$=$ RESEARCH ARTICLES $=$

On Spaces Extremal for the Gomory-Hu Inequality[∗]

O. Dovgoshey^{1,2**}, E. Petrov^{1***}, and H.-M. Teichert^{3****}

1Division of Applied Problems in Contemporary Analysis, Institute of Mathematics of NASU, Tereshenkivska str. 3, Kyiv 01601, Ukraine

2Department of Mathematics, Faculty of Science, Mersin University, Mersin 33342, Turkey

³ Institute of Mathematics, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany Received December 5, 2014

Abstract—Let (X, d) be a finite ultrametric space. In 1961 E.C. Gomory and T.C. Hu proved the inequality $|Sp(X)| \leq |X|$ where $Sp(X) = \{d(x,y) : x,y \in X\}$. Using weighted Hamiltonian cycles and weighted Hamiltonian paths we give new necessary and sufficient conditions under which the Gomory-Hu inequality becomes an equality. We find the number of non-isometric (X, d) satisfying the equality $|Sp(X)| = |X|$ for given $Sp(X)$. Moreover it is shown that every finite semimetric space Z is an image under a composition of mappings $f: X \to Y$ and $g: Y \to Z$ such that X and Y are finite ultrametric spaces, X satisfies the above equality, f is an ε -isometry with an arbitrary $\varepsilon > 0$, and g is a ball-preserving map.

DOI: 10.1134/S2070046615020053

Key words: *finite ultrametric space, weak similarity, weighted graph, binary tree, ballpreserving mapping,* ε*-isometry.*

1. INTRODUCTION

Recall some necessary definitions from the theory of metric spaces. An *ultrametric* on a set X is a function $d: X \times X \to \mathbb{R}^+, \mathbb{R}^+ = [0, \infty)$, such that for all $x, y, z \in X$:

- (i) $d(x, y) = d(y, x)$,
- (ii) $(d(x, y) = 0) \Leftrightarrow (x = y)$,
- (iii) $d(x, y) \le \max\{d(x, z), d(z, y)\}.$

Inequality (iii) is often called the *strong triangle inequality*. By studying the flows in networks, R. Gomory and T. Hu [1], deduced an inequality that can be formulated, in the language of ultrametric spaces, as follows: if (X, d) is a finite nonempty ultrametric space with the *spectrum*

$$
\mathrm{Sp}(X) = \{d(x, y) \colon x, y \in X\},\
$$

then

$$
|\mathrm{Sp}(X)| \leqslant |X|.
$$

Definition 1.1. Define by \mathfrak{U} the class of finite ultrametric spaces X with $|Sp(X)| = |X|$.

[∗]The text was submitted by the authors in English.

^{**}E-mail: aleksdov@mail.ru

^{***}E-mail: eugeniy.petrov@gmail.com

^{****}E-mail: teichert@math.uni-luebeck.de

134 DOVGOSHEY et al.

Two descriptions of $X \in \mathfrak{U}$ were obtained in terms of the representing trees and, respectively, socalled diametrical graphs of X (see [2] theorems 2.3 and 3.1.). Our paper is also a contribution to this lines of studies. We give a new criterium of $X \in \mathfrak{U}$ in terms of weighted Hamiltonian cycles and weighted Hamiltonian paths (see Theorem 2.5) and find the number of non-isometric $X \in \mathfrak{U}$ with given $\text{Sp}(X)$ (see Proposition 3.2). It is also shown that every finite semimetric X is an image of a space $Y \in \mathfrak{U}$, $X = q(f(Y))$, where q is a ball-preserving map and f is an ε -isometry (see Theorem 4.5 and Theorem 4.6).

