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1. INTRODUCTION

Twistor geometry [1–3] arose as an alternative way of describing spacetime. One starts with
an abstract four dimensional complex vector space (twistor space) and the complex, compactified
Minkowski space is seen as the set of two planes inside the twistor space. This is the Grassmannian
manifold G(2, 4), and it is a homogeneous space of the group SL(4,C), which is the complexification of
SU(2, 2), the spin (two fold) cover of the conformal group SO(2, 4). So we can properly call G(2, 4) the
conformal space.

There is an obvious advantage of the formulation: the action of the conformal group is explicit, since
it comes naturally into play right at the beginning of the construction. Conformal invariance is not a
symmetry of all the physical theories (it is a symmetry of electromagnetism, for example), so it should
be an explicitly broken symmetry. As pointed out in Ref. [2], one can write down any field theory in the
twistor formalism and then the terms that break the invariance appear isolated. This could then clarify
the mechanisms for the explicit breaking of the symmetry. In mathematical terms, one passes from the
Minkowski space to conformal space by a compactification and viceversa by restricting to the big cell
of the conformal space. So one could think on a non conformally symmetric field theory as a conformal
theory broken down to the big cell by some extra terms.

Moreover, conformal symmetry has a fundamental fundamental role in the gauge/gravity correspon-
dence [4] (for a review see Refs. [5, 6]) which relates gravity theories to conformally invariant gauge
theories defined on a boundary of spacetime.

In the original papers [1, 2], Penrose believed that twistor theory could help to introduce the
indetermination principle in spacetime. The points had to be ‘smeared out’ and in twistor formalism
a point of spacetime is not a fundamental quantity, but it is secondary to twistors.
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QUANTUM TWISTORS 3

Nevertheless, all the twistor construction is classical. Our point of view is introducing the quantum
indetermination principle in spacetime by deforming the algebra of functions over spacetime to a
noncommutative algebra. An example of deformation are the quantum groups [7], a non commutative
deformation of algebraic Lie groups. In algebraic terms, a group is retrieved through its function algebra,
which is a commutative but non cocommutative Hopf algebra. Quantum groups are non commutative,
non cocommutative Hopf algebras depending on an indeterminate parameter q. One can specify q = 1
to recover the original commutative Hopf algebra, or to any real or complex value to obtain examples of
non commutative Hopf algebras.

The quantum group SLq(4,C) would then be the the complexified quantum conformal group. The
idea underlying the work of Refs. [8, 9] was to make such substitution and then to obtain a quantum
Grassmannian, a quantum Minkowski space and a quantum Poincaré group satisfying the same
relations among them as their classical counterparts. So the quantum conformal group acts naturally on
the quantum Grassmannian, viewed as a quotient, and the quantum Poincaré group is identified with the
subgroup of it that preserves the big cell. This construction has also been generalized to flag manifolds
[10].

In the super setting, we have several superspaces that are of interest: the Grassmannian supervariety
Gr(2|0, 4|1), which corresponds in physical terms to the algebra of chiral superfields and the superflag
Fl(2|0, 2|1, 4|1) which is the complexification of the N = 1 Minkowski superspace. The same idea
can be applied here with the supergroup SL(4|1) [11, 12], which also can be deformed to a quantum
supergroup. For a detailed treatment of all, the super and non super, classical and quantum cases see
Ref. [13].

Here we deal only with the non super, quantum case. We have identified a quantization of the
conformal space as an homogeneous space of SLq(4,C). This quantization can be given in more concrete
terms. In the big cell (the Minkowski space) it can be presented as a star product on the algebra of
functions. There is an atlas of the Grassmannian with 6 identical cells, and the star products in the
intersections glue in such way that one can recover the quantum Grassmannian.

We are working in the algebraic category, so we first give an explicit formula for the star product
among two polynomials in the big cell of the Grassmannian. Since the quantum algebras that we present
here are deformations of the algebra of polynomials on Minkowski space, the star product that we obtain
is algebraic.

We then show that this deformation can be extended to the set of smooth functions in terms of a
differential star product. The Poisson bracket (the antisymmetrized first order term in h with q = eh) of
the deformation is a quadratic one, so the Poisson structure is not symplectic (nor regular).

Examples of such transition from the category of algebraic varieties to the category of differential
manifolds in the quantum theory are given in Refs. [14–17]. In these references, the varieties under
consideration are coadjoint orbits and the Poisson bracket is linear. It was shown in that paper that
some algebraic star products do not have differential counterpart (not even modulo and equivalence
transformation), so the results of this paper are non trivial. It is interesting that one of the algebraic star
products that does not have differential extension is the star product on the coadjoint orbits of SU(2),
associated to the standard quantization of angular momentum. For algebraic star products and their
classification, see also Ref. [18].

There are previous works that deal with the quantization of space time in terms of the twistor space.
One has, for example, the interesting relation of twistors with geometric quantization in Ref. [24].
More recently, in Ref. [25], the authors introduce first a constant, symplectic form on the Minkowski
space which gives rise to a Weyl-Moyal deformation. A deformation of the conformal group through
the R-matrix approach is considered in order to construct the action of the conformal group on
the noncommutative space. As the authors claim, the resulting deformation is the same than the
one used in [26]. The Moyal deformation of space time has been used in string theory (the original
references are Refs. [27, 28]). The origin of the symplectic form is a B-field (an antisymmetric, 2-
tensor field) that acquires in some backgrounds a constant vacuum expectation value. This constant,
antisymmetric matrix can be interpreted as a Poisson structure on the Minkowski space and the Weyl-
Moyal quantization or star product is then a genuine noncommutative structure for spacetime. The
Weyl-Moyal star product is, in some sense, the simplest formal deformation that one can construct on
R
n. It requires a constant Poisson bracket:

{f(x), g(x)} = Bμν∂μf(x)∂νg(x), f, g ∈ C∞(Rn) ,
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4 CERVANTES et al.

where Bμν is a constant antisymmetric matrix and then the Weyl-Moyal formal deformation or star
product is

f � g(x) =

∞∑

n=0

hn

n!
Bμ1ν1 · · ·Bμnνn∂μ1 . . . ∂μnf(x)∂ν1 . . . ∂νng(x) .

The symbol h is the formal parameter of the deformation. There are very few deformations that can be
given explicitly in closed form. A general formula is known for an arbitrary Poisson bracket (Kontsevich’s
formula, [29]) but it is extremely hard to work out the coefficients for the differential operators appearing
in the deformation, even for simple, linear Poisson brackets.

Another approach is to take advantage of the fact that the Grassmannian
G(m,n) � SL(n)/S (GL(m)×GL(n−m)) is a coadjoint orbit of the group SL(n). In fact, any flag
manifold is so, being the full flag Fl(1, 2, 3, . . . , n) the regular (maximal dimension) orbit and all the
others non regular. The approach of Refs. [14, 15] would then be relevant here. The Kirillov-Kostant-
Soriau Poisson bracket on the coadjoint algebra restricts to a symplectic Poisson bracket on the orbits.
It is essentially given by the Lie bracket and the star product is obtained from the enveloping algebra.
It is then an equivariant star product under the action of the group. In these works the quantization is
given in terms of generators and relations so it is algebraic, but then in Refs. [16, 17] the relation with
differential star products was studied.

Another approach to the quantization of coadjoint orbits has been undertaken also in Refs. [21–23]
using the so-called Shapovalov pairing of Verma modules.

Grassmannians have also be quantized as fuzzy spaces. This means that one uses harmonic functions
on the coset space and the expansion is truncated at some level. The functions can then be seen as
matrices and a product on the truncated space is defined just using matrix multiplication. We find this
approach in Refs. [19, 20].

We believe that the three approaches just mentioned must be linked in some way, since the quanti-
zations are equivariant under the classical group (SL(4,C) in this case) and all of them are intimately
related to representation theory. It is, however, not straightforward to compare them.

Interesting as these works are, our deformation is a different one. The Poisson bracket that we obtain
on the Minkowski space is a quadratic one (in particular, not symplectic) and the star product is then non
equivalent to a Weyl-Moyal one. Also, the equivariance of the star product is achieved only by deforming
the group to a quantum group, contrary to the above mentioned approaches. Nevertheless, we are able
to give an explicit formula for it in terms of a recursive expression. This deformation could eventually
have a similar interpretation in string theory considering a non constant background field B. We have
not explored yet that possibility.

The organization of the paper is as follows:
In Section 2 we review the classical picture and settle the notation for the algebraic approach. In

Section 3 we describe the quantum Minkowski space obtained in Refs. [8, 9, 11, 12], together with the
corresponding quantum groups. In Section 4 we give the explicit formula for the star product among
two polynomials on Minkowski space. In Section 5 we prove that the star product can be extended to
smooth functions and compute it explicitly up to order two in h. In Section 6 we show that the coaction
of the Poincaré group on the quantum Minkowski space is representable by a differential operator (at
least up to order one in h). To show this, we need a technical result concerning the quantum Poincaré
group, that we prove in the Appendix 10. In Section 7 we study the real forms of the quantum algebras
that correspond to the real forms of ordinary Minkowski and Euclidean space. In Section 8 we write the
quadratic invariant (the metric of the Minkowski space) in the star product algebra. Finally, in Section
9 we state our conclusions and outlook.

2. GRASSMANNIAN, CONFORMAL GROUP AND MINKOWSKI SPACE

We give here the classical description of the conformal space as a Grassmannian variety and the
Minkowski space as the big cell inside it. This description is well known (see for example Refs. [3, 30]).
We follow closely the notation of Refs. [11–13, 30, 31].

Definition 2.1. The complex conformal space is the Grassmannian variety G(2, 4), the set of 2-
planes inside a four dimensional space T � C

4, which is called the twistor space.
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QUANTUM TWISTORS 5

A plane π in T can be given by two linearly independent vectors

π = (a, b) = span{a, b}, a, b ∈ T .

