(t)|(n+α)λ ·
∣∣bBγ ,ω − bs(t)Bγ ,ω

∣∣ · ψ(t)dt.
From the hypothesis of the theorem it follows that, for almost everywhere t ∈ Z�

p, there exists an integer

γ′ such that |s(t)|p = pγ
′
. Using Lemma 4.3 with λ = 0, we get∣∣bBγ ,ω − bs(t)Bγ ,ω

∣∣ =
∣∣∣bBγ ,ω − bBγ+γ′ ,ω

∣∣∣
≤ pn+α · |γ′| · ‖b‖CMO

q2
ω (Qn

p)

= pn+α · ‖b‖CMO
q2
ω (Qn

p)

∣∣logp |s(t)|p∣∣ .
Therefore we obtain

I2 ≤ pn+α‖b‖CMO
q2
ω (Qn

p)
· ‖f‖

Ḃ
q1,λ
ω (Qn

p)

∫
Z�
p

|s(t)|(n+α)λ
p

∣∣logp |s(t)|p∣∣ψ(t)dt. (4.7)

Combine (4.5), (4.6) and (4.7), we obtain that I1 + I2 + I3 is not greater than(
2A+ pn+αB

)
· ‖b‖CMO

q2
ω (Qn

p)
· ‖f‖

Ḃ
q1,λ
ω (Qn

p)
.

Thus, Up,b
ψ,s is bounded from Ḃq1,λ

ω

(
Qn

p

)
to Ḃq,λ

ω

(
Qn

p

)
. Moreover,

‖Up,b
ψ,s‖Ḃq1,λ

ω (Qn
p)→Ḃq,λ

ω (Qn
p)

≤
(
2A+ pn+αB

)
· ‖b‖CMO

q2
ω (Qn

p)
.
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Now we assume that Up,b
ψ,s is bounded from Ḃq1,λ

ω

(
Qn

p

)
to Ḃq,λ

ω

(
Qn

p

)
. Take b0(x) = logp |x|p then from

lemma 2.2 and lemma 2.8 imply b0 ∈ CMOq2
ω

(
Qn

p

)
. Since

∣∣∣Up,b
ψ,sf0(x)

∣∣∣ = f0(x) · B�, by Lemma 2.6 we

get

‖Up,b
ψ,sf0‖Ḃq,λ

ω (Qn
p)

=‖f0‖Ḃq,λ
ω (Qn

p )
· B�

=

⎛
⎝ ‖f0‖Ḃq,λ

ω (Qn
p )

‖f0‖Ḃq1,λ
ω (Qn

p)
· B�

⎞
⎠ ‖f0‖Ḃq1,λ

ω (Qn
p )
.

Therefore we obtain that B� is finite.

Theorem 4.4. Let 1 < q < q1 < ∞, 1
q = 1

q1
+ 1

q2
,−1

q < λ < 0,− 1
q1

< λ1 < 0, 0 < λ2 <
1
n and λ =

λ1 + λ2. Let s : Z�
p → Qp be a measurable function such that s(t) �= 0 almost everywhere. If C

is finite, then for any b ∈ CMOq2,λ2
ω (Qn

p ), the corresponding commutator Up,b
ψ,s is bounded from

Ḃq1,λ1
ω (Qn

p ) to Ḃq,λ
ω (Qn

p ) and we have

‖Up,b
ψ,s‖Ḃq1,λ1

ω (Qn
p )→Ḃq,λ

ω (Qn
p )

≤ (2 + pn+αcλ2) · C · ‖b‖
CMO

q2,λ2
ω (Qn

p )
· ‖f‖

Ḃ
q1,λ1
ω (Qn

p )
.

Here and after, C =
∫
Z�
p
max{1, |s(t)|(n+α)λ2}|s(t)|(n+α)λ1

p · |log |s(t)|p|ψ(t)dt.

Proof. Using the similar arguments in the proof of Theorem 4.1, for each γ ∈ Z, we will arrive at

(
1

ω (Bγ)
1+λq

∫
Bγ

|Up,b
ψ,sf(x)|

qω(x)dx

) 1
q

≤ I1 + I2 + I3,

where both I1 and I3 are not greater than

‖b‖
CMO

q2,λ2
ω (Qn

p )
· ‖f‖

Ḃ
q1,λ1
ω (Qn

p )
·
∫
Z�
p

|s(t)|(n+α)λ1
p · ψ(t)dt.

The estimate for I2,

I2 =

(
1

ω (Bγ)
1+λq

∫
Bγ

(∫
Z�
p

∣∣(bs(t)Bγ ,ω − bBγ ,ω)f(s(t)x)
∣∣ψ(t)dt

)q

ω(x)dx

) 1
q

≤
∫
Z�
p

(
1

ω (Bγ)
1+λq

∫
Bγ

|f(s(t)x)|qω(x)dx
) 1

q

|bs(t)Bγ ,ω − bBγ ,ω|ψ(t)dt

≤
∫
Z�
p

(
1

ω (Bγ)
1+λ1q1

∫
Bγ

|f(s(t)x)|q1ω(x)dx
) 1

q1

(
1

ω (Bγ)
1+λ2q2

∫
Bγ

ω(x)dx

) 1
q2

× |bs(t)Bγ ,ω − bBγ ,ω|ψ(t)dt

= ω (Bγ)
−λ2

∫
Z�
p

(
1

ω (s(t)Bγ)
1+λ1q1

∫
s(t)Bγ

|f(y)|q1ω(y)dy
) 1

q1

× |s(t)|(n+α)λ1
p |bs(t)Bγ ,ω − bBγ ,ω|ψ(t)dt

≤ ‖f‖
Ḃ

q1,λ1
ω (Qn

p )
ω(Bγ)

−λ2

∫
Z�
p

|s(t)|(n+α)λ1
p |bs(t)Bγ ,ω − bBγ ,ω|ψ(t)dt.
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For each t ∈ Z�
p such that s(t) �= 0, there exists γ′ = γ′(t) ∈ Z so that |s(t)|p = pγ

′
. From Lemma 4.3,

we get

|bBγ ,ω − bs(t)Bγ ,ω| = |bBγ ,ω − bBγ+γ′ ,ω|

≤ pn+αcλ2 |γ′|‖b‖CMO
q2,λ2
ω (Qn

p )
max {ω(Bγ)

λ2 , ω(Bγ′+γ)
λ2}.

Thus,

I2 ≤ pn+αcλ2‖b‖CMO
q2,λ2
ω (Qn

p )
‖f‖

Ḃ
q1,λ1
ω (Qn

p )

×
∫
Z�
p

max{1, pγ′(n+α)λ2}|s(t)|(n+α)λ1
p

∣∣logp |s(t)|p∣∣ψ(t)dt
≤ pn+αcλ2‖b‖CMO

q2,λ2
ω (Qn

p )
‖f‖

Ḃ
q1,λ1
ω (Qn

p )

×
∫
Z�
p

max{1, |s(t)|(n+α)λ2
p }|s(t)|(n+α)λ1

p

∣∣logp |s(t)|p∣∣ψ(t)dt.
Hence, we obtain

I1 + I2 + I3 ≤ (2 + pn+αcλ2)C‖b‖CMO
q2,λ2
ω (Qn

p )
‖f‖

Ḃ
q1,λ1
ω (Qn

p )
.

So, we have proved that

‖Up,b
ψ,s‖Ḃq,λ

ω (Qn
p )

≤ (2 + pn+αcλ2) · ‖b‖CMO
q2,λ2
ω (Qn

p )
· C · ‖f‖

Ḃ
q1,λ1
ω (Qn

p )
.

This completes the proof of Theorem 4.4.
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