Recall that a *graph* is a pair (V, E) consisting of nonempty set V and (probably empty) set E elements of which are unordered pairs of different points from V. For the graph $G = (V, E)$, the set $V = V(G)$ and $E = E(G)$ are called *the set of vertices* and *the set of edges*, respectively. A graph G is empty if $E(G) = \emptyset$. A graph is complete if $\{x, y\} \in E(G)$ for all distinct $x, y \in V(G)$. Recall that a *path* is a nonempty graph $P = (V, E)$ of the form

$$
V = \{x_0, x_1, ..., x_k\}, \quad E = \{\{x_0, x_1\}, ..., \{x_{k-1}, x_k\}\},\
$$

where x_i are all distinct. The number of edges of a path is the length. Note that the length of a path can be zero. A Hamiltonian path is a path in the graph that visits each vertex exactly once. A finite graph C is a *cycle* if $|V(C)| \geq 3$ and there exists an enumeration $(v_1, v_2, ..., v_n)$ of its vertices such that

$$
(\{v_i, v_j\} \in E(C)) \Leftrightarrow (|i - j| = 1 \quad \text{or} \quad |i - j| = n - 1).
$$

For the graph $G = (V, E)$ a *Hamiltonian cycle* is a cycle which is a subgraph of G that visits every vertex exactly once. A connected graph without cycles is called a tree. A tree T may have a distinguished vertex called the *root*; in this case T is called a *rooted tree*.

Generally we follow terminology used in [3]. A graph $G = (V, E)$ together with a function $w: E \rightarrow$ \mathbb{R}^+ , where $\mathbb{R}^+ = [0, +\infty)$, is called a *weighted* graph, and w is called a *weight* or a *weighting function*. The weighted graphs we denote by (G, w) .

A nonempty graph G is called *complete* k*-partite* if its vertices can be divided into k disjoint nonempty subsets $X_1, ..., X_k$ so that there are no edges joining the vertices of the same subset X_i and any two vertices from different $X_i, X_j, 1 \leqslant i,j \leqslant k$ are adjacent. In this case we write $G=G[X_1,...,X_k].$

2. CYCLES IN ULTRAMETRIC SPACES

In the following we identify a finite ultrametric space (X, d) with a complete weighted graph (G_X, w_d) such that $V(G_X) = X$ and

$$
\forall x, y \in X, x \neq y: \quad w_d(\{x, y\}) = d(x, y). \tag{2.1}
$$

The following lemma was proved in [4].

Lemma 2.1. *Let* (X, d) *be an ultrametric space with* $|X| \ge 3$ *. Then for every cycle* $C \subseteq G_X$ *there exist at least two distinct edges* $e_1, e_2 \in C$ *such that*

$$
w_d(e_1) = w_d(e_2) = \max_{e \in E(C)} w_d(e).
$$
\n(2.2)

We shall say that a weighted cycle (C, w) is *characteristic* if the following conditions hold.

- (i) There are exactly two distinct $e_1, e_2 \in E(C)$ such that (2.2) holds.
- (ii) The restriction of w on the set $E(C) \setminus \{e_1, e_2\}$ is strictly positive and injective.

Remark 2.2*.* Let us explain the choice of a name for such a type of cycles. It was proved in [4] that for every characteristic weighted cycle (C, w) there is a unique ultrametric $d: V(C) \times V(C) \to \mathbb{R}^+$ such that

$$
d(x, y) = w(\lbrace x, y \rbrace)
$$

for all $\{x, y\} \in E(C)$. In other words we can uniquely reconstruct whole the ultrametric space (X, d) by characteristic cycle $(C, w_d) \subseteq (G_X, w_d)$ if $|V(C)| = |X|$.

We need the following definition.

Definition 2.3 ([1]). Let (X, d) be a finite ultrametric space. Define the graph G_X^d as follows $V(G_X^d)$ = X and

$$
(\{u, v\} \in E(G_X^d)) \Leftrightarrow (d(u, v) = \text{diam}\, X).
$$

We call G_X^d a *diametrical graph* of the space (X, d) .

Lemma 2.4 ([1]). Let (X,d) be a finite ultrametric space, $|X| \geq 2$. If $(X,d) \in \mathfrak{U}$, then G_X^d is a $bipartite graph, G_X^d = G_X^d[X_1, X_2]$ and $X_1 \in \mathfrak{U}, X_2 \in \mathfrak{U}$.