If span{a, b} = span{a′, b′} they define the same point of the Grassmannian. This means that we can
take linear combinations of the vectors a and b

(a′, b′) = (a, b)h, h ∈ GL(2,C) (2.1)

to represent the same plane π. In the following, we will use the identification of T with C
4. Then, in the

canonical basis, we have
⎛

⎜⎜⎜⎜⎜⎜⎝

a′1 b′1

a′2 b′2

a′3 b′3

a′4 b′4

⎞

⎟⎟⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎜⎜⎝

a1 b1

a2 b2

a3 b3

a4 b4

⎞

⎟⎟⎟⎟⎟⎟⎠

⎛

⎝h11 h12

h21 h22

⎞

⎠ .

What relates the Grassmannian to the conformal group is that there is a transitive action of GL(4,C)
on G(2, 4)

g ∈ GL(4,C), gπ = (ga, gb).

One can take SL(2,C) instead and the action is still transitive. Then, the Grassmannian is a homoge-
neous space of SL(4,C). Let us take the plane

π0 = (e1, e2) =

⎛

⎜⎜⎜⎜⎜⎜⎝

1 0

0 1

0 0

0 0

⎞

⎟⎟⎟⎟⎟⎟⎠
.

The stability group of π0 is the upper parabolic subgroup

P0 =

⎧
⎨

⎩

⎛

⎝L M

0 R

⎞

⎠ ∈ SL(4,C)
∣∣ detL · detR = 1

⎫
⎬

⎭ , (2.2)

with L,M,R being 2× 2 matrices. Then one has the following result:

Proposition 2.2. G(2, 4) is the homogeneous space

G(2, 4) = SL(4,C)/P0 ,

with P0 the upper parabolic subgroup (2.2).

The conformal group in dimension four and Minkowskian signature is the orthogonal group SO(2, 4).
Its spin group is SU(2, 2). If we consider the complexification, SO(6,C) (later on we will study the real
forms), the spin group is SL(4,C). We have then that the spin group of the complexified conformal group
acts transitively on the Grassmannian G(2, 4).

We consider now the standard open covering of G(2, 4). As we have seen, a plane π = (a, b) can be
represented by a matrix

π =

⎛

⎜⎜⎜⎜⎜⎜⎝

a1 b1

a2 b2

a3 b3

a4 b4

⎞

⎟⎟⎟⎟⎟⎟⎠
.
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This matrix has rank two, since the two vectors are independent. So at least one of the 2× 2 blocks has
to have determinant different from zero. We define the six open sets

UAB =
{
(a, b) ∈ C

4 × C
4
∣∣ aAbB − bBaA �= 0

}
, i < j, A,B = 1, . . . 4. (2.3)

This is an open covering of G(2, 4) by dense open sets. By convention, one chooses the set U12, which is
called the big cell of G(2, 4). By using the freedom (2.1) we can always bring a plane in U12 to the form

π =

⎛

⎜⎜⎜⎜⎜⎜⎝

1 0

0 1

t31 t32

t41 t42

⎞

⎟⎟⎟⎟⎟⎟⎠
, (2.4)

with the entries of t totally arbitrary. So U12 ≈ C
4. This leads us to the following definition:

Definition 2.3. The complexified Minkowski space is the big cell inside the Grassmannian. We
denote it as M := U12.

The Poincaré group is a subgroup of the conformal group and it should act on the Minkowski space.
It is not hard to prove the following proposition:

Proposition 2.4. The subgroup of SL(4,C) that leaves invariant the big cell U12 consists of all the
matrices of the form

P =

⎧
⎨

⎩

⎛

⎝ x 0

Tx y

⎞

⎠ ∣∣ detx · det y = 1

⎫
⎬

⎭ .

This is the Poincaré group times dilations.

Proof. First of all, notice that the bottom left entry is arbitrary but we have written it in this way for
convenience. The action on U12 is then

t −−−−→ ytx−1 + T , (2.5)

so P has the structure of semidirect product P = H �M2, where M2 = {T} is the set of 2× 2 matrices,
acting as translations, and

H =

⎧
⎨

⎩

⎛

⎝x 0

0 y

⎞

⎠ , x, y ∈ GL(2,C), detx · dety = 1

⎫
⎬

⎭ .

The subgroup H is the direct product SL(2,C)× SL(2,C) × C
×. But SL(2,C) × SL(2,C) is the spin

group of SO(4,C), the complexified Lorentz group, and C
× acts as a dilation. We then conclude that P

is then the Poincaré group times dilations.

In the basis of the Pauli matrices

σ0 =

⎛

⎝1 0

0 1

⎞

⎠ , σ1 =

⎛

⎝0 1

1 0

⎞

⎠ , σ2 =

⎛

⎝0 −i

i 0

⎞

⎠ , σ3 =

⎛

⎝1 0

0 −1

⎞

⎠ , (2.6)

an arbitrary matrix t can be written as

t =

⎛

⎝t31 t32

t41 t42

⎞

⎠ = x0σ0 + x1σ1 + x2σ2 + x3σ3 =

⎛

⎝x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

⎞

⎠ .
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Then

det t = (x0)2 − (x1)2 − (x2)2 − (x3)2 .

The quadratic form det t is left invariant by the action of the subgroup SL(2,C) × SL(2, C) ⊂ P , which
is the spin group of the complexified Lorentz group SO(4,C). This is enough to interpret (x0, x1, x2, x3)
as the ordinary coordinates of the Minkowski space.

Notice that although both, the twistor space T and the Minkowski space M are isomorphic to C
4,

they are different spaces and play different roles in the construction.
We say that the Grassmannian G(2, 4) is the conformal compactification of the complex Minkowski

space. This compactification consists of adding to the Minkowski space a variety of points at infinity. In
fact, the set of points that we add are the closure of a cone in C

4 [31].
Algebraic approach. In the quantum theory the word quantization means changing (or deforming)

the algebra of observables (usually functions over a phase space) to a non commutative one (usually
operators over a Hilbert space). Also here, when talking about quantum spacetime we refer to a
deformation of a commutative algebra to a non commutative one. The algebra of departure is the algebra
of functions over spacetime. We will consider first polynomials (all the objects described above are
algebraic varieties). In Section 5 we will see how the construction can be extended to smooth functions.

We fist consider the group GL(4,C), an algebraic group. An element of it is, generically,

g =

⎛

⎜⎜⎜⎜⎜⎜⎝

g11 g12 g13 g14

g21 g22 g23 g24

g31 g32 g33 g34

g41 g42 g43 g44

⎞

⎟⎟⎟⎟⎟⎟⎠
, det g �= 0 .

The algebra of polynomials of GL(4,C) is the algebra of polynomials in the entries of the matrix, and
an extra variable d, which then is set to be the inverse of the determinant, thus forcing the determinant
to be different from zero:

O(GL(4,C)) = C[gAB , d]/(d · det g − 1), A,B = 1, . . . , 4.

If we want to consider the algebra of SL(4,C) we have simply

O(SL(4,C)) = C[gAB ]/(det g − 1), A,B = 1, . . . , 4. (2.7)

In both cases the group law is expressed algebraically as a coproduct, given on the generators as

O(GL(4,C))
Δ−−−−→ O(GL(4,C)) ⊗O(GL(4,C))

gAB −−−−→
∑

C gAC ⊗ gCB ,

d −−−−→ d⊗ d

A,B,C = 1, . . . , 4, (2.8)

and extended by multiplication to the whole O(GL(4,C)). The coproduct is non cocommutative, since
switching the two factors of Δf does not leave the result unchanged.

We also have the antipode S, (which corresponds to the inverse in GL(4,C)),

O(GL(4,C))
S−−−−→ O(GL(4,C))

gAB −−−−→ g−1
AB = d (−1)B−AMBA

d −−−−→ det g ,

(2.9)

where MBA is the minor of the matrix g with the row B and the column A deleted. There is compatibility
of these maps. For example, one has

Δ(f1f2) = Δf1Δf2, (2.10)

as well as the properties of associativity and coassociativity of the product and the coproduct. There
is also a unit and a counit (see Ref. [32], for example), and all this gives to O(GL(4,C)) the structure of
a commutative, non cocommutative Hopf algebra.
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Remark 2.5. Let us see intuitively why the coproduct corresponds to the matrix multiplication on
the group itself. We try now to see an element of O(GL(4,C)) as a function over the variety of the
group itself. Let us denote the natural injection

O
(
GL(4,C)

)
⊗O

(
GL(4,C)

) μG−−−−→ O
(
GL(4,C)×GL(4,C)

)

f1 ⊗ f2 −−−−→ f1 × f2

such that f1 × f2(g1, g2) = f1(g1)f2(g2). Then we have that

μG ◦ (Δf)(g1, g2) = f(g1g2), f ∈ O(GL(4,C)).

Remark 2.6. Since T is isomorphic to the affine space C
4, we have that the polynomial algebra

on T is

O(T ) � C[a1, a2, a3, a4] .

The left action1 of GL(4,C) on T is the fundamental representation

GL(4,C)× T −−−−→ T

(g, a) −−−−→ ga .

It is expressed in the canonical basis {eA, A = 1, . . . , 4} as

(ga)BeB = g(eA)BaA = gBAaAeB , where a = aAeA .

In the language of algebras this is translated to a coaction of O
(
GL(4,C)

)
on O(T ). Seeing the

coordinates aA as polynomial functions on T , the left2 coaction Δ̃ is

O(T )
Δ̃−−−−→ O

(
GL(4,C)

)
⊗O(T )

aA −−−−→
∑

B gAB ⊗ aB .
(2.11)

and, as in Remark 2.5, if

O
(
GL(4,C)

)
⊗O(T )

μG×T−−−−→ O
(
GL(4,C)× T

)
(2.12)

is the natural injection, then

μG×T ◦ Δ̃(f)(g, a) = f(ga) .

We deal with the subgroups SL(4,C) and P in the same way, being the coproduct and the antipode
well defined on their algebras, that is, on (2.7) and

O(P ) = C[xij , yab, Tai]/(det x · det y − 1), i, j = 1, 2, a, b = 3, 4. (2.13)

Since we have made a change of generators in P , we want to express the coproduct and the antipode in
terms of x, y and T :

Δxij = xik ⊗ xkj,

Δyab = yac ⊗ ycb,

ΔTai = Tai ⊗ 1 + yacS(xji)⊗ Tcj . (2.14)

S(xij) = x−1
ij = det y (−1)j−iMij ,

S(yij) = y−1
ij = detx (−1)j−iMij,

S(Tai) = −S(yab)Tbjxji. (2.15)

1One can define a right action by multiplying a row vector on the right by the group matrix.
2One can also define a right coaction.
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QUANTUM TWISTORS 9

The Minkowski space is isomorphic to the affine space C
4, so its algebra of polynomials is

O(M) � C[tai], a = 3, 4, i = 1, 2.

