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Abstract—Let (X, d) be a finite ultrametric space. In 1961 E.C. Gomory and T.C. Hu proved the
inequality |Sp(X)| � |X | where Sp(X) = {d(x, y) : x, y ∈ X}. Using weighted Hamiltonian cycles
and weighted Hamiltonian paths we give new necessary and sufficient conditions under which the
Gomory-Hu inequality becomes an equality. We find the number of non-isometric (X, d) satisfying
the equality | Sp(X)| = |X | for given Sp(X). Moreover it is shown that every finite semimetric space
Z is an image under a composition of mappings f : X → Y and g : Y → Z such that X and Y are
finite ultrametric spaces, X satisfies the above equality, f is an ε-isometry with an arbitrary ε > 0,
and g is a ball-preserving map.
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1. INTRODUCTION

Recall some necessary definitions from the theory of metric spaces. An ultrametric on a set X is a
function d : X ×X → R

+, R+ = [0,∞), such that for all x, y, z ∈ X:

(i) d(x, y) = d(y, x),

(ii) (d(x, y) = 0) ⇔ (x = y),

(iii) d(x, y) ≤ max{d(x, z), d(z, y)}.

Inequality (iii) is often called the strong triangle inequality. By studying the flows in networks, R.
Gomory and T. Hu [1], deduced an inequality that can be formulated, in the language of ultrametric
spaces, as follows: if (X, d) is a finite nonempty ultrametric space with the spectrum

Sp(X) = {d(x, y) : x, y ∈ X},
then

|Sp(X)| � |X| .

Definition 1.1. Define by U the class of finite ultrametric spaces X with |Sp(X)| = |X|.
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134 DOVGOSHEY et al.

Two descriptions of X ∈ U were obtained in terms of the representing trees and, respectively, so-
called diametrical graphs of X (see [2] theorems 2.3 and 3.1.). Our paper is also a contribution to this
lines of studies. We give a new criterium of X ∈ U in terms of weighted Hamiltonian cycles and weighted
Hamiltonian paths (see Theorem 2.5) and find the number of non-isometric X ∈ U with given Sp(X)
(see Proposition 3.2). It is also shown that every finite semimetric X is an image of a space Y ∈ U,
X = g(f(Y )), where g is a ball-preserving map and f is an ε-isometry (see Theorem 4.5 and Theorem
4.6).

Recall that a graph is a pair (V,E) consisting of nonempty set V and (probably empty) set E
elements of which are unordered pairs of different points from V . For the graph G = (V,E), the set
V = V (G) and E = E(G) are called the set of vertices and the set of edges, respectively. A graph G
is empty if E(G) = ∅. A graph is complete if {x, y} ∈ E(G) for all distinct x, y ∈ V (G). Recall that a
path is a nonempty graph P = (V,E) of the form

V = {x0, x1, ..., xk}, E = {{x0, x1}, ..., {xk−1, xk}},
where xi are all distinct. The number of edges of a path is the length. Note that the length of a path can
be zero. A Hamiltonian path is a path in the graph that visits each vertex exactly once. A finite graph C
is a cycle if |V (C)| ≥ 3 and there exists an enumeration (v1, v2, ..., vn) of its vertices such that

({vi, vj} ∈ E(C)) ⇔ (|i− j| = 1 or |i− j| = n− 1).

For the graphG = (V,E) a Hamiltonian cycle is a cycle which is a subgraph ofG that visits every vertex
exactly once. A connected graph without cycles is called a tree. A tree T may have a distinguished vertex
called the root; in this case T is called a rooted tree.

Generally we follow terminology used in [3]. A graph G = (V,E) together with a function w : E →
R
+, where R+ = [0,+∞), is called a weighted graph, and w is called a weight or a weighting function.

The weighted graphs we denote by (G,w).
A nonempty graph G is called complete k-partite if its vertices can be divided into k disjoint

nonempty subsets X1, ...,Xk so that there are no edges joining the vertices of the same subset Xi and
any two vertices from different Xi,Xj , 1 � i, j � k are adjacent. In this case we writeG = G[X1, ...,Xk ].