We shall say that a weighted path (P, w) is *characteristic* if the weighting function $w: E(P) \to \mathbb{R}^+$ is injective and strictly positive.

The next theorem is the main result of this section.

Theorem 2.5. Let (X, d) be a finite ultrametric space with $|X| \geq 3$. Then the following conditions *are equivalent.*

- *(i)* $(X, d) \in Σ$.
- *(ii)* There exists a characteristic Hamiltonian path in G_X .
- *(iii)* There exists a characteristic Hamiltonian cycle in G_X .

Proof. (i) \Rightarrow (ii). We shall prove the implication (i) \Rightarrow (ii) by induction on |X|. Let $(X, d) \in \mathfrak{U}$. If $|X| = 3$, then the existence of a characteristic Hamiltonian path is evident. Suppose the implication (i) \Rightarrow (ii) holds for X with $|X| \leqslant n - 1$. Let $|X| = n$. Let us prove that there exists a characteristic Hamiltonian path in G_X . According to Lemma 2.3 we have

$$
G_X^d = G_X^d[X_1, X_2], \quad |X_1| \le n - 1, \quad |X_2| \le n - 1 \tag{2.3}
$$

and $X_1 \in \mathfrak{U}, X_2 \in \mathfrak{U}$. By the induction supposition there exist characteristic Hamiltonian paths $P_1 \subseteq$ G_{X_1} and $P_2 \subseteq G_{X_2}$. Let $V(P_1) = \{x_1, ..., x_m\}$ and $V(P_2) = \{x_{m+1}, ..., x_n\}$, $1 \leq m \leq n-1$. Since $G_X^d = G_X^d[X_1, X_2]$, we have

diam $X \notin Sp(X_1)$ and diam $X \notin Sp(X_2)$.

Moreover, the equality

$$
Sp(X_1) \cap Sp(X_2) = \{0\}
$$
\n(2.4)

holds. Indeed, it is clear that

 $0 \in Sp(X_1) \cap Sp(X_2),$

but if $|Sp(X_1) \cap Sp(X_2)| \geq 2$, then using the equality

$$
Sp(X) = Sp(X1) \cup Sp(X2) \cup \{diam X\}
$$
\n
$$
(2.5)
$$

and the Gomory-Hu inequality we obtain

$$
|\operatorname{Sp}(X)|\leqslant 1+|X_1|+|X_2|-|X_1\cap X_2|<|X_1|+|X_2|=|X|
$$

contrary to $(X, d) \in \mathfrak{U}$. The equality $d(x_m, x_{m+1}) = \text{diam } X$, (2.4) and (2.5) imply that the path P with $V(P) = \{x_1, \ldots, x_m, x_{m+1}, \ldots, x_n\}$ is a characteristic Hamiltonian path in G_X .

(ii)⇒(iii). Let P be a characteristic Hamiltonian path in G_X with $V(P) = \{x_1, ..., x_n\}$. Consider the cycle $C = (x_1, ..., x_n)$. It is clear that C is Hamiltonian. According to Lemma 2.1 the equality

$$
w_d(\{x_1, x_n\}) = \max_{e \in E(P)} w_d(e)
$$

holds. This means that C is characteristic.

(iii)⇒**(i)**. Let (X, d) be a finite ultrametric space and let C be a characteristic Hamiltonian cycle in G_X . Using Lemma 2.1 with this C we easily show that $|Sp(X)| = |X|$. Condition (i) follows.