The action of the Poincaré group on the Minkowski space is expressed as a coaction on its algebra

O(M)
Δ̃−−−−→ O(P )⊗O(M)

tai −−−−→ yabS(x)ji ⊗ tbj + Tai ⊗ 1.
(2.16)

This corresponds to the standard action (2.5).

3. THE QUANTUM MINKOWSKI SPACE

The quantization of Minkowski and conformal spaces starts with the quantization of SL(4,C). We
substitute the group by the corresponding quantum group SLq(4,C), which is the quantization of the
algebra O(SL(4,C)) and then we quantize the rest of the structures in order to preserve the relations
among them. This approach is followed in the series of papers [8–10] and we are not reproducing it here.
We will only state the result for the quantization of the algebra of Minkowski space. For the proofs, we
refer to those papers or to Ref. [13]. It is nevertheless important to remind the structure of the quantum
group SLq(4,C).

Remark 3.1. If k is a field, we denote by kq the ring of formal power series in the indeterminates
q and q−1, with qq−1 = 1.

Definition 3.2. The quantum twistor space is the algebra over C in four indeterminates âA,
A = 1, . . . , 4 with commutation relations

âAâB − q−1âB âA = 0, A < B , (3.1)

that is, the algebra

C
4
q := Cq〈â1, . . . , â4〉/(âAâB − q−1âB âA), A < B, A,B = 1, . . . , 4 ,

where Cq〈â1, . . . , â4〉 is the free algebra over the ring Cq generated by the four variables â1, . . . , â4.

This is the four dimensional quantum space as defined by Manin [33]. For q = 1 we just obtain the
algebra of polynomials on C

4. So C
4
q is a deformation of such polynomial algebra, O(T ). This is why we

call it the quantum twistor space. We can denote it also as Oq(T )

One wants now to define left and right coactions on the quantum twistor space in a way that for q = 1
the coaction becomes (2.11). In order to do that, we first need the following definition.

Definition 3.3. A quantum matrix is a square matrix of indeterminates

ĝ =

⎛

⎜⎜⎜⎜⎜⎜⎝

ĝ11 ĝ12 ĝ13 ĝ14

ĝ21 ĝ22 ĝ23 ĝ24

ĝ31 ĝ32 ĝ33 ĝ34

ĝ41 ĝ42 ĝ43 ĝ44

⎞

⎟⎟⎟⎟⎟⎟⎠
,

satisfying the Manin relations [33]

ĝAB ĝCB = q−1ĝCB ĝAB if A < C,

ĝAB ĝAD = q−1ĝAD ĝAB , if B < D,

ĝAB ĝCD = ĝCD ĝAB if A < C and D < B or A > C and D > B,

ĝAB ĝCD − ĝCD ĝAB = (q−1 − q) ĝAC ĝBD if A < C and D > B . (3.2)
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The Manin relations define an ideal in the free algebra

Cq〈ĝAB〉, A,B = 1, . . . , 4 ,

that we denote as IM . The quotient algebra

Mq(4) = Cq〈ĝAB〉/IM A,B = 1, . . . , 4 ,

is the quantum matrix algebra. It is indeed a bialgebra with the coproduct defined on the
generators as

Δ

⎛

⎜⎜⎜⎜⎜⎜⎝

ĝ11 ĝ12 ĝ13 ĝ14

ĝ21 ĝ22 ĝ23 ĝ24

ĝ31 ĝ32 ĝ33 ĝ34

ĝ41 ĝ42 ĝ43 ĝ44

⎞

⎟⎟⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎜⎜⎝

ĝ11 ĝ12 ĝ13 ĝ14

ĝ21 ĝ22 ĝ23 ĝ24

ĝ31 ĝ32 ĝ33 ĝ34

ĝ41 ĝ42 ĝ43 ĝ44

⎞

⎟⎟⎟⎟⎟⎟⎠
⊗

⎛

⎜⎜⎜⎜⎜⎜⎝

ĝ11 ĝ12 ĝ13 ĝ14

ĝ21 ĝ22 ĝ23 ĝ24

ĝ31 ĝ32 ĝ33 ĝ34

ĝ41 ĝ42 ĝ43 ĝ44

⎞

⎟⎟⎟⎟⎟⎟⎠
, (3.3)

the matrix notation being evident.

The matrix bialgebra Mq(n) can be defined for arbitrary n ∈ N. We have the following result [33]:

Theorem 3.4. The map

Oq(T )
Δ̃q−−−−→ Mq(C)⊗Oq(T )

âA −−−−→
∑

B ĝAB ⊗ âB

(3.4)

is a coaction of Mq(C) on Oq(T ) = C
4
q . The Manin relations (3.2) are the necessary and sufficient

condition.

Essentially, the Manin relations are the commutation relations that the ĝAB ’s have to satisfy in order
to preserve the commutation relations (3.1). For q = 1 one recovers (2.11).

Definition 3.5. Given an n× n quantum matrix M , its quantum determinant is defined as

detq M =
∑

σ∈Sn

(−q)−l(σ)Mnσ(n) · · ·M1σ(1).

We are ready now for the definition of the quantum group.

Definition 3.6. The quantum group SLq(4,C) is the free associative algebra over Cq with
generators ĝAB , A,B = 1, . . . , 4 satisfying the Manin relations (3.2) and the condition on the
quantum determinant

detq ĝ =
∑

σ∈S4

(−q)−l(σ)ĝ4σ(4) · · · ĝ1σ(1) = 1. (3.5)

If we denote by ISLq(4,C) the ideal generated by (3.2) and (3.5), then the algebra

SLq(4,C) = Cq〈ĝAB〉/ISLq(4,C)

is a quantum group 3. This algebra is a deformation of O
(
SL(4,C)

)
as a Hopf algebra. The

coproduct is given by (3.3)and the antipode is a generalization of the formula (2.9)

Sq(ĝAB) = (−q)B−AM q
BA ,

where M q
BA is the corresponding quantum minor. One can see that S2 �= 11, contrary to what

happens in the commutative case. SLq(4,C) is a non commutative, non cocommutative Hopf
algebra.

3This is the standard notation instead of the more involved Oq

(
SL(4,C)

)
.
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Definition 3.7. The quantum Poincaré group times dilations, denoted as Oq(P ), is the subalgebra
of SLq(4,C) generated by

ĝ =

⎛

⎜⎜⎜⎜⎜⎜⎝

ĝ11 ĝ12 0 0

ĝ21 ĝ22 0 0

ĝ31 ĝ32 ĝ33 ĝ34

ĝ41 ĝ42 ĝ43 ĝ44

⎞

⎟⎟⎟⎟⎟⎟⎠
. (3.6)

It will be convenient to use the alternative generators

ĝ =

⎛

⎝ x̂ 0

T̂ x̂ ŷ

⎞

⎠ .

We can work out the form for T̂ in terms of the old generators. In order to do so, we introduce the notation

D̂KL
IJ = ĝIK ĝJL − q−1ĝILĝJK ,

(that is, they are 2× 2 quantum determinants). For simplicity, we will write

D̂12
IJ ≡ D̂IJ .

The condition (3.5) on the quantum determinant implies that detq x̂ = D̂12 and detq ŷ = D34
34 are

invertible and

detqx̂ · detqŷ = 1.

The generators T̂ can now be computed explicitly:

T̂ =

⎛

⎝−q−1D̂23 detq ŷ D̂13 detq ŷ

−q−1D̂24 detq ŷ D̂14 detq ŷ

⎞

⎠ .

We give the commutation relations in the following proposition.

Proposition 3.8. The commutation relations among the generators x̂ij, ŷab, T̂ai of Oq(P ) are as
follows:

x̂11x̂12 = q−1x̂12x̂11, x̂11x̂21 = q−1x̂21x̂11,

x̂11x̂22 = x̂22x̂11 + (q−1 − q)x̂21x̂12, x̂12x̂21 = x̂21x̂12,

x̂12x̂22 = q−1x̂22x̂12, x̂21x̂22 = q−1x̂22x̂21 , (3.7)

ŷ33ŷ34 = q−1ŷ34ŷ33, ŷ33ŷ43 = q−1ŷ43ŷ33,

ŷ33ŷ44 = ŷ44ŷ33 + (q−1 − q)ŷ43ŷ34, ŷ34ŷ43 = ŷ43ŷ34,

ŷ34ŷ44 = q−1ŷ44ŷ34, ŷ43ŷ44 = q−1ŷ44ŷ43 , (3.8)

T̂42T̂41 = q−1T̂41T̂42, T̂31T̂41 = q−1T̂41T̂31,

T̂32T̂41 = T̂41T̂32 + (q−1 − q)T̂42T̂31, T̂31T̂42 = T̂42T̂31,

T̂32T̂42 = q−1T̂42T̂32, T̂32T̂31 = q−1T̂31T̂32 . (3.9)

and for i = 1, 2, a = 3, 4

x̂1iT̂32 = T̂32x̂1i, x̂1iT̂42 = T̂42x̂1i, x̂1iT̂31 = q−1T̂31x̂1i,
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x̂1iT̂41 = q−1T̂41x̂1i, x̂2iT̂31 = T̂31x̂2i, x̂2iT̂41 = T̂41x̂2i,

x̂21T̂a2 = q−1T̂a2x̂21 + q(q−1 − q)x̂11T̂a1

x̂22T̂a2 = q−1T̂a2x̂22 + q(q−1 − q)x̂12T̂a1 (3.10)

ŷ33T̂3a = qT̂3aŷ33, ŷ34T̂3a = qT̂3aŷ34, ŷ43T̂4a = qT̂4aŷ43, ŷ44T̂4a = qT̂4aŷ44,

ŷ33T̂4a = T̂4aŷ33, ŷ34T̂4a = T̂4aŷ34, ŷ43T̂3a = T̂3aŷ43, ŷ44T̂3a = T̂3aŷ44 . (3.11)

Proof. This can be checked by direct computation [11, 12].

