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1. FREUDENTHAL DUALITY
We start and consider the following Lagrangian density in four dimensions (cfr. e.g. [1]):

L = −R

2
+

1

2
gij (ϕ) ∂μϕ

i∂μϕj +
1

4
IΛΣ (ϕ)FΛ

μνF
Σ|μν +

1

8
√
−G

RΛΣ (ϕ) εμνρσFΛ
μνF

Σ
ρσ , (1.1)

describing Einstein gravity coupled to Maxwell (Abelian) vector fields and to a non-linear sigma model of
scalar fields (with no potential); note that L may – but does not necessarily need to – be conceived as the
bosonic sector of D = 4 (ungauged) supergravity theory. Out of the Abelian two-form field strengths
FΛ’s, one can define their duals GΛ, and construct a symplectic vector :

H :=
(
FΛ, GΛ

)T
, ∗GΛ|μν := 2

δL
δFΛ|μν . (1.2)

We then consider the simplest solution of the equations of motion deriving from L, namely a static,
spherically symmetric, asymptotically flat, dyonic extremal black hole with metric [2]

ds2 = −e2U(τ)dt2 + e−2U(τ)

[
dτ2

τ4
+

1

τ2
(
dθ2 + sin θdψ2

)
]
, (1.3)

where τ := −1/r. Thus, the two-form field strengths and their duals can be fluxed on the two-sphere at
infinity S2

∞ in such a background, respectively yielding the electric and magnetic charges of the black
hole itself, which can be arranged in a symplectic vector Q :

pΛ : =
1

4π

∫

S2∞

FΛ, qΛ :=
1

4π

∫

S2∞

GΛ, (1.4)
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Q : =
(
pΛ, qΛ

)T
. (1.5)

Then, by exploiting the symmetries of the background (1.3), the Lagrangian (1.1) can be dimension-
ally reduced from D = 4 to D = 1, obtaining a 1-dimensional effective Lagrangian (′ := d/dτ ) [3]:

LD=1 =
(
U ′)2 + gij (ϕ)ϕ

i′ϕj′ + e2UVBH (ϕ,Q) , (1.6)

where the so-called “effective black hole potential" is defined as [3]

VBH (ϕ,Q) := −1

2
QTM (ϕ)Q, (1.7)

in terms of the symplectic and symmetric matrix [1]

M : =

⎛

⎝ I −R

0 I

⎞

⎠

⎛

⎝ I 0

0 I−1

⎞

⎠

⎛

⎝ I 0

−R I

⎞

⎠ =

⎛

⎜
⎜
⎜
⎝

I +RI−1R −RI−1

−I−1R I−1

⎞

⎟
⎟
⎟
⎠

, (1.8)

MT = M; MΩM = Ω, (1.9)

where I denotes the identity, and R (ϕ) and I (ϕ) are the scalar-dependent matrices occurring in (1.1);
moreover, Ω stands for the symplectic metric (Ω2 = −I). Note that, regardless of the invertibility of R (ϕ)
and as a consequence of the physical consistence of the kinetic vector matrix I (ϕ), M is negative-
definite; thus, the effective black hole potential (1.7) is positive-definite.

By virtue of the matrix M, one can introduce a (scalar-dependent) anti-involution S in any
Maxwell-Einstein-scalar theory described by (1.1) with a symplectic structure Ω, as follows :

S (ϕ) : = ΩM (ϕ) ; (1.10)

S2 (ϕ) = ΩM (ϕ) ΩM (ϕ) = Ω2 = −I; (1.11)

in turn, this allows to define an anti-involution on the dyonic charge vector Q, which has been called
(scalar-dependent) Freudenthal duality [4–6]:

F (Q;ϕ) : = −S (ϕ)Q; (1.12)

F2 = −I, (∀ {ϕ}). (1.13)

By recalling (1.7) and (1.10), the action of F on Q, defining the so-called (ϕ-dependent) Freudenthal
dual of Q itself, can be related to the symplectic gradient of the effective black hole potential VBH :

F (Q;ϕ) = Ω
∂VBH (ϕ,Q)

∂Q . (1.14)

Through the attractor mechanism [7], all this enjoys an interesting physical interpretation when
evaluated at the (unique) event horizon of the extremal black hole (1.3) (denoted below by the subscript
“H"); indeed