136 DOVGOSHEY et al.

With every finite ultrametric space (X, d) , we can associate (see [2]) a labeled rooted m-ary tree T_X by the following rule. If $X = \{x\}$ is a one-point set, then T_X is a tree consisting of one node x considered strictly binary by definition. Let $|X|\geqslant 2$ and $G_X^d=G_X^d[X_1,...,X_k]$ be the diametrical graph of the space (X, d) . In this case the root of the tree T_X is labeled by diam X and, moreover, T_X has k nodes $X_1, ..., X_k$ of the first level with the labels

$$
l_i = \begin{cases} \text{diam } X_i, & \text{if } |X_i| \geq 2, \\ x, & \text{if } X_i \text{ is a one-point set} \\ & \text{with the single element } x, \end{cases} \tag{2.6}
$$

 $i = 1, ..., k$. The nodes of the first level indicated by labels $x \in X$ are leaves, and those indicated by labels diam X_i are internal nodes of the tree T_X . If the first level has no internal nodes, then the tree T_X is constructed. Otherwise, by repeating the above-described procedure with $X_i \subset X$ corresponding to internal nodes of the first level, we obtain the nodes of the second level, etc. Since $|X|$ is finite, and the cardinal numbers $|Y|, Y \subseteq X$, decrease strictly at the motion along any path starting from the root, consequently all vertices on some level will be leaves, and the construction of T_X is completed. The above-constructed labeled tree T_X is called the *representing tree* of the space (X, d) . We note that every element $x \in X$ is ascribed to some leaf, and all internal nodes are labeled as $r \in Sp(X)$. In this case, different leaves correspond to different $x \in X$, but different internal nodes can have coinciding labels.

Recall that a rooted tree is *strictly binary* if every internal node has exactly two children. Note that the correspondence between trees and ultrametric spaces is well known [5–7].

Define by L_T the set of leaves of the tree T and by $l(v)$ the label of the vertex v.

The proof of the following two lemmas is immediate.

Lemma 2.6. *Let* X *be a finite ultrametric space having a strictly binary tree* T_X *. If* v_0 *and* v_1 *are internal nodes of* T_X *and* v_1 *is a direct successor of* v_0 *then the inequality* $l(v_1) < l(v_0)$ *holds.*

Lemma 2.7. Let (X,d) be a finite ultrametric space with $|X|\geqslant 3$ and let $G_X^d=G_X^d[X_1,\ldots,X_k]$ be *the diametrical graph of* (X, d) *. Then a tree* T_X *is strictly binary if and only if* $k = 2$ *and* T_{X_1} *and* T_{X_2} are strictly binary.

Proposition 2.8. *Let* (X, d) *be a finite ultrametric space with* $|X| \geq 3$ *. The following conditions are equivalent.*

- (i) T_X *is strictly binary.*
- *(ii)* If $X_1 \subseteq X$ and $|X_1| \geq 3$, then there exists a Hamiltonian cycle $C \subseteq G_{X_1}$ *with exactly two edges of maximal weight.*
- *(iii)* There is no equilateral triangle in (X, d) .

Proof. (i) \Rightarrow (ii). Suppose T_X is strictly binary. Let X_1 be a subset of X, $|X_1| \ge 3$. According to construction of T_X all elements of X_1 are labels of leaves of T_X . Let v_0 be a smallest common predecessor for the leaves of T_X labeled by elements of $X_1.$ Let v_0^1 and v_0^2 be the two offsprings of v_0 (direct successors) and let T_1 and T_2 be the subtrees of the tree T_X with the roots v_0^1 and v_0^2 . Let $L_1 = L_{T_1} \cap X_1$ and $L_2 = L_{T_2} \cap X_2$ $L_{T_2} \cap X_1$ and let $P_1 = \{x_1, ..., x_m\}$ and $P_2 = \{x_{m+1}, ..., x_{|X_1|}\}, \ 1 \leq m \leq |X_1| - 1,$ be Hamiltonian paths in the spaces (L_1, d) and (L_2, d) . By the property of representing trees of ultrametric spaces we have $d(x, y) = l(v_0)$ for all $x \in L_1$ and $y \in L_2$. Since $X_1 = L_1 \cup L_2$, we obtain that the Hamiltonian cycle $C = (x_1, ..., x_m, x_{m+1}, ..., x_{|X_1|})$ has exactly the two edges $\{x_1, x_{|X_1|}\}$ and $\{x_m, x_{m+1}\}$ of maximal weight.