If we denote by IP the ideal generated by the relations (3.7, 3.8, 3.9, 3.10, 3.11), then

Oq(P ) = Cq〈x̂ij , ŷab, T̂ai〉/(IP , detqx̂ · detqŷ − 1) . (3.12)

This is a Hopf subalgebra of SLq(4,C). The coproduct and the antipode are inherited form the ones
in SLq(4,C). It is instructive to compute the quantum antipode in terms of the variables x̂, ŷ, T̂ . The
coproduct is formally as in (2.14), while for the antipode one has to replace the minors by quantum
minors. Explicitly,

S(x̂) = detqŷ

⎛

⎜⎜⎜⎝

x̂22 −qx̂12

−q−1x̂21 x̂11

⎞

⎟⎟⎟⎠ ,

S(ŷ) = detqx̂

⎛

⎜⎜⎜⎝

y44 −qŷ34

−q−1ŷ43 ŷ33

⎞

⎟⎟⎟⎠ ,

S(T̂ ) = −S(ŷ)T̂ x̂ .

We are ready now to give a definition of the quantum Minkowski space mimicking (2.4).

Definition 3.9. The complexified quantum Minkowski space is the free algebra in four generators

t̂41, t̂42, t̂31 and t̂32 ,

satisfying the relations

t̂42t̂41 = q−1t̂41t̂42,

t̂31t̂41 = q−1t̂41t̂31,

t̂32t̂41 = t̂41t̂32 + (q−1 − q)t̂42t̂31,

t̂31t̂42 = t̂42t̂31,

t̂32t̂42 = q−1t̂42t̂32,

t̂32t̂31 = q−1t̂31t̂32 . (3.13)

Formally, these relations are the same as (3.9).

This algebra will be denoted as Oq(M). If we denote the ideal (3.13) by IMq , then we have that

Oq(M) ≡ Cq〈t̂41, t̂42, t̂31, t̂32〉/IMq .
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It is not difficult to see that Oq(M) is isomorphic to the algebra of quantum matrices Mq(2) (as
defined for example in Ref. [32] or Ref. [33]). The correspondence Mq(2) → Oq(M) is given in terms of
the respective generators:

⎛

⎝â11 â12

â21 â22

⎞

⎠ �

⎛

⎝t̂32 t̂31

t̂42 t̂41

⎞

⎠ .

Using this correspondence, one can check that the relations (3.13) become the relations satisfied by the
generators of the quantum matrices Mq(2).

One can check the following crucial fact:

Proposition 3.10. There is a coaction of Oq(P ) on Oq(M), which on the generators has the same
form as (2.16).

This justifies Definition 3.9.

At this stage, we have lost the interpretation in terms of functions over the Minkowski space. This
will be recovered with the star product.

4. ALGEBRAIC STAR PRODUCT ON MINKOWSKI SPACE

We consider now the algebra of the classical Minkowski space with the scalars extended to the ring
Cq

O(M)[q, q−1] ≡ Cq[t41, t42, t31, t32].

Proposition 4.1. There is an isomorphism O(M)[q, q−1] ≈ Oq(M) as modules over Cq. In fact, the
map

Cq[t41, t42, t31, t32]
QM−−−−→ Oq(M)

ta41t
b
42t

c
31t

d
32 −−−−→ t̂a41t̂

b
42t̂

c
31t̂

d
32

(4.1)

is a module isomorphism (so it has an inverse).

Proof. See Ref. [33].

A map like (4.1) is called an ordering rule or quantization map. In particular, Proposition 4.1 is
telling us that Oq(M) is a free module over Cq, with basis the set of standard monomials.

We can pull back the product on Oq(M) to O(M)[q, q−1].

Definition 4.2. The star product on O(M)[q, q−1] is defined as

f � g = Q−1
M

(
QM(f)QM(g)

)
, f, g ∈ O(M)[q, q−1]. (4.2)

By construction, the star product satisfies associativity. The algebra (O(M)[q, q−1], � ) is then
isomorphic to Oq(M). Working on O(M)[q, q−1] has the advantage of working with classical objects
(the polynomials), were one has substituted the standard pointwise product by the noncommutative star
product. This is important for the physical applications. Moreover, we can study if this star product has
an extension to all the C∞ functions, and if the extension is differential. If so, Kontsevich’s theory [29]
would then be relevant.

We want to obtain a formula for the star product. We begin by computing some auxiliary relations
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Lemma 4.3. The following commutation rules are satisfied in Oq(M):

t̂m42t̂
n
41 = q−mnt̂n41t̂

m
42,

t̂m31t̂
n
41 = q−mnt̂n41t̂

m
31,

t̂m31t̂
n
42 = t̂n42t̂

m
31,

t̂m32t̂
n
42 = q−mnt̂n42t̂

m
32,

t̂m32t̂
n
31 = q−mnt̂n31t̂

m
32,

and

t̂m32t̂
n
41 = t̂n41t̂

m
32 +

μ∑

k=1

Fk(q,m, n)t̂n−k
41 t̂k42t̂

k
31t̂

m−k
32 ,

where μ = min(m,n)

Fk(q,m, n) = βk(q,m)

k−1∏

l=0

F (q, n− l) with F (q, n) =

(
1

q2n−1
− q

)
(4.3)

and βk(q,m) defined by the recursive relation

β0(q,m) = βm(q,m) = 1, and βk(q,m+ 1) = βk−1(q,m) + βk(q,m)q−2k.

Moreover, βk(q,m) = 0 if k < 0 or if k > m.

Proof. The proof is just a (lengthy) computation.

Using the above relations, we obtain the final result:

Theorem 4.4. The star product defined in Definition 4.2 is given on two arbitrary monomials as

(ta41t
b
42t

c
31t

d
32) � (t

m
41t

n
42t

p
31t

r
32) = q−mc−mb−nd−dpta+m

41 tb+n
42 tc+p

31 td+r
32

+

μ=min(d,m)∑

k=1

q−(m−k)c−(m−k)b−n(d−k)−p(d−k)Fk(q, d,m) ta+m−k
41 tb+k+n

42 tc+k+p
31 td−k+r

32 . (4.4)

5. DIFFERENTIAL STAR PRODUCT ON THE BIG CELL

In order to compare the algebraic star product obtained above with the differential star product
approach we consider a change in the parameter, q = exph. The classic limit is obtained as h → 0.
We will expand (4.4) in powers of h and we will show that each term can be written as a bidifferential
operator. Then the extension of the star product to C∞ functions is unique.

Theorem 5.1. We consider

q = eh =
∑ hn

n!
,

and we expand the star product of Theorem 4.4 in powers of h. Then, at each order in h, one can
find a bidifferential operator that reproduces the result of the formula (4.4).

We devote the rest of the section to the proof of this theorem.
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5.1. Explicit Computation up to Order 2

We first take up the explicit computation of the bidifferential operators up to order 2. Then we will
argue that a differential operator can be found at each order.

We rewrite (4.4) as

f � g = fg +

∞∑

j=1

hjCj(f, g),

with

f = ta41t
b
42t

c
31t

d
32, g = tm41t

n
42t

p
31t

r
32.

At order 0 in h we recover the commutative product. At order n in h we have contributions from each of
the terms with different k in (4.4).

Cn(f, g) =

μ=min(d,m)∑

k=0

C(k)
n (f, g),

(the terms with k = 0 come from the first term in (4.4)).

Let us compute each of the contributions C(k)
1 :

• k = 0. We have

C
(0)
1 = (−mc−mb− nd− dp) ta+m

41 tb+n
42 tc+p

31 td+r
32 .

It is easy to see that this is reproduced by the bidifferential operator

C
(0)
1 (f, g) = −(t41t31∂31f∂41g + t42t41∂42f∂41g + t32t42∂32f∂42g + t32t31∂32f∂31g).

We will denote the bidifferential operators by means of the tensor product (as it is customary). For
example

C
(0)
1 = −(t41t31∂31 ⊗ ∂41 + t42t41∂42 ⊗ ∂41 + t32t42∂32 ⊗ ∂42 + t32t31∂32 ⊗ ∂31),

so

C
(0)
1 (f, g) = C

(0)
1 (f ⊗ g).

• k = 1. Let us first compute the factor F1(q, d,m) = β1(q, d)F (q,m). First, notice that

β1(q, d) = 1 + q−2 + q−4 + · · · + q−2(d−1) =
e−2dh − 1

e−2h − 1

= d− d(d− 1)h+
1

3
d((1 − 3d+ 2d2)h2 +O(h3),

and that

F (q, n) = −2nh+ 2n(n− 1)h2 +O(h3),

so up to order h2 we have

β1(q, d)F (q,m) = −2mdh+ 2md(d +m− 2)h2 +O(h3).

Finally, the contribution of the k = 1 term to C1 is

C
(1)
1 (f, g) = −2mdta+m−1

41 tb+n+1
42 tc+p+1

31 td+r−1
32 .

This is reproduced by the bidifferential operator

C
(1)
1 = −2t42t31∂32 ⊗ ∂41.
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• k ≥ 2 We have the factor

βk(q, d)F (q,m)F (q,m − 1) · · ·F (q,m− k) = O(hk),

so the terms with k ≥ 2 do not contribute C1.

Summarizing,

C1 = C
(0)
1 + C

(1)
1 = −(t41t31∂31 ⊗ ∂41 + t42t41∂42 ⊗ ∂41

+ t32t42∂32 ⊗ ∂42 + t32t31∂32 ⊗ ∂31 + 2t42t31∂32 ⊗ ∂41), (5.1)

so C1 is extended to the C∞ functions. If we antisymmetrize C1 we obtain a Poisson bracket

{f, g} = t41t31(∂41f∂31g − ∂41g∂31f) + t42t41(∂41f∂42g − ∂41g∂42f)

+ t32t42(∂42f∂32g − ∂42g∂32f) + t32t31(∂31f∂32g − ∂31g∂32f)

+ 2t42t31(∂41f∂32g − ∂41g∂32f). (5.2)

We can express the Poisson bracket in terms of the usual variables in Minkowski space. Using (2.6), the
change of coordinates is

⎛

⎝t31 t32

t41 t42

⎞

⎠ = xμσμ =

⎛

⎝x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

⎞

⎠ ,

and the inverse change is

x0 =
1

2
(t31 + t42), x1 =

1

2
(t32 + t41), x2 =

i

2
(t32 − t41), x3 =

1

2
(t31 − t42).