2. CYCLES IN ULTRAMETRIC SPACES

In the following we identify a finite ultrametric space (X, d) with a complete weighted graph (GX , wd)
such that V (GX) = X and

∀x, y ∈ X, x 
= y : wd({x, y}) = d(x, y). (2.1)

The following lemma was proved in [4].

Lemma 2.1. Let (X, d) be an ultrametric space with |X| � 3. Then for every cycle C ⊆ GX there
exist at least two distinct edges e1, e2 ∈ C such that

wd(e1) = wd(e2) = max
e∈E(C)

wd(e). (2.2)

We shall say that a weighted cycle (C,w) is characteristic if the following conditions hold.

(i) There are exactly two distinct e1, e2 ∈ E(C) such that (2.2) holds.

(ii) The restriction of w on the set E(C) \ {e1, e2} is strictly positive and injective.

Remark 2.2. Let us explain the choice of a name for such a type of cycles. It was proved in [4] that for
every characteristic weighted cycle (C,w) there is a unique ultrametric d : V (C)× V (C) → R

+ such
that

d(x, y) = w({x, y})
for all {x, y} ∈ E(C). In other words we can uniquely reconstruct whole the ultrametric space (X, d) by
characteristic cycle (C,wd) ⊆ (GX , wd) if |V (C)| = |X|.
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ON SPACES EXTREMAL 135

We need the following definition.

Definition 2.3 ([1]). Let (X, d) be a finite ultrametric space. Define the graph Gd
X as follows V (Gd

X) =
X and

({u, v} ∈ E(Gd
X )) ⇔ (d(u, v) = diamX).

We call Gd
X a diametrical graph of the space (X, d).

Lemma 2.4 ([1]). Let (X, d) be a finite ultrametric space, |X| � 2. If (X, d) ∈ U, then Gd
X is a

bipartite graph, Gd
X = Gd

X [X1,X2] and X1 ∈ U, X2 ∈ U.

We shall say that a weighted path (P,w) is characteristic if the weighting function w : E(P ) → R
+

is injective and strictly positive.
The next theorem is the main result of this section.

Theorem 2.5. Let (X, d) be a finite ultrametric space with |X| � 3. Then the following conditions
are equivalent.

(i) (X, d) ∈ U .

(ii) There exists a characteristic Hamiltonian path in GX .

(iii) There exists a characteristic Hamiltonian cycle in GX .

Proof. (i)⇒(ii). We shall prove the implication (i)⇒(ii) by induction on |X|. Let (X, d) ∈ U. If |X| = 3,
then the existence of a characteristic Hamiltonian path is evident. Suppose the implication (i)⇒(ii) holds
for X with |X| � n− 1. Let |X| = n. Let us prove that there exists a characteristic Hamiltonian path in
GX . According to Lemma 2.3 we have

Gd
X = Gd

X [X1,X2], |X1| � n− 1, |X2| � n− 1 (2.3)

and X1 ∈ U, X2 ∈ U. By the induction supposition there exist characteristic Hamiltonian paths P1 ⊆
GX1 and P2 ⊆ GX2 . Let V (P1) = {x1, ..., xm} and V (P2) = {xm+1, ..., xn}, 1 � m � n− 1. Since
Gd

X = Gd
X [X1,X2], we have

diamX /∈ Sp(X1) and diamX /∈ Sp(X2).

Moreover, the equality

Sp(X1) ∩ Sp(X2) = {0} (2.4)

holds. Indeed, it is clear that

0 ∈ Sp(X1) ∩ Sp(X2),

but if |Sp(X1) ∩ Sp(X2)| � 2, then using the equality

Sp(X) = Sp(X1) ∪ Sp(X2) ∪ {diamX} (2.5)

and the Gomory-Hu inequality we obtain

|Sp(X)| � 1 + |X1|+ |X2| − |X1 ∩X2| < |X1|+ |X2| = |X|
contrary to (X, d) ∈ U. The equality d(xm, xm+1) = diamX, (2.4) and (2.5) imply that the path P with
V (P ) = {x1, .., xm, xm+1, ..., xn} is a characteristic Hamiltonian path in GX .