(ii)⇒**(iii)**. This implication is evident.

(iii) \Rightarrow (**i**). We will prove (**i**) by induction on |X|. The statement (**i**) evidently follows from (iii) if |X| = 3. Assume that (iii)⇒(i) is satisfied for all finite ultrametric spaces (X, d) with $3 \leq |X| \leq n, n \in \mathbb{N}$. Let

 $G_X^d=G_X^d[X_1,\ldots,X_k]$ be the diametrical graph of $(X,d).$ Statement (i) holds if $k=2.$ Indeed, since the inequality $|X_i| < |X|$ holds, the induction assumption implies that for every $i = 1, \ldots, k$, T_{X_i} is a strictly binary tree. Hence if $k = 2$, then T_X is a strictly binary tree by Lemma 2.7. To complete the proof it suffices to note that if $k \geq 3$ and $x_i \in X_i$ for $i = 1, 2, 3$, then the points x_1, x_2, x_3 form an equilateral triangle with $d(x_1, x_2) = d(x_2, x_3) = d(x_3, x_1) = \text{diam } X$. \Box

3. THE NUMBER OF NON-ISOMETRIC $X \in \mathfrak{U}$ with GIVEN $\text{Sp}(X)$

Let $n \in \mathbb{N}$ and \mathfrak{U}_n denote the class of ultrametric spaces $X \in \mathfrak{U}$ such that $|X| = n$. In the present section we study the following question: how many non-isometric spaces having the same spectrum are in the class \mathfrak{U}_n ? Let us denote this number by $\kappa(\mathfrak{U}_n)$.

Definition 3.1 ([8]). Let (X, d_X) , (Y, d_Y) be metric spaces. A bijective mapping $\Phi: X \to Y$ is a weak *similarity* if there is a strictly increasing bijective function $f: Sp(Y) \to Sp(X)$ such that the equality

$$
d_X(x, y) = f(d_Y(\Phi(x), \Phi(y)))
$$
\n(3.1)

holds for all $x, y \in X$. Write $X \simeq Y$ if a weak similarity $\Phi : X \to Y$ exists.

It is clear that \simeq is an equivalence relation. It was proved in [8] that if X and Y are compact ultrametric spaces with the same spectrum, then every week similarity $\Phi: X \to Y$ is an isometry. So, the main question of this section can be reformulated as follows. How many spaces are there in \mathfrak{U}_n up to weak *similarity*?

Proposition 3.2. *Let* $\mathfrak{U}_n := \{X \in \mathfrak{U} : |X| = n\}$, $n \in \mathbb{N}$, *let* \mathfrak{U}_n / \simeq *be the quotient set of* \mathfrak{U}_n *by* \simeq *and let*

$$
\kappa(\mathfrak{U}_n):=\mathrm{card}(\mathfrak{U}_n/\simeq).
$$

Then the equality

$$
\kappa(\mathfrak{U}_n) = \sum_{k=2}^{n-1} C_{n-3}^{k-2} \kappa(\mathfrak{U}_k) \kappa(\mathfrak{U}_{n-k})
$$
\n(3.2)

holds for every integer $n \geq 3$ *with* $\kappa(\mathfrak{U}_1) = \kappa(\mathfrak{U}_2) = 1$ *and*

$$
C_{n-3}^{k-2} = \frac{(n-3)!}{(k-2)!(n-k-1)!}.
$$

Proof. Directly we can find the initial values

$$
\kappa(\mathfrak{U}_1)=\kappa(\mathfrak{U}_2)=1.
$$

Let $n \geq 3$. The number $\kappa(\mathfrak{U}_n)$ coincides with the number of non-isometric $(X,d) \in \mathfrak{U}_n$ having the spectrum $\{0, 1, ..., n-1\}$. For every such $(X, d) \in \mathfrak{U}_n$ we write $G_X^d[X_1, X_2]$ for the diametrical graph of (X, d) . The inequality $n \geq 3$ implies that diam $X = n - 1 > 1$. Since

$$
\mathrm{Sp}(X) = \{n-1\} \cup \mathrm{Sp}(X_1) \cup \mathrm{Sp}(X_2)
$$

and

$$
Sp(X_1) \cap Sp(X_2) = \{0\},\
$$

we may assume, without loss of generality, that

$$
1 \in \text{Sp}(X_1)
$$
 and $1 \notin \text{Sp}(X_2)$.