In these variables the Poisson bracket is

{f, g} = i
(
(x0)2 − (x3)2)(∂1f∂2g − ∂1g∂2f) + x0x1(∂0f∂2g − ∂0g∂2f)

− x0x2(∂0f∂1g − ∂0g∂1f)− x1x3(∂2f∂3g − ∂2g∂3f)

+ x2x3(∂1f∂3g − ∂1g∂3f)
)
. (5.3)

We now compute the term C2. We sum the contributions to the order h2 of each term in (4.4)

• k = 0. The contribution to the order h2 is

C
(0)
2 =

1

2
(mc+mb+ nd+ dp)2 ta+m

41 tb+n
42 tc+p

31 td+r
32 .

This is reproduced by

C
(0)
2 =

1

2
t31t41 ∂31(t31∂31)⊗ ∂41(t41∂41) + t42t31t41 ∂42∂31 ⊗ ∂41(t41∂41)

+ t31t32t41t42 ∂31∂32 ⊗ ∂41∂42 + t231t32t41 ∂31∂32 ⊗ ∂41∂31

+
1

2
t42t41 ∂42(t42∂42)⊗ ∂41(t41∂41) + t41t

2
42t32∂42∂32 ⊗ ∂41∂42

+ t41t42t31t32∂42∂32 ⊗ ∂41∂31 +
1

2
t32t42t31∂32(t32∂32)⊗ ∂42∂31

+
1

2
t32t31 ∂32(t32∂32)⊗ ∂31(t31∂31) + t32t42t31 ∂32(t32∂32)⊗ ∂42(t42∂42).

• k = 1. We have that

F1(q, d,m) = β1(q, d)F (q,m).

Expanding both factors we have

β1(q, d) = d− d(d− 1)h +O(h2),
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F (q,m) = −2mh− 2m(1 −m)h2 +O(h3),

so we get

β1(q, d)F (q,m) ≈ −2mdh+ 2md((m − 1) + (d− 1))h2,

and the contribution to order h2 is

h2
(
2md

(
(m− 1) + (d− 1) + (m− 1)c+ (m− 1)b+ n(d− 1) + p(d− 1)

))

× ta+m−1
41 tb+n+1

42 tc+p+1
31 td+r−1

32 .

We reproduce that result with

C
(1)
2 = 2t32t42t31∂

2
32 ⊗ ∂41 + 2t31t42t41∂32 ⊗ ∂2

41 − 2t31t
2
42t41∂42∂32 ⊗ ∂2

41

+ 2t42t
2
31t41∂31∂32 ⊗ ∂2

41 + 2t31t
2
42t32∂

2
32 ⊗ ∂41∂42 + 2t42t

2
31t32∂

2
32 ⊗ ∂41∂31.

• k = 2. One can show that

β2(q, d) =
d(d− 1)

2
+O(h),

so

β2(q, d)F (q,m)F (q,m − 1) ≈ 2d(d − 1)m(m− 1)h2,

and the contribution of this term to the order h2 is

h2 2d(d − 1)m(m− 1) ta+m−2
41 tb+n+2

42 tc+p+2
31 td+r−2

32 .

This is given by

C
(2)
2 = 2t242t

2
31∂

2
32 ⊗ ∂2

41.

Summarizing we get

C2 =
1

2
t31t41 ∂31(t31∂31)⊗ ∂41(t41∂41) + t42t31t41∂42∂31 ⊗ ∂41(t41∂41)

+ t31t32t41t42∂31∂32 ⊗ ∂41∂42 + t231t32t41∂31∂32 ⊗ ∂41∂31

+
1

2
t42t41 ∂42(t42∂42)⊗ ∂41(t41∂41)

+ t41t
2
42t32∂42∂32 ⊗ ∂41∂42t41t42t31t32∂42∂32 ⊗ ∂41∂31

+
1

2
t32t42∂32(t32∂32)⊗ ∂42∂31 +

1

2
t32t31∂32(t32∂32)⊗ ∂31(t31∂31)

+ t32t42t31∂32(t32∂32)⊗ ∂42∂31 + 2t242t
2
31∂

2
32 ⊗ ∂2

41

+ 2t32t42t31∂
2
32 ⊗ ∂41 + 2t31t42t41∂32 ⊗ ∂2

41 − 2t42t
2
31t41∂31∂32 ⊗ ∂2

41

− 2t31t
2
42t32∂

2
32 ⊗ ∂41∂42 − 2t42t

2
31t32∂

2
32 ⊗ ∂41∂31 − 2t31t

2
42t41∂42∂32 ⊗ ∂2

41.

5.2. Differentiability at Arbitrary Order

We are going to prove now the differentiability of the star product. We keep in mind the expression
(4.4), which has to be expanded in h. Our goal will be to show that, at each order, it can be reproduced
by a bidifferential operator with no dependence on the exponents a, b, c, d,m, n, p, r.

Let us first argue on a polynomial function of one variable, say x. For example, we have

m xm−1 = ∂x
(
xm

)
.
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More generally, we have

mb xm = (x∂x)
b
(
xm

)
and

mb(m− 1)c · · · (m− k + 1)d xm−k = ∂x(x∂x)
d−1 . . . ∂x(x∂x)

c−1∂x(x∂x)
b−1

(
xm

)
. (5.4)

(5.5)

Notice that in the last formula, we have b, c, . . . , d ≥ 1, otherwise the formula makes no sense. In fact,
an arbitrary polynomial

p(x) =
∑

k∈Z
fk(m,x)xm−k,

is not generically obtainable from xm by the application of a differential operator with coefficients that
are independent of the exponents and polynomial in the variable x. One can try for example with
p(x) = xm−1. We then have that

xm−1 =
1

m
∂x(x

m), or xm−1 =
1

x
xm.

So the right combinations should appear in the coefficients in order to be reproduced by a differential
operator with polynomial coefficients.

Let us see the contribution of the terms with different k in (4.4). We start with the term k = 0. From

q−mc−mb−nd−dp ta+m
41 tb+n

42 tc+p
31 td+r

32

we only get terms of the form

bibcicdidmimninpip ta+m
41 tb+n

42 tc+p
31 td+r

32 .

Applying the rules (5.5), these terms can be easily reproduced by the bidifferential operators of the form

(t42∂42)
ib(t31∂31)

ic(t32∂32)
id ⊗ (t41∂41)

im(t42∂42)
in(t31∂31)

ip ,

applied to

ta41t
b
42t

c
31t

d
32 ⊗ tm41t

n
42t

p
31t

r
32.

We turn now to the more complicated case of k �= 0. We have to consider the two factors in (4.4)

q−(m−k)c−(m−k)b−n(d−k)−p(d−k), and Fk(q, d,m).

Expanding both factors in powers of h it is easy to see that the coefficients at each order are polynomials
in m,n, p, b, c, d, k. What we have to check is that these polynomials have a form that can be reproduced
with a bidifferential operator using (5.5). Let us start with

Fk(q, d,m) = βk(q,m)
k−1∏

l=0

F (q,m− l).

From the definition (4.3), we have that F (q, j)|j=0 = 0, so

F (q, j) = jG(q, j),

with G(q, j) a series in h with coefficients that are polynomial in j. More generally, the product

Lk(q,m) =

k−1∏

l=0

F (q,m− l) = m(m− 1)(m− 2) · · · (m− k + 1)L′(q,m).

The polynomials in L′(q,m) are easily obtained with combinations of differential operators of the form
(
t41∂41

)i
(tm41).

The remaining factor m(m− 1)(m− 2) · · · (m− k + 1)tm−k
41 is adjusted with the differential operator

∂k
41(t

m
41) = m(m− 1)(m− 2) · · · (m− k + 1) tm−k

41 .
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Let us work now with βk(q,m)). We have that

βk(q,m) = 0 for m < k,

so

βk(q, d) = d(d− 1)(d− 2) · · · (d− k + 1)β′
k(q, d),

with β′
k(q, d) a series in h with coefficients that are polynomial in d. The differential operator that we need

is of the form

∂k
32(

(
t32∂32)

)j
(td32) = d(d− 1)(d − 2) · · · (d− k + 1) dj td−k

32 .

Finally, the factor q−(m−k)c−(m−k)b−n(d−k)−p(d−k) introduces factors of the form

bibcic(d− k)id(m− k)imninpip ta+m−k
41 tb+k+n

42 tc+k+p
31 td−k+r

32 ,

which are reproduced by

tk42t
k
31

(
t42∂42

)ib(t31∂31
)ic(t32∂32

)id ⊗
(
t41∂41

)im(t42∂42
)in(t31∂31

)ip ,
acting on

ta41t
b
42t

c
31t

d−k
32 ⊗ tm−k

41 tn42t
p
31t

r
32.

This completes the proof of differentiability of the star product at arbitrary order.

6. POINCARÉ COACTION
We would like to see how the coaction over the Minkowski space looks in terms of the star product,

and if it is also differential. But in order to do so, we need first to have a star product on the group Oq(P ).

Theorem 6.1. The map

O(P )[q, q−1]
QG−−−−→ Oq(P )

ŷa44ŷ
b
43ŷ

c
34ŷ

d
33x̂

e
22x̂

f
21x̂

g
12x̂

l
11T̂

m
41 T̂

n
42T̂

p
31T̂

r
32 −−−−→ ya44y

b
43y

c
34y

d
33x

e
22x

f
21x

g
12x

l
11T

m
41T

n
42T

p
31T

r
32

(6.1)

is a Cq-module isomorphism. In particular, Oq(P ) is a free module.