(ii)⇒(iii). Let P be a characteristic Hamiltonian path in GX with V (P ) = {x1, ..., xn}. Consider
the cycle C = (x1, ..., xn). It is clear that C is Hamiltonian. According to Lemma 2.1 the equality

wd({x1, xn}) = max
e∈E(P )

wd(e)

holds. This means that C is characteristic.
(iii)⇒(i). Let (X, d) be a finite ultrametric space and let C be a characteristic Hamiltonian cycle in

GX . Using Lemma 2.1 with this C we easily show that |Sp(X)| = |X|. Condition (i) follows.
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With every finite ultrametric space (X, d), we can associate (see [2]) a labeled rooted m-ary tree TX

by the following rule. If X = {x} is a one-point set, then TX is a tree consisting of one node x considered
strictly binary by definition. Let |X| � 2 and Gd

X = Gd
X [X1, ...,Xk ] be the diametrical graph of the space

(X, d). In this case the root of the tree TX is labeled by diamX and, moreover, TX has k nodes X1, ...,Xk

of the first level with the labels

li =

⎧
⎪⎨

⎪⎩

diamXi, if |Xi| � 2,

x, if Xi is a one-point set

with the single element x,

(2.6)

i = 1, ..., k. The nodes of the first level indicated by labels x ∈ X are leaves, and those indicated by
labels diamXi are internal nodes of the tree TX . If the first level has no internal nodes, then the tree
TX is constructed. Otherwise, by repeating the above-described procedure with Xi ⊂ X corresponding
to internal nodes of the first level, we obtain the nodes of the second level, etc. Since |X| is finite, and
the cardinal numbers |Y |, Y ⊆ X, decrease strictly at the motion along any path starting from the root,
consequently all vertices on some level will be leaves, and the construction of TX is completed. The
above-constructed labeled tree TX is called the representing tree of the space (X, d). We note that
every element x ∈ X is ascribed to some leaf, and all internal nodes are labeled as r ∈ Sp(X). In this
case, different leaves correspond to different x ∈ X, but different internal nodes can have coinciding
labels.

Recall that a rooted tree is strictly binary if every internal node has exactly two children. Note that
the correspondence between trees and ultrametric spaces is well known [5–7].

Define by LT the set of leaves of the tree T and by l(v) the label of the vertex v.
The proof of the following two lemmas is immediate.

Lemma 2.6. Let X be a finite ultrametric space having a strictly binary tree TX . If v0 and v1 are
internal nodes of TX and v1 is a direct successor of v0 then the inequality l(v1) < l(v0) holds.

Lemma 2.7. Let (X, d) be a finite ultrametric space with |X| � 3 and let Gd
X = Gd

X [X1, . . . ,Xk] be
the diametrical graph of (X, d). Then a tree TX is strictly binary if and only if k = 2 and TX1 and
TX2 are strictly binary.

Proposition 2.8. Let (X, d) be a finite ultrametric space with |X| � 3. The following conditions
are equivalent.

(i) TX is strictly binary.

(ii) If X1 ⊆ X and |X1| � 3, then there exists a Hamiltonian cycle C ⊆ GX1 with exactly two
edges of maximal weight.

(iii) There is no equilateral triangle in (X, d).

Proof. (i)⇒(ii). Suppose TX is strictly binary. Let X1 be a subset of X, |X1| � 3. According to
construction ofTX all elements ofX1 are labels of leaves of TX . Let v0 be a smallest common predecessor
for the leaves of TX labeled by elements ofX1. Let v10 and v20 be the two offsprings of v0 (direct successors)
and let T1 and T2 be the subtrees of the tree TX with the roots v10 and v20 . Let L1 = LT1 ∩X1 and L2 =
LT2 ∩X1 and let P1 = {x1, ..., xm} and P2 = {xm+1, ..., x|X1|}, 1 � m � |X1| − 1, be Hamiltonian
paths in the spaces (L1, d) and (L2, d). By the property of representing trees of ultrametric spaces we
have d(x, y) = l(v0) for all x ∈ L1 and y ∈ L2. Since X1 = L1 ∪ L2, we obtain that the Hamiltonian
cycle C = (x1, ..., xm, xm+1, ..., x|X1|) has exactly the two edges {x1, x|X1|} and {xm, xm+1} of maximal
weight.