∂ϕVBH = 0 ⇔ lim
τ→−∞

ϕi (τ) = ϕi
H (Q) ; (1.15)

SBH (Q) =
AH

4
= π VBH |∂ϕVBH=0 = −π

2
QTMH (Q)Q, (1.16)

where SBH and AH , respectively, denote the Bekenstein-Hawking entropy [8] and the area of the horizon
of the extremal black hole, and the matrix horizon value MH is defined as

MH (Q) := lim
τ→−∞

M (ϕ (τ)) . (1.17)

Correspondingly, one can define the (scalar-independent) horizon Freudenthal dualityFH as the horizon
limit of (1.12) :

Q̃ ≡ FH (Q) := lim
τ→−∞

F (Q;ϕ (τ)) = −ΩMH (Q)Q =
1

π
Ω
∂SBH (Q)

∂Q . (1.18)
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Remarkably, the (horizon) Freudenthal dual of Q is nothing but (1/π times) the symplectic gradient of
the Bekenstein-Hawking black hole entropy SBH ; this latter, from dimensional considerations, is only
constrained to be an homogeneous function of degree two in Q. As a result, Q̃ = Q̃ (Q) is generally a
complicated (non-linear) function, homogeneous of degree one in Q.

It can be proved that the entropy SBH itself is invariant along the flow in the charge space Q defined
by the symplectic gradient (or, equivalently, by the horizon Freudenthal dual) of Q itself :

SBH (Q) = SBH (FH (Q)) = SBH

(
1

π
Ω
∂SBH (Q)

∂Q

)
= SBH

(
Q̃
)
. (1.19)

It is here worth pointing out that this invariance is pretty remarkable: the (semi-classical)
Bekenstein-Hawking entropy of an extremal black hole turns out to be invariant under a generally non-
linear map acting on the black hole charges themselves, and corresponding to a symplectic gradient flow
in their corresponding vector space.

For other applications and instances of Freudenthal duality, see [9–11].

2. GROUPS OF TYPE E7

The concept of Lie groups of type E7 as introduced in the 60s by Brown [12], and then later developed,
e.g. by [13–17].

Starting from a pair (G,R) made of a Lie group G and its faithful representation R, the three axioms
defining (G,R) as a group of type E7 read as follows :

1. Existence of a (unique) symplectic invariant structure Ω in R :

∃!Ω ≡ 1 ∈ R×a R, (2.1)

which then allows to define a symplectic product 〈·, ·〉 among two vectors in the representation
space R itself :

〈Q1, Q2〉 := QM
1 QN

2 ΩMN = −〈Q2, Q1〉 . (2.2)

2. Existence of (unique) rank-4 completely symmetric invariant tensor (K-tensor) in R :

∃!K ≡ 1 ∈ (R×R×R×R)s , (2.3)

which then allows to define a degree-4 invariant polynomial I4 in R itself :

I4 := KMNPQQ
MQNQPQQ. (2.4)

3. Defining a triple map T in R as

T : R×R×R → R; (2.5)

〈T (Q1, Q2, Q3) , Q4〉 : = KMNPQQ
M
1 QN

2 QP
3 Q

Q
4 , (2.6)

it holds that

〈T (Q1, Q1, Q2) , T (Q2, Q2, Q2)〉 = 〈Q1, Q2〉KMNPQQ
M
1 QN

2 QP
2 Q

Q
2 . (2.7)

This property makes a group of type E7 amenable to a description as an automorphism group of
a Freudenthal triple system (or, equivalently, as the conformal groups of the underlying Jordan
triple system – whose a Jordan algebra is a particular case – ).

All electric-magnetic duality (U-duality1) groups of N � 2-extended D = 4 supergravity theories
with symmetric scalar manifolds are of type E7. Among these, degenerate groups of type E7 are those in

1Here U-duality is referred to as the “continuous” symmetries of [18]. Their discrete versions are the U-duality non-
perturbative string theory symmetries introduced by Hull and Townsend [19].
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which the K-tensor is actually reducible, and thus I4 is the square of a quadratic invariant polynomial
I2. In fact, in general, in theories with electric-magnetic duality groups of type E7 holds that

SBH = π
√

|I4 (Q)| = π
√

|KMNPQQMQNQPQQ|, (2.8)

whereas in the case of degenerate groups of type E7 it holds that I4 (Q) = (I2 (Q))2, and therefore the
latter formula simplifies to

SBH = π
√

|I4 (Q)| = π |I2 (Q)| . (2.9)

Simple, non-degenerate groups of type E7 relevant to N � 2-extended D = 4 supergravity theories
with symmetric scalar manifolds are reported in Table 1.