First of all, we notice that the subalgebra generated by {x̂ij} and {ŷab} are two copies of the algebra
of 2× 2 quantum matrices, which commute among them. The maps to the standard quantum matrices
[32, 33] are this time

⎛

⎝â11 â12

â21 â22

⎞

⎠ �

⎛

⎝x̂11 x̂12

x̂21 x̂22

⎞

⎠ ;

⎛

⎝â11 â12

â21 â22

⎞

⎠ �

⎛

⎝ŷ33 ŷ34

ŷ43 ŷ44

⎞

⎠ ,

as can be deduced from (3.7) and (3.8). One can chose the Manin order in each subset of variables,

ŷ44 < ŷ43 < ŷ34 < ŷ33, x̂22 < x̂21 < x̂12 < x̂11.

With this one can construct a quantization map (given by the standard monomials basis) for the
quantum Lorentz plus dilations group . We have now to include the translations to have the complete
quantization map for the Poincaré group. It is clear that one can choose the Manin order also for the
variables T̂ , but, since these variables do not commute with the x̂ and ŷ we have to be careful in choosing
a full ordering rule. This is a non trivial problem, but it can be solved. In Appendix 10 we show that the
ordering

ŷ44 < ŷ43 < ŷ34 < ŷ33 < x̂22 < x̂21 < x̂12 < x̂11 < T̂41 < T̂42 < T̂31 < T̂32

gives standard monomials that form a basis for the quantum Poincaré group Oq(P ). As we did for the
Minkowski space star product (4.2), we extend the scalars of the commutative algebra to Cq and define
a quantization map QG
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Definition 6.2. For f, g ∈ O(P )[q, q−1], the star product is defined as

f �G g = Q−1
G (QG(f) ·QG(g)).

Let us now consider the coaction, formally as in (2.16). Using both quantization maps (QM and QG)
we can define a star coaction:

Proposition 6.3. The map

O(M)[q, q−1]
Δ̃�−−−−→ → O(G)[q, q−1]⊗O(M)[q, q−1]

f −−−−→ Q−1
G ⊗Q−1

M (Δ(QM (f))

has the compatibility property (see (2.10))

Δ̃�(f �M g) = Δ̃�(f)(�G ⊗ �M )Δ̃�(g), f, g ∈ O(M)[q, q−1]. (6.2)

so it defines a coaction of (O(M)[q, q−1], �G) on O(M)[q, q−1], �M ).

Proof. It follows from the definitions.

6.1. The Coaction as a Differential Operator

We will restrict to the Lorentz group times dilations, that is, we will consider only the generators x
and y.

On the generators of Minkowski space the star coaction is simply

Δ�(tai) = yabS(xji)⊗ tbj ,

and, using the notation

t�ami = tmi �M tmi �M · · · �M tmi︸ ︷︷ ︸
a times

,

for an arbitrary standard monomial the coaction is expressed as

Δ̃�

(
ta41t

b
42t

c
31t

d
32

)
= Δ̃�(t

�a
41 �M t�b42 �M t�c31 �M t�d32)

= (Δ̃�t41)
�a
(�G ⊗ �M)(Δ̃�t42)

�b
(�G ⊗ �M)(Δ̃�t31)

�c
(�G ⊗ �M)(Δ̃�t32)

�d
.

We have used the exponent ‘�’ to indicate‘�M’, ‘�G’ or ‘�G×M’ to simplify the notation. The meaning
should be clear from the context. Contracting with μG×M (see (2.12) for the notation) we define

τij ≡ μG×M ◦ Δ̃�(tij) = yabtbjS(xji);

Applying μG×M to the coaction, we get

μG×M ◦Δ�(t
a
41t

b
42t

c
31t

d
32) = τ�a41 �G×M τ�b42 �G×M τ�c31 �G×M τ�d32 . (6.3)

Notice that in each τ there is a sum of terms with factors ytS(x) that generically do not commute. So
we need to work out the star products in the right hand side of (6.3).

As we are going to see, the calculation is involved. We are going to make a change in the parameter
q = exph and expand the star product in power series of h. At the end, we will compute only the first
order term in h of the star coaction.

The star product �G×M is written, as usual,

f1 �G×M f2 =

∞∑

m=0

hmDm(f1, f2), f1, f2 ∈ O(g ×M)[[h]].

For our purposes it will be enough to consider f1 and f2 to be polynomials in τ . The generators x, y and
t commute among themselves, so the star product in G×M can be computed reordering the generators
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in each group x, y, and t in the Manin ordering. The result will be terms similar to the star product (4.4),
and in particular, D1 will contain 3 terms of the type C1 (5.1), on for the variables x, another for the
variables y and another for the variables t. But C1 is a bidifferential operator of order 1 in each of the
arguments, so it satisfies the Leibnitz rule

D1(f1, f2u) = D1(f1, f2)u+D1(f1, u)f2, u ∈ O(P )[q, q−1] ,

then we have, for example,

D1(τij, τ
a
kl) = aD1(tij , tkl)t

a−1
kl , (6.4)

which will be used in the following.
In general, we have

τ�a41 � τ�b42 � τ
�c
31 � τ

�d
32 =

∑

I∈I
hMDi1(τ41,Di2(τ41, . . . Dia−1(τ41,Dj1(τ42,

Dj2(τ42, . . . Djb−1
(τ42,Dl1(τ31,Dl2(τ31, . . . DlD−1

(τ31,Dm1(τ32,

Dm2(τ32, . . . Dmd−1
(τ32, τ32) . . . )

Here M = i1 + . . .+ ia + j1 + . . .+ jb + l1 + . . .+ lc +m1 + . . . md and we sum over all the multi-
indices

I = (i1, . . . , ia−1, j1, . . . , jb−1, l1, . . . , lc−1,m1, . . . ,md−1) .

We are interested in the first order in h, so M = 1. This means that for any term in the sum we have only
one D1 operator (the others are D0, which is just the standard product of both arguments). So we have
the sum

∑

k

(
τk41D1(τ41, τ

a−k−1
41 τ b42τ

c
31τ

d
32) + τa41τ

k
42D1(τ

,
42τ

b−k−1
42 τ c31τ

d
32)

+ τa41τ
b
42τ

k
31D1(τ

,
31τ

c−k−1
31 τd32) + τa41τ

b
42τ

c
31τ

k
32D1(τ32, τ

d−k−1
32 )

)
.

Using (6.4) we get
a−1∑

k=1

kτa−2
41 τ b42τ

c
31τ

d
32D1(τ41, τ41) +

a∑

k=1

bτa−1
41 τ b−1

42 τ c31τ
d
32D1(τ41, τ42)

+
a∑

k=1

cτa−1
41 τ b42τ

c−1
31 τd32D1(τ41, τ31) +

a∑

k=1

dτa−1
41 τ b42τ

c
31τ

d−1
32 D1(τ41, τ32)

+

b−1∑

k=1

kτa41τ
b−2
42 τ c31τ

d
32D1(τ42, τ42) +

b∑

k=1

cτa41τ
b−1
42 τ c−1

31 τd32D1(τ42τ31)

+
b∑

k=1

dτa41τ
b−1
42 τ c31τ

d−1
32 D1(τ42, τ32) +

c−1∑

k=1

kτa41τ
b
42τ

c−2
31 τd42D1(τ31, τ31)

+

c∑

k=1

dτa41τ
b
42τ

c−1
31 τd−1

32 D1(τ31, τ32) +

d−1∑

k=1

kτa41τ
b
42τ

c
31τ

d−2
32 D1(τ32, τ32).

These sums can be easily done. We then get the order h contribution to the action of the deformed
Lorentz plus dilations group:

a(a− 1)

2
D1(τ41, τ41)τ

a−2
41 τ b42τ

c
31τ

d
32 + abD1(τ41, τ42)τ

a−1
41 τ b−1

42 τ c31τ
d
32

+
b(b− 1)

2
D1(τ42, τ42)τ

a
41τ

b−2
42 τ c31τ

d
32 + bcD1(τ42, τ31)τ

a
41τ

b−1
42 τ c−1

31 τd32

+
c(c− 1)

2
D1(τ31, τ31)τ

a
41τ

b
42τ

c−2
31 τd32 + cdD1(τ31, τ32)τ

a
41τ

b
42τ

c−1
31 τd−1

32
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+
d(d− 1)

2
D1(τ32, τ32)τ

a
41τ

b
42τ

c
31τ

d−2
32 + acD1(τ41, τ31)τ

a−1
41 τ b42τ

c−1
31 τd32

+adD1(τ41, τ32)τ
a−1
41 τ b42τ

c
31τ

d−1
32 + bdD1(τ42, τ32)τ

a
41τ

b−1
42 τ c31τ

d−1
32 .

This is reproduced by the differential operator
1

2
D1(τ41, τ41)∂

2
τ41 +D1(τ41, τ42)∂τ41∂τ42 +

1

2
D1(τ42, τ42)∂

2
τ42

+D1(τ42, τ31)∂τ42∂τ31 +
1

2
D1(τ31, τ31)∂

2
τ31 +D1(τ31, τ32)∂τ31∂τ32

+
1

2
D1(τ32, τ32)∂

2
τ32 +D1(τ41, τ31)∂τ41∂τ31 +D1(τ41, τ32)∂τ41∂τ32

+D1(τ42, τ32)∂τ42∂τ32 .