Let $|X_1| = k$. It follows from $1 \in Sp(X_1)$ that $k \geq 2$. Moreover the statement $X_2 \neq \emptyset$ implies that $k \leqslant n - 1.$ As was noted in the second section of the paper we have

$$
X_1 \in \mathfrak{U}_k
$$
 and $X_2 \in \mathfrak{U}_{n-k}$.

p-ADIC NUMBERS, ULTRAMETRIC ANALYSIS AND APPLICATIONS Vol. 7 No. 2 2015

Let $Sp(X_1) = \{0, 1, n_1, ..., n_{k-2}\}$ where $1 < n_1 < ... < n_k$ (if $k \ge 3$). The set $\{n_1, ..., n_{k-2}\}$ can be selected from the set $\{2, ..., n-2\}$ in C_{n-3}^{k-2} ways. It is clear that if $(X, d), (Y, \rho) \in \mathfrak{U}_n$ and

$$
Sp(X) = Sp(Y) = \{0, 1, ..., n - 1\}
$$

and if for the diametrical graphs $G^d_X[X_1,X_2],$ $G^\rho_Y[Y_1,Y_2]$ we have

$$
1 \in \mathrm{Sp}(X_1) \text{ and } 1 \in \mathrm{Sp}(Y_1),
$$

then X and Y are isometric if and only if X_1 is isometric to Y_1 and X_2 is isometric to Y_2 . Now using the multiplication principle and additional principle we obtain (3.2).

Corollary 3.3. *The number* $\kappa(\mathfrak{U}_n)$ *of all non-isometric spaces* $X \in \mathfrak{U}_n$ *with given* Sp(X) *equals to*

$$
\sum_{k=2}^{n-1} C_{n-3}^{k-2} \kappa(\mathfrak{U}_k) \kappa(\mathfrak{U}_{n-k}),
$$

where $\kappa(\mathfrak{U}_1) = \kappa(\mathfrak{U}_2) = 1$.

Using formula (3.2) we can find $\kappa(\mathfrak{U}_3)=1$, $\kappa(\mathfrak{U}_4)=2$, $\kappa(\mathfrak{U}_5)=5$, $\kappa(\mathfrak{U}_6)=16$, $\kappa(\mathfrak{U}_7)=61$ and so on.

Remark 3.4. As was shown in [2] there is an isomorphism between spaces from $\mathfrak U$ and strictly decreasing binary trees.

It is easy to see that there is also a bijection between the strictly decreasing binary trees and the ranked trees R_n . The definition of the ranked trees R_n one can find in [9]. It was noted in [9] that numbers of R_n correspond to sequence A000111 from [10].

4. BALL-PRESERVING MAPPINGS, ε -ISOMETRIES AND SEMIMETRIC SPACES

Let X be a set. A *semimetric* on X is a function $d: X \times X \to \mathbb{R}^+$ such that $d(x, y) = d(y, x)$ and $(d(x, y) = 0) \Leftrightarrow (x = y)$ for all $x, y \in X$. A pair (X, d) , where d is a semimetric on X, is called a *semimetric space* (see, for example, [11]).

A *directed graph* or *digraph* is a set of nodes connected by edges, where the edges have a direction associated with them. In formal terms a digraph is a pair $G = (V, A)$ of

- a set V , whose element are called vertices or nodes,
- a set A of ordered pairs of vertices, called arcs