(ii)⇒(iii). This implication is evident.
(iii)⇒(i). We will prove (i) by induction on |X|. The statement (i) evidently follows from (iii) if |X| =

3. Assume that (iii)⇒(i) is satisfied for all finite ultrametric spaces (X, d) with 3 � |X| � n, n ∈ N. Let
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Gd
X = Gd

X [X1, . . . ,Xk] be the diametrical graph of (X, d). Statement (i) holds if k = 2. Indeed, since
the inequality |Xi| < |X| holds, the induction assumption implies that for every i = 1, . . . , k, TXi is a
strictly binary tree. Hence if k = 2, then TX is a strictly binary tree by Lemma 2.7. To complete the proof
it suffices to note that if k � 3 and xi ∈ Xi for i = 1, 2, 3, then the points x1, x2, x3 form an equilateral
triangle with d(x1, x2) = d(x2, x3) = d(x3, x1) = diamX.

3. THE NUMBER OF NON-ISOMETRIC X ∈ U WITH GIVEN Sp(X)

Let n ∈ N and Un denote the class of ultrametric spaces X ∈ U such that |X| = n. In the present
section we study the following question: how many non-isometric spaces having the same spectrum are
in the class Un? Let us denote this number by κ(Un).

Definition 3.1 ([8]). Let (X, dX ), (Y, dY ) be metric spaces. A bijective mapping Φ: X → Y is a weak
similarity if there is a strictly increasing bijective function f : Sp(Y ) → Sp(X) such that the equality

dX(x, y) = f(dY (Φ(x),Φ(y))) (3.1)

holds for all x, y ∈ X. Write X � Y if a weak similarity Φ : X → Y exists.

It is clear that� is an equivalence relation. It was proved in [8] that ifX and Y are compact ultrametric
spaces with the same spectrum, then every week similarity Φ: X → Y is an isometry. So, the main
question of this section can be reformulated as follows. How many spaces are there in Un up to weak
similarity?

Proposition 3.2. Let Un := {X ∈ U : |X| = n}, n ∈ N, let Un/ � be the quotient set of Un by � and
let

κ(Un) := card(Un/ �).

Then the equality

κ(Un) =

n−1∑

k=2

Ck−2
n−3κ(Uk)κ(Un−k) (3.2)

holds for every integer n � 3 with κ(U1) = κ(U2) = 1 and

Ck−2
n−3 =

(n− 3)!

(k − 2)!(n − k − 1)!
.

Proof. Directly we can find the initial values

κ(U1) = κ(U2) = 1.

Let n ≥ 3. The number κ(Un) coincides with the number of non-isometric (X, d) ∈ Un having the
spectrum {0, 1, ..., n − 1}. For every such (X, d) ∈ Un we write Gd

X [X1,X2] for the diametrical graph
of (X, d). The inequality n � 3 implies that diamX = n− 1 > 1. Since

Sp(X) = {n− 1} ∪ Sp(X1) ∪ Sp(X2)

and

Sp(X1) ∩ Sp(X2) = {0},
we may assume, without loss of generality, that

1 ∈ Sp(X1) and 1 /∈ Sp(X2).

Let |X1| = k. It follows from 1 ∈ Sp(X1) that k � 2. Moreover the statement X2 
= ∅ implies that
k � n− 1. As was noted in the second section of the paper we have

X1 ∈ Uk and X2 ∈ Un−k.
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Let Sp(X1) = {0, 1, n1, ..., nk−2} where 1 < n1 < ... < nk (if k � 3). The set {n1, ..., nk−2} can be
selected from the set {2, ..., n − 2} in Ck−2

n−3 ways. It is clear that if (X, d), (Y, ρ) ∈ Un and

Sp(X) = Sp(Y ) = {0, 1, ..., n − 1}

and if for the diametrical graphs Gd
X [X1,X2], G

ρ
Y [Y1, Y2] we have

1 ∈ Sp(X1) and 1 ∈ Sp(Y1),

then X and Y are isometric if and only if X1 is isometric to Y1 and X2 is isometric to Y2. Now using the
multiplication principle and additional principle we obtain (3.2).

Corollary 3.3. The number κ(Un) of all non-isometric spaces X ∈ Un with given Sp(X) equals to

n−1∑

k=2

Ck−2
n−3κ(Uk)κ(Un−k),

where κ(U1) = κ(U2) = 1.