Notice that the coefficients have to match in order to get a differential operator, so the result is again non
trivial. For completeness, we write the values of D1(τij , τkl) in terms of the original variables x, y, t:

D1(τ41, τ41) = −2(y44y43s
2
11t41t31 + y243s11s21t31t32 + y244s11s21t41t42

+ y44y43s
2
21t42t32 + 2y44y43s11s21t42t31 + y44y43s11s21t41t32),

D1(τ41, τ42) = −(y243s21s12t31t32 + y244s21s12t41t42 + 2y44y43s
2
21t42t32

+ 2y44y43s11s12t41t31 + 2y44y43s21s12t42t31 + y44y43s21s12t41t32)

+ y44y43s11s21t42t31),

D1(τ42, τ42) = −(y244s21s12t41t42 + 2y44y43s
2
12t41t31 + 2y243s12s22t31t32

+ y44y43s21s12t42t31 + 2y44y43s12s22t42t31 + 2y44y43s12s22t41t32)

+ 3y44y43s21s22t42t32),

D1(τ42, τ31) = −
(
y43y33s11s12t

2
31 + y44y33s11s12t41t31 + 2y43y34s11s12t41t31

+ y44y34s11s12t
2
41 + y43y34s21s12t41t32 + y43y34s21s12t41t32

+ y44y33s11s21t42t31 + 2y44y34s11s21t41t42 + y43y33s21s12t31t32

+ y43y33s11s22t31t32 − 2y43y34s21s12t42t31 + y43y34s11s22t42t31

+ 2y43y34s21s12t42t31 + y43y34s11s22t42t31 + y43y33s21s22t
2
32

+ 2y43y34s21s22t42t32
)
,

D1(τ31, τ31) = −2(y34y33s
2
11t41t31 + y233s11s21t31t32 + y234s11s21t41t42

+ y34y33s
2
21t42t32 + 2y34y33s11s21t42t31 + y34y33s11s21t41t32),

D1(τ32, τ32) = −2(y34y33s
2
12t41t31 + y233s12s22t31t32 + y234s12s22t41t42

+ y34y33s
2
22t42t32 + 2y34y33s12s22t42t31 + y34y33s12s22t41t32),

D1(τ41, τ31) = −
(
y43y34s

2
11t41t31 + y43y34s

2
21t42t32 + 2y43y33s11s21t31t32

+ y44y33s11s21t42t31 + 2y43y34s11s21t42t31 + y43y34s11s21t41t32

+ 2y44y34s11s21t41t42
)

D1(τ41, τ32) = −
(
y43y34s11s12t41t31 + y43y33s21s12t31t32 + y43y34s21s12t42t31

+ y43y34s21s12t42t31 + y44y34s21s12t41t42 + y43y34s21s22t42t32
)
,

D1(τ42, τ32) = −
(
y43y34s

2
12t41t31 + y43y34s

2
22t42t32 + y44y34s21s12t41t42

+ 2y43y33s12s22t31t32 + 2y43y34s12s22t42t31 + y43y34s12s22t41t32
)
,

D1(τ31, τ32) = −
(
y233s21s12t31t32 + y234s21s12t41t42 + 2y34y33s11s12t41t31

+ 2y34y33s21s12t42t31 + y34y33s21s12t41t32

+ y34y33s11s22t42t31 + 2y34y33s21s22t42t32
)
.

p-ADIC NUMBERS, ULTRAMETRIC ANALYSIS AND APPLICATIONS Vol. 8 No. 1 2016



QUANTUM TWISTORS 23

7. THE REAL FORMS: THE EUCLIDEAN AND MINKOWSKIAN SIGNATURES
7.1. The Real Forms in the Classical Case

Definition 7.1. Let A be a commutative algebra over C. An involution ι of A is an antilinear map
satisfying, for f, g ∈ A and α, β ∈ C

ι(αf + βg) = α∗ιf + β∗ιg, (antilinearity) (7.1)

ι(fg) = ι(f)ι(g), (automorphism) (7.2)

ι ◦ ι = 11. (7.3)

Let us consider the set of fixed points of ι,

Aι = {f ∈ A / ι(f) = f}.
It is easy to see that this is a real algebra whose complexification is A. Aι is a real form of A.

Example 7.2. The real Minkowski space.
We consider the algebra of the complex Minkowski space O(M) ≈ [t31, t32, t41, t42] and the

following involution,
⎛

⎝ιM(t31) ιM(t32)

ιM(t41) ιM(t42)

⎞

⎠ =

⎛

⎝t31 t41

t32 t42

⎞

⎠ ,

which can be also written simply as

ιM(t) = tT .

Using the Pauli matrices (2.6)

t =

⎛

⎝t31 t32

t41 t42

⎞

⎠ = xμσμ =

⎛

⎝x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

⎞

⎠ ,

so

x0 =
1

2
(t31 + t42), x1 =

1

2
(t32 + t41),

x2 =
1

2i
(t41 − t32), x3 =

1

2
(t31 − t42),

are fixed points of the involution. In fact, it is easy to see that

O(M)ιM = R[x0, x1, x2, x3].

Example 7.3. The Euclidean space. We consider now the following involution on O(M)
⎛

⎝ιE(t31) ιE(t32)

ιE(t41) ιE(t42)

⎞

⎠ =

⎛

⎝ t42 −t41

−t32 t31

⎞

⎠ .

Another way of expressing it is in terms of the matrix of cofactors,

ιE(t) = cof(t).

The combinations

z0 =
1

2
(t31 + t42), z1 =

i

2
(t32 + t41),

z2 =
1

2
(t41 − t32), z3 =

i

2
(t31 − t42),

are fixed points of ιE, and as before,

O(M)ιE = R[z0, z1, z2, z3].
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We are interested now in the real forms of the complex Poincaré plus dilations that have a coaction
on the real algebras. So we start with (2.13)

O(P ) = C[xij , yab, Tai]/(det x · det y − 1).

We then look for the appropriate involution in O(P ), denoted as ιP,M or ιP,E ‘preserving’ the correspond-
ing real form of the complex Minkowski space. This means that the involution has to satisfy

Δ̃ ◦ ιM = ιP,M ⊗ ιM ◦ Δ̃,

Δ̃ ◦ ιE = ιP,E ⊗ ιE ◦ Δ̃.

It is a matter of calculation to check that
ιP,M(x) = S(y)T , ιP,M(y) = S(x)T , ιP,M(T ) = T T ; (7.4)

ιP,E(x) = S(x)T , ιP,E(y) = S(y)T , ιP,E(T ) = cof(T ), (7.5)

are the correct expressions. It is not difficult to realize that in the Minkowskian case the real form of
the Lorentz group (corresponding to the generators x and y) is SL(2,C)R and in the Euclidean case is
SU(2)× SU(2). One can further check the compatibility of these involutions with the coproduct and the
antipode

Δ ◦ ιP,M = ιP,M ⊗ ιP,M ◦Δ, S ◦ ιP,M = ιP,M ◦ S; (7.6)

Δ ◦ ιP,E = ιP,E ⊗ ιP,E ◦Δ, S ◦ ιP,E = ιP,E ◦ S. (7.7)

7.2. The Real Forms in the Quantum Case
We have to reconsider the meaning of ‘real form’ in the case of quantum algebras. We can try to

extend the involutions (7.4, 7.5) to the quantum algebras. We will denote this extension with the same
name since they cannot be confused in the present context.

The first thing that we notice is that property (7.2) has to be modified. In fact, the property that the
involutions ιM, ιE satisfy with respect to the commutation relations (3.13) of the complex algebra O(M)
is that they are antiautomorphisms, that is

ιM(fg) = ιM(g)ιM(f),

ιE(fg) = ιE(g)ιE(f).

This discards the interpretation of the real form of the non commutative algebra as the set of fixed points
of the involution. The other two properties are still satisfied.

When considering the involutions ιP,M and ιP,E in the quantum group Oq(P ), we also obtain
an antiautomorphism of algebras, but now the involution has to be compatible also with the Hopf
algebra structure. The coproduct is formally the same and properties (7.6, 7.7) are still satisfied (so the
involutions are automorphisms of coalgebras). On the other hand, differently from the classical case, the
involutions do not commute with the antipode. This is essentially due to the fact that S2 �= 11. One can
explicitly check that

S2 ◦ ιPM ◦ S = S ◦ ιPM,

S2 ◦ ιPE ◦ S = S ◦ ιPE. (7.8)

Property (7.3) is still satisfied, ιP,M2 = 1 and ιP,E
2 = 1. Using this fact, (7.8) can be written as

(ιPM ◦ S)2 = 11,

(ιP,E ◦ S)2 = 11.

All these properties define what is known as a Hopf ∗-algebra structure (see for example [32]).

Definition 7.4. Hopf ∗ algebra structure. Let A be a Hopf algebra. We say that it is a Hopf ∗-algebra
if there exists an antilinear involution ι on A which is an antiautomorphism of algebras and an
automorphism of coalgebras and such that

(ι ◦ S)2 = 11,

being S the antipode.
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For example, each real form of a complex Lie algebra corresponds to a ∗-algebra structure in the
corresponding enveloping algebra, seen as a Hopf algebra.

Remark 7.5. Real forms on the star product algebra. The involutions can be pulled back to the
star product algebra using the quantization maps QM : Oq(M) → O(rM)[q, q−1] (see (4.1) and
QG (see (6.1)) and then extended to the algebra of smooth functions. The Poisson bracket in
terms of the Minkowski space variables (xμ) or the Euclidean ones (zμ) is purely imaginary
(see 5.3), as a consequence of the antiautomorphism property of the involutions.

In the case of the quantum groups, the whole Hopf ∗-algebra structure is pulled back to the
polynomial algebra and then extended to the smooth functions.

8. THE DEFORMED QUADRATIC INVARIANT

Let us consider the quantum determinant in Oq(M)

Ĉq = detq

⎛

⎝t̂32 t̂31

t̂42 t̂41

⎞

⎠ = t̂32t̂41 − q−1t̂31t̂42.

Under the coaction of Oq(P ) with the translations put to zero (that is for the quantum Lorentz times
dilation group), the quantum determinant satisfies

Δ̃(Ĉq) = detqŷ S(detqx̂)⊗ Ĉq,

so if we suppress the dilations, then detqŷ = 1, detqx̂ = 1 and the determinant is a quantum invariant,

Δ̃(Ĉq) = 1⊗ Ĉq.

The invariant Ĉq can be pulled back to the star product algebra with the quantization map QM:

Cq = Q−1
M (Ĉq) = t41t32 − qt42t31. (8.1)

We can now change to the Minkowski space variables, and the quadratic invariant in the star product
algebra is

Cq = −q(x0)2 + q(x3)2 + (x1)2 + (x2)2. (8.2)

Cq is the quantum star invariant. Notice that the expressions (8.1,8.2) depend upon the quantization
map or ordering rule chosen.

9. CONCLUSIONS

In this paper we have computed an explicit formula for a star product on polynomials on the
complexified Minkowski space. This star product has several properties:

• It can be extended to a star product on the conformal space G(2, 4). This is done by gluing the
star products computed in each open set (2.3).