Semi-simple, non-degenerate groups of type E7 of the same kind are given by G = SL(2,R)×
SO(2, n) and G = SL(2,R)× SO(6, n), with R = (2,2+ n) and R = (2,6+ n), respectively relevant
for N = 2 and N = 4 supergravity.

Moreover, degenerate (simple) groups of type E7 relevant to the same class of theories are G =
U(1, n) and G = U(3, n), with complex fundamental representations R = n+ 1 and R = 3+ n, re-
spectively relevant for N = 2 and N = 3 supergravity [16].

The classification of groups of type E7 is still an open problem, even if some progress have been
recently made e.g. in [28] (in particular, cfr. Table D therein).

In all the aforementioned cases, the scalar manifold is a symmetric cosets G
H , where H is the

maximal compact subgroup (with symmetric embedding) of G. Moreover, the K-tensor can generally
be expressed as [17]

KMNPQ = −n(2n+ 1)

6d

[
tαMN tα|PQ − d

n (2n+ 1)
ΩM(PΩQ)N

]
, (2.10)

where dimR = 2n and dimG = d, and tαMN denotes the symplectic representation of the generators of
G itself. Thus, the horizon Freudenthal duality can be expressed in terms of the K-tensor as follows [4]:

FH (Q)M ≡ Q̃M =
∂
√

|I4 (Q)|
∂QM

= ε
2

√
|I4 (Q)|

KMNPQQNQPQQ, (2.11)

where ε := I4/ |I4|; note that the horizon Freudenthal dual of a given symplectic dyonic charge vector
Q is well defined only when Q is such that I4 (Q) �= 0. Consequently, the invariance (1.19) of the black
hole entropy under the the horizon Freudenthal duality can be recast as the invariance of I4 itself :

I4 (Q) = I4

(
Q̃
)
= I4

(

Ω
∂
√

|I4 (Q)|
∂Q

)

. (2.12)

In absence of “flat directions" at the attractor points (namely, of unstabilized scalar fields at the
horizon of the black hole), and for I4 > 0, the expression of the matrix MH (Q) at the horizon can be
computed to read

MH|MN (Q) = − 1√
I4

(
2Q̃M Q̃N − 6KMNPQQPQQ +QMQN

)
, (2.13)

and it is invariant under horizon Freudenthal duality :

FH (MH)MN := MH|MN (Q̃) = MH|MN (Q). (2.14)
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Table 1. Simple, non-degenerate groupsG related to Freudenthal triple systemsM (J3) on simple rank-3 Jordan
algebras J3. In general, G ∼= Conf (J3) ∼= Aut (M (J3)) (see, e.g. [20–22] for a recent introduction, and a list of
Refs.). O, H, C and R, respectively, denote the four division algebras of octonions, quaternions, complex and real
numbers, and Os, Hs, Cs are the corresponding split forms. Note that the G related to split forms Os, Hs, Cs is
the maximally non-compact (split) real form of the corresponding compact Lie group. M1,2 (O) is the Jordan
triple system generated by 2× 1 vectors over O [23]. Note that the STU model, based on J3 = R⊕R⊕R, has a
semi-simple G4, but its triality symmetry [24] renders it “effectively simple”. The D = 5 uplift of the T 3 model
based on J3 = R is the pure N = 2, D = 5 supergravity. JH

3 is related to both 8 and 24 supersymmetries, because
the corresponding supergravity theories are “twin", namely they share the very same bosonic sector [23, 25–27].