Using formula (3.2) we can find κ(U3) = 1, κ(U4) = 2, κ(U5) = 5, κ(U6) = 16, κ(U7) = 61 and so
on.
Remark 3.4. As was shown in [2] there is an isomorphism between spaces fromU and strictly decreasing
binary trees.

It is easy to see that there is also a bijection between the strictly decreasing binary trees and the ranked
trees Rn. The definition of the ranked trees Rn one can find in [9]. It was noted in [9] that numbers of Rn

correspond to sequence A000111 from [10].

4. BALL-PRESERVING MAPPINGS, ε-ISOMETRIES AND SEMIMETRIC SPACES

Let X be a set. A semimetric on X is a function d : X ×X → R
+ such that d(x, y) = d(y, x)

and (d(x, y) = 0) ⇔ (x = y) for all x, y ∈ X. A pair (X, d), where d is a semimetric on X, is called a
semimetric space (see, for example, [11]).

A directed graph or digraph is a set of nodes connected by edges, where the edges have a direction
associated with them. In formal terms a digraph is a pair G = (V,A) of

• a set V , whose element are called vertices or nodes,

• a set A of ordered pairs of vertices, called arcs, directed edges, or arrows.

An arc e = 〈x, y〉 is considered to be directed from x to y; y is said to be a direct successor of x, and
x is said to be a direct predecessor of y. If a path made up of one or more successive arcs leads from x
to y, then y is said to be a successor of x, and x is said to be a predecessor of y.

A Hasse diagram for a partially ordered set (X,�X) is a digraph (X,AX ), where X is the set of
vertices and AX ⊆ X ×X is the set of directed edges such that the pair 〈v1, v2〉 belongs to AX if and
only if v1 �X v2, v1 
= v2, and implication

(v1 �X w �X v2) ⇒ (v1 = w ∨ v2 = w)

holds for every w ∈ X.
Recall that a subset B of a semimetric space (X, d) is called a closed ball if it can be represented as

follows:

B = Br(t) = {x ∈ X : d(x, t) � r},
where t ∈ X and r ∈ [0,∞). Denote by BX the set of all distinct balls of semimetric space (X, d).

Definition 4.1. Let X and Y be semimetric spaces. A mapping F : X → Y is ball-preserving if

F (Z) ∈ BY , (4.1)

for every Z ∈ BX .
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Definition 4.2. Let G1 = (V1, A1) and G2 = (V2, A2) be directed graphs. A map F : V1 → V2 is a graph
homomorphism if the implication

(〈u, v〉 ∈ A1) ⇒ (〈F (u), F (v)〉 ∈ A2)

holds for all u, v ∈ V1. A homomorphism F : V1 → V2 is an isomorphism if F bijective and the inverse
map F−1 is also a homomorphism.

According to [12] we shall say that a graph homomorphism F : V1 → V2 from G1 = (V1, A1) to
G2 = (V2, A2) is a surjective homomorphism if V2 = F (V1) and A2 = F (A1) where

F (A1) = {〈F (u), F (v)〉 : 〈u, v〉 ∈ A1}.
Remark 4.3. It is evident that every isomorphism is a surjective homomorphism.

It was shown in [13] that if X and Y are finite ultrametric spaces, then the following conditions are
equivalent.

• There is a bijective ball-preserving mapping F : X → Y such that the inverse mapping
F−1 : Y → X is also ball-preserving.

• The Hasse diagrams (BX , ABX
) and (BY , ABY

) of the posets (BX ,⊆) and (BY ,⊆) are isomor-
phic as directed graphs.

Definition 4.4. Let (X, d) and (Y, ρ) be semimetric spaces and let ε > 0. A surjective mapping F : X →
Y is an ε-isometry if the inequality

|d(x, y) − ρ(F (x), F (y))| � ε

holds for all x, y ∈ X.

The main result of the present section is the following two theorems.

Theorem 4.5. Let X be a finite nonempty semimetric space. Then there is a finite ultrametric space
Y and a surjective ball-preserving function F : Y → X such that the mapping

BY � B �→ F (B) ∈ BX

is a surjective homomorphism from the Hasse diagram (BY , AY ) of (BY ,⊆) to the Hasse diagram
(BX , AX) of (BX ,⊆).