• It can be extended to act on smooth functions as a differential star product.

• The Poisson bracket is quadratic in the coordinates.

• There is a coaction of the quantum Poincaré group (or the conformal group in the case of the
conformal spacetime) on the star product algebra.

• It has at least two real forms corresponding to the Euclidean and Minkowski signatures.

• It can be extended to the superspace (to chiral and real superfields).

p-ADIC NUMBERS, ULTRAMETRIC ANALYSIS AND APPLICATIONS Vol. 8 No. 1 2016



26 CERVANTES et al.

Since fields are smooth functions, the differentiability of the star product gives a hope that one can
develop a quantum deformed field theory, that is, a field theory on the quantum deformed Minkowski
space. The departure point will be to find a generalization of the Lapacian and the Dirac operator
associated to the quantum invariant Cq.

One advantage of using the quantum group SLq(4,C) is that the coalgebra structure is isomorphic
to the coalgebra of the classical group SL(4,C) (see for example Theorem 6.1.8 in Ref. [34]). This
means that the group law is unchanged, so the Poincaré symmetry principle of the field theory would
be preserved in the quantum deformed case.
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APPENDIX

10. A BASIS FOR THE POINCARÉ QUANTUM GROUP

In this appendix we prove that, given a certain specific ordering on the generators of the Poincaré
quantum group, the ordered monomials form a basis for its quantum algebra. This is a non trivial result
based on the classical work by G. Bergman [35].

10.1. Generators and Relations for the Poincaré Quantum Group

Let us consider SLq(n,C) the quantum complex general linear group with indeterminates gIJ subject
to the Manin relations (3.2) and (3.54. (see [12] sec. 7)5. Inside SLq(n,C) we consider the following
elements, which we write, as usual, in a matrix form:

x =

⎛

⎝g11 g12

g21 g22

⎞

⎠ , T =

⎛

⎝−q−1D23D
−1
12 D13D

−1
12

−q−1D24D
−1
12 D14D

−1
12

⎞

⎠

y =

⎛

⎝g33 g34

g43 g44

⎞

⎠ .

As in (3.6), let us define the quantum Poincaré group, Oq(P ) as the subring of SLq(n,C) generated
by the elements in the matrices x, y, T defined above. In order to give a presentation for Oq(P ) we need
to consider all of the commutation relations between the generators (3.7, 3.8, 3.9, 3.10, 3.11).

The entries in x (resp. y) satisfy the Manin commutation relations in dimension 2, that is,

x =

⎛

⎝g11 g12

g21 g22

⎞

⎠ ∼

⎛

⎝a b

c d

⎞

⎠ , y =

⎛

⎝g33 g34

g43 g44

⎞

⎠ ∼

⎛

⎝a b

c d

⎞

⎠

ba = qab, ca = qac, db = qbd, dc = qcd,

cb = bc da = ad− (q−1 − q)bc.

4In this appendix we write the noncommutative generators without the hatˆto simplify the notation.
5All of the arguments in this appendix hold replacing SLq(n,C) with the general linear quantum group and the complex
field with any field of characteristic zero.
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Moreover, they commute with each other:

xIJyKL = yKLxIJ .

Similarly one can show that the entries in TIJ satisfy the Manin relations, with the order

T =

⎛

⎝T32 T31

T42 T41

⎞

⎠ ∼

⎛

⎝a b

c d

⎞

⎠ ,

but they do not commute with x and y (3.10, 3.11).
This provides a presentation of Oq(P ) in terms of generators and relations (3.12) (see [12] for more

details),

Oq(P ) = Cq〈xIJ , yKL, TRS〉/(IP , detqx · detqy − 1),

where IP is the ideal generated by the commutation relations (3.7, 3.8, 3.9, 3.10, 3.11).

10.2. The Diamond Lemma

Let us recall some definitions and theorems from the fundamental work by Bergman [35] (see also
[36] pg 103) 6.

Definition 10.1. Let Cq〈xi〉 be the free associative algebra over Cq with generators x1, . . . , xn and
let

X := {XI = xi1 · · · xis / I = (i1, . . . , is), ij ∈ {1, . . . , n}}
be the set of all (unordered) monomials. X is clearly a basis for Cq〈xi〉. We define on X an order,
<, such that given two monomials x and y, then x < y if the length of x is less than the length of
y and for equal lengths we apply the lexicographical ordering.

Let Π = {(XIk , fk) | k = 1, . . . , s} be a certain set of pairs XIk ∈ X and fk ∈ Cq〈xi〉. We denote by
JΠ the ideal

JΠ = (XIk − fk, k = 1, . . . , s) ⊂ Oq(P ).

In our application Π will yield the ideal of the commutation relations for the quantum Poincaré group.

Definition 10.2. We say that Π is compatible with the ordering < if fk consists of a linear
combination of ordered monomials.

For example if Mq(2) = Cq〈a, b, c, d〉/IM , where IM is the ideal of the Manin relations, we have that

ΠM = {(ba, qab), (ca, qac), (cb, bc), (dc, qcd), (db, qbd), (da, ad − (q−1 − q)bc) }
is compatible with the ordering a < b < c < d.

We want to find a basis consisting of ordered monomials for a Cq-module Cq〈xi〉/JΠ. Clearly this
is not possible for any chosen total order. However, when Π is compatible with the order, that is, when
the relations XIk − fk behave nicely with respect to the given order, then we can device an algorithm to
reduce any monomial to a standard form (namely to writing it as a combination of ordered monomials).
This is essentially the content of the Diamond Lemma for ring theory that we shall describe below.

We have two problems to solve: first, one has to make sure that any procedure to reduce a monomial
to the standard form terminates, and then one has to make sure that the chosen procedure gives a unique
result.

Definition 10.3. Assume that we fix a generic set Π as above. Let x, y ∈ X and let rxky be the linear
map ofCq〈xi〉 sending the elements of the form xxiky to xfky and leaving the rest unchanged. rxky
is called a reduction and an element x ∈ X (or more generally in Cq〈xi〉) is reduced if r(x) = x
for all reductions r.

6All of our arguments hold more in general replacing Cq with a commutative ring with 1.
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In general more than one reduction can be applied to an element. For example if we take the quantum
matrices Mq(2) and ΠM as above, we see that dcba is not reduced, and we have several ways to proceed
to reduce it. We want to make sure that that there are no ambiguities, or, in other words, we want to
make sure there is a unique reduced element associated with it.

Definition 10.4. Let x, y, z ∈ X and xik , xil be the first elements of two pairs in Π. We say that
(x, y, z, xik , xil) form an overlapping ambiguity if xik = xy, xil = yz. The ambiguity is resolvable
if there are two reductions r and r′ such that r(xikz) = r′(xxil). In other words, if we can reduce xyz
in two different ways, we must obtain the same result. Similarly (x, y, xik , xil) form an inclusion
ambiguity if xik = xxily. The inclusion ambiguity is solvable if there are two reductions r and r′

such that r(xik) = r′(xxily).

Theorem 10.5. (Diamond Lemma). Let R be the ring defined by generators and relations as:

R := Cq〈xi〉/(XIk − fk, k = 1 . . . s).

If Π = {XIk , fk}k=1,...,s is compatible with the ordering < and all ambiguities are resolvable, then
the set of ordered monomials is a basis for R. Hence R is a free module over Cq.

Proof. See [35].

10.3. A Basis for the Poincaré Quantum Group

In this section, we want to apply the Diamond Lemma, to obtain an explicit basis for the quantum
algebra of the Poincaré quantum group. Let us fix a total order on the variables x, y, t as follows:

t32 > t31 > t42 > t41 > x11 > x12 > x21 > x22 > y33 > y34 > y43 > y44.

One sees right away that the relations in IM as described in (3.7, 3.8, 3.9, 3.10, 3.11) give raise to a
Π compatible with the given order. Furthermore, notice that this order is the Manin ordering (see [33])
in two dimensions when restricted to each of the sets {xIJ}, {yKL}, {tRS}.

As one can readily see, the fact that Π is compatible with the given order ensures that any reordering
procedure terminates.

Theorem 10.6. Let Oq(P ) = Cq〈xij , ykl, til〉/IP be the algebra corresponding to the quantum
Poincaré group. Then, the monomials in the order:

t32 > t31 > t42 > t41 > x11 > x12 > x21 > x22 > y33 > y34 > y43 > y44.

are a basis for Oq(P ).

Proof. By the Diamond Lemma 10.5 we only need to show that all ambiguities are resolvable. We
notice that when two generators a, b, q-commute, that is ab = qsba, they behave, as far the reordering is
concerned, exactly as commutative indeterminates. Hence we only take into consideration ambiguities
where no q-commuting relations appear. The proof consists in checking directly that all such ambigui-
ties are resolvable.

Let us see, as an example of the procedure to follow, how to show that the ambiguity x22x11t32 is
resolvable. All the other cases follow the same pattern since the relations have essentially the same form
as far as the reordering procedure is concerned.

We shall indicate the application of a reduction with an arrow, as it is customary to do.

(x22x11)t32 −→ (x11x22 − (q−1 − q)x12x21)t32 −→ x11(q
−1t32x22

+(q−1 − q)t31x12)− (q−1 − q)[x12(q
−1t32x21 + (q−1 − q)t31x11)]

−→ q−1t32x11x22 + q−1(q−1 − q)t31x11x12

−q−1(q−1 − q)t32x12x21 − q(q−1 − q)t31x11x12

= q−1t32x11x22 − q−1(q−1 − q)t32x12x21 + (1− q2)t31x11x12.
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Similarly

x22(x11t32) −→ x22t32x11 −→ (q−1t32x22 + (q−1 − q)t32x12)x11

−→ q−1t32(x11x22 − (q−1 − q)x12x21) + (1− q2)t31x11x12.

As one can see the two expressions are the same and reduced, hence we obtain that this ambiguity is
resolvable.

Remark 10.7. We end the discussion by noticing that the Theorem 10.6 holds also for the order:

x11 > x12 > x21 > x22 > y33 > y34 > y43 > y44 > t32 > t31 > t42 > t41

the proof being the same.
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