J3 G4 R N

JO

3
E7(−25) 56 2

JOs
3

E7(7) 56 8

JH

3
SO∗ (12) 32 2, 6

JHs
3

SO (6, 6) 32 0

JC

3
SU (3, 3) 20 2

JCs
3

SL (6,R) 20 0

M1,2 (O) SU (1, 5) 20 5

JR

3
Sp (6,R) 14′ 2

R⊕ R⊕ R

(STU)

[SL (2,R)]3 (2,2,2) 2

R

(T 3)

SL (2,R) 4 2
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3. DUALITY ORBITS, RIGID SPECIAL KÄHLER GEOMETRY AND
PRE-HOMOGENEOUS VECTOR SPACES

For I4 > 0, MH (Q) given by (2.13) is one of the two possible solutions to the set of equations [29]
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

MT (Q) ΩM (Q) = εΩ;

MT (Q) = M (Q) ;

QTM (Q)Q = −2
√

|I4 (Q)|,

(3.1)

which describes symmetric, purely Q-dependent structures at the horizon; they are symplectic or anti-
symplectic, depending on whether I4 > 0 or I4 < 0, respectively. Since in the class of (super)gravity
D = 4 theories discussed the sign of I4 actually determines a stratification of the representation space
R of charges into distinct orbits of the action of G into R itself (usually named duality orbits), the
symplectic or anti-symplectic nature of the solutions to the system (3.1) is G-invariant, and supported
by the various duality orbits of G (in particular, by the so-called “large" orbits, for which I4 is non-
vanishing).

One of the two possible solutions to the system (3.1) reads [29]

M+(Q) = − 1
√

|I4|

(
2Q̃M Q̃N − 6εKMNPQQPQQ + εQMQN

)
;

FH (M+)MN : = M+|MN (Q̃) = εM+|MN (Q).

For ε = +1 ⇔ I4 > 0, it thus follows that

M+(Q) = MH (Q) , (3.2)

as anticipated.

On the other hand, the other solution to system (3.1) reads [29]

M− (Q) =
1

√
|I4|

(
Q̃M Q̃N − 6εKMNPQQPQQ

)
; (3.3)

FH (M−)MN : = M−|MN (Q̃) = εM−|MN(Q). (3.4)

By recalling the definition of I4 (2.4), it is then immediate to realize that M− (Q) is the (opposite of the)
Hessian matrix of (1/π times) the black hole entropy SBH :

M−|MN (Q) = −∂M∂N
√

|I4| = − 1

π
∂M∂NSBH . (3.5)

The matrix M− (Q) is the (opposite of the) pseudo-Euclidean metric of a non-compact, non-
Riemannian rigid special Kähler manifold related to the duality orbit of the black hole electromagnetic
charges (to which Q belongs), which is an example of pre-homogeneous vector space (PVS) [30]. In
turn, the nature of the rigid special manifold may be Kähler or pseudo-Kähler, depending on the existence
of a U(1) or SO(1, 1) connection2.

In order to clarify this statement, let us make two examples within maximal N = 8, D = 4 supergrav-
ity. In this theory, the electric-magnetic duality group is G = E7(7), and the representation in which the
e.m. charges sit is its fundamental R = 56. The scalar manifold has rank-7 and it is the real symmetric
coset3 G/H = E7(7)/SU(8), with dimension 70.

2For a thorough introduction to special Kähler geometry, see e.g. [31].
3To be more precise, it is worth mentioning that the actual relevant coset manifold is E7(7)/[SU(8)/Z2], because spinors
transform according to the double cover of the stabilizer of the scalar manifold (see e.g. [32, 33], and Refs. therein).
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Table 2. Non-generic, nor irregular PVS with simple G, of type 2 (in the complex ground field). To avoid
discussing the finite groups appearing, the list presents the Lie algebra of the isotropy group rather than
the isotropy group itself [34]. The interpretation (of suitable real, non-compact slices) in D = 4 theories of
Einstein gravity is added; remaining cases will be investigated in a forthcoming publication

G V n isotropy alg. degree interpr. D = 4

SL(2,C) S3
C

2 1 0 4 N = 2,R (T 3)

SL(6,C) Λ3
C

6 1 sl(3,C)⊕2 4

N = 2, JC

3

N = 0, JCs
3

N = 5,M1,2(O)

SL(7,C) Λ3
C

7 1 g
C

2 7

SL(8,C) Λ3
C

8 1 sl(3,C) 16

SL(3,C) S2
C

3 2 0 6

SL(5,C) Λ2
C

5 3

4

sl(2,C)

0

5

10

SL(6,C) Λ2
C

6 2 sl(2,C)⊕3 6

SL(3,C)⊗2
C

3 ⊗ C
3 2 gl(1,C)⊕2 6

Sp(6,C) Λ3
0C

6 1 sl(3,C) 4 N = 2, JR

3

Spin(7,C) C
8

1

2

3

g
C

2

sl(3,C)⊕ so(2,C)

sl(2,C)⊕ so(3,C)