Theorem 4.6. Let (Y, d) be a finite ultrametric space. Then for every ε > 0 there is a bijective ε-
isometry Φ: W → Y such that W ∈ U.

Theorems 4.5 and 4.6 imply the following

Corollary 4.7. For every finite nonempty semimetric space X and every ε > 0 there are mappings
F : Y → X and Φ: Z → Y such that Y is finite and ultrametric, Z ∈ U, F is ball-preserving, Φ is
an ε-isometry and

X = F (Φ(Z)).

The next lemma will be used in the proof of Theorem 4.5.

Lemma 4.8. Let X be a finite semimetric space. If B ∈ BX and |B| � 2, then the following
statements hold.

(i) The ball B has at least two direct predecessors in the Hasse diagram (BX , ABX
).

(ii) The union of all direct predecessors of B coincides with B.
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Proof. Let B ∈ BX and |B| � 2. The set of all direct predecessors of B is simply the set of all maximal
elements of the subset

S = {S ∈ BX : S ⊆ B and S 
= B} (4.2)

of the poset (BX ,⊆). The inequality |B| � 2 implies

B ⊆
⋃

S, S ∈ S,

because {x} ∈ S for every x ∈ B. Since X is finite, S is also finite and consequently for every x ∈ B there
is a maximal element S of S such that x ∈ S. Statement (ii) follows. Now to finish the proof it suffices to
note that if B contains a unique direct predecessor S, then B = S contrary to (4.2).

Proof of Theorem 4.5. Let (BX , ABX
) be a Hasse diagram of the poset (BX ,⊆). To this diagram we

assign n-ary rooted labeled tree T by the following procedure. Let the root v0 of T be labeled by X. Let
B1, ..., Bk be direct predecessors of X in (BX , ABX

). Define v1, .., vk to be the children (nodes of the first
level) of v0 with the labels B1, ..., Bk respectively. Let us look at the nodes of the first level of the tree T .
Define the children of the nodes vi, i = 1, ..., k, as follows: if there is no Y such that 〈Y,Bi〉 ∈ ABX

then
vi is a leaf of T ; if Bi1, Bi2, ..., Bin are direct predecessors of Bi in (BX , ABX

), then define vi1, vi2, ..., vin
to be the children of vi (nodes of the second level) with labels Bi1, Bi2, ..., Bin respectively. Note that the
nodes of the second level may have the identical labels in the case when Bij is a direct predecessor both
Bk1 and Bk2 . Do the same procedure with the nodes of the second level and so on. By Lemma 4.8 T is
n-ary tree with n � 2. Note also that the leaves of T are labeled with the balls {xi}, xi ∈ X.

Let n be the number of leaves of T . We define a new names yi, i = 1, .., n, for the leaves of T in any
order but save the labels of these leaves. Let Y be an ultrametric space with representing tree isomorphic
to T , Y = {y1, ..., yn}. Define F : Y → X by the rule

F (yi) = xi if the label of yi is xi.

We claim that F is ball-preserving. Indeed, by Lemma 4 in [13] for every B ∈ BY there exists a node
ṽ of T such that ΓT (ṽ) = B, where ΓT (ṽ) is the set of all leaves of subtree with the root ṽ. And let B̃
be the label of ṽ. According to Lemma 4.8 and the construction of T the set F (B) coincides with B̃. It
suffices to note that B̃ is a ball in BX because all the nodes in T are labeled by balls of semimetric space
X. Furthermore, it is easily seen that the mapping

BX � B �→ F (B) ∈ BY

is a surjective homomorphism from (BY , AY ) to (BX , AX) as required.

Definition 4.9. Let (Y, dY ) and (W,dW ) be bounded metric spaces and let Δ > 0. The Gromov-
Hausdorff distance dGH(Y,W ) is less than Δ if there exists a metric spaces (Z, dZ) with subspaces
Y ′ and W ′ such that

• Y and Y ′ are isometric;

• W and W ′ are isometric;

• We have the inclusions

Y ′ ⊆
⋃

w∈W ′

OΔ(w) and W ′ ⊆
⋃

y∈Y ′

OΔ(y), (4.3)

where for t ∈ Z, OΔ(t) = {z ∈ Z : dZ(t, z) < Δ} is an open ball from (Z, dZ) that has the radius
Δ.

The next lemma is a reformulation of Proposition 4.1 from [2].

Lemma 4.10. Let Y be a finite ultrametric space and let ε > 0. Then there is a finite ultrametric
space W ∈ U such that |Y | = |W | and

dGH(Y,W ) < ε.
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Now we are ready to prove Theorem 4.6.

Proof of Theorem 4.6. The theorem is trivial if |Y | � 2. Let |Y | � 3, let ε > 0 and let

δ = min{dY (x, y) : x, y ∈ Y, x 
= y}.

Since 3 � |Y | < ∞, we have 0 < δ < ∞. By Lemma 4.10 for every Δ from the interval (0,min( δ2 ,
ε
2))

there is W ∈ U such that dGH(Y,W ) < Δ. Let (Z, dZ) be metric space which contains isometric copies
Y ′ and W ′ of Y and W respectively such that inclusions (4.3) hold. We claim that for every w ∈ W ′

there is a unique y ∈ Y ′ such that y ∈ OΔ(w). Suppose we can find w ∈ W and two distinct y1, y2 ∈ Y ′

which satisfy

y1 ∈ OΔ(w) and y2 ∈ OΔ(w).

Then the triangle inequality and the definitions of δ and Δ imply

δ � dZ(y1, y2) � dZ(y1, w) + dZ(w, y2) � 2Δ < δ.

This contradiction shows that, for every w ∈ W ′, the set

OΔ(w) ∩ Y ′

is either empty or contains a single point. Consequently, if there exists w∗ ∈ W ′ such that

OΔ(w
∗) ∩ Y ′ = ∅,

then from the first inclusion in (4.3) it follows that

|Y ′| =
∣
∣
∣
∣
∣

⋃

w∈W ′

OΔ(w) ∩ Y ′

∣
∣
∣
∣
∣
=

∑

w∈W ′
w �=w∗

|OΔ(w) ∩ Y ′| � |W ′| − 1,

contrary to |Y ′| = |Y | = |W | = |W ′|.
Let ϕ : W → W ′ and ψ : Y → Y ′ be isometries. We define a function Φ: W → Y by setting

(Φ(w) = y) ⇔ (ψ(y) ∈ OΔ(ϕ(w))) (4.4)

for all w ∈ W and y ∈ Y . The first part of the proof shows that this definition is correct and Φ is bijective.
It remains to prove that Φ is an ε-isometry. For this purpose note that if w1, w2 ∈ W and y1 = Φ(w1),
y2 = Φ(w2), then

dW (w1, w2) = dZ(ϕ(w1), ϕ(w2)),

dY (Φ(w1),Φ(w2)) = dZ(ψ(Φ(w1)), ψ(Φ(w2)))

and, by (4.4),

dZ(ϕ(wi), ψ(Φ(wi))) < Δ

for i = 1, 2. Now using the triangle inequality and the inequality Δ < ε
2 we obtain

|dW (w1, w2)− dY (Φ(w1),Φ(w2))|
= |dZ(ϕ(w1), ϕ(w2))− dZ(ψ(Φ(w1)), ψ(Φ(w2)))|
� dZ(ϕ(w1), ψ(Φ(w1))) + dZ(ϕ(w2), ψ(Φ(w2))) < ε.

Thus Φ is an ε-isometry as required.

The class U consisting of finite ultrametric spaces which are extremal for the Gomory-Hu inequality
can be extended by the following way. If X is a compact ultrametric space, then we define X ∈ UC if
Y ∈ U for every finite Y ⊆ X. It was shown in [2] that Y ∈ U if Y ⊂ X and X ∈ U. Hence the class U is
a subclass of UC . The following conjecture seems to be a natural generalization of theorems 4.5 and 4.6.
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Conjecture 4.11. Let X be a compact nonempty semimetric space and let ε > 0. Then there are
continuous mappings F : Y → X and Φ: W → Y such that Y is compact ultrametric, W ∈ UC , Φ is an
ε-isometry and F is ball-preserving and

BY � B �→ F (B) ∈ BX

is a surjective homomorphism from (BY , AY ) to (BX , AX).

This statement can be considered as a variation of the following “universal” property of the Cantor
set: “Any compact metric space is a continuous image of the Cantor set.”
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