2

2

2

Spin(9,C) C
16 1 spin(7,C) 2

Spin(10,C) C
16 2

3

g
C

2 ⊕ sl(2,C)

sl(2,C)⊕ so(3,C)

2

4

Spin(11,C) C
32 1 sl(5,C) 4

Spin(12,C) C
32 1 sl(6,C) 4

N = 2, 6, JH

3

N = 0, JHs
3

Spin(14,C) C
64 1 g

C

2 ⊕ g
C

2 8

GC

2 C
7 1

2

sl(3,C)

gl(2,C)

2

2

EC

6 C
27 1

2

f
C

4

so(8,C)

3

6

EC

7 C
56 1 e

C

6 4
N = 2, JO

3

N = 8, JOs
3
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1. The unique duality orbit determined by the G-invariant constraint I4 > 0 is the 55-dimensional
non-symmetric coset

OI4>0 =
E7(7)

E6(2)
. (3.6)

By customarily assigning positive (negative) signature to non-compact (compact) generators,
the pseudo-Euclidean signature of OI4>0 is (n+, n−) = (30, 25). In this case, M− (Q) given by
(3.5) is the 56-dimensional metric of the non-compact, non-Riemannian rigid special Kähler non-
symmetric manifold

OI4>0 =
E7(7)

E6(2)
× R

+, (3.7)

with signature (n+, n−) = (30, 26), thus with character χ := n+ − n− = 4. Through a conifica-
tion procedure (amounting to modding out4

C ∼=SO(2)× SO(1, 1) ∼= U(1)×R
+, one can obtain

the corresponding 54-dimensional non-compact, non-Riemannian special Kähler symmetric
manifold

OI4>0/C ∼=ÔI4>0 =
E7(7)

E6(2) × U(1)
. (3.8)

2. The unique duality orbit determined by the G-invariant constraint I4 < 0 is the 55-dimensional
non-symmetric coset

OI4<0 =
E7(7)

E6(6)
, (3.9)

with pseudo-Euclidean signature given by (n+, n−) = (28, 27), thus with character χ = 0. In this
case, M− (Q) given by (3.5) is the 56-dimensional metric of the non-compact, non-Riemannian
rigid special pseudo-Kähler non-symmetric manifold

OI4<0 =
E7(7)

E6(6)
× R

+, (3.10)

with signature (n+, n−) = (28, 28). Through a “pseudo-conification" procedure (amounting
to modding out Cs

∼=SO(1, 1) × SO(1, 1) ∼= R
+ × R

+, one can obtain the corresponding 54-
dimensional non-compact, non-Riemannian special pseudo-Kähler symmetric manifold

OI4<0/Cs
∼=ÔI4<0 =

E7(7)

E6(6) × SO(1, 1)
. (3.11)

Eqs. (3.7) and (3.10) are non-compact, real forms of E7
E6

×GL(1), which is the type 29 in the
classification of regular, pre-homogeneous vector spaces (PVS) worked out by Sato and Kimura in
[34]. From its definition, a PVS is a finite-dimensional vector space V together with a subgroup G of
GL(V ), such that G has an open dense orbit in V . PVS are subdivided into two types (type 1 and type
2), according to whether there exists an homogeneous polynomial on V which is invariant under the
semi-simple (reductive) part of G itself. For more details, see e.g. [30, 35, 36].

In the case of E7
E6

×GL(1), V is provided by the fundamental representation space R = 56 of G = E7,
and there exists a quartic E7-invariant polynomial I4 (2.4) in the 56; H = E6 is the isotropy (stabilizer)
group.

Amazingly, simple, non-degenerate groups of type E7 (relevant to D = 4 Einstein (super)gravities
with symmetric scalar manifolds) almost saturate the list of irreducible PVS with unique G-invariant
polynomial of degree 4 (cfr. Table 2); in particular, the parameter n characterizing each PVS can be
interpreted as the number of centers of the regular solution in the (super)gravity theory with electric-
magnetic duality (U-duality) group given by G. This topic will be considered in detail in a forthcoming
publication.

4The signature along the R+-direction is negative [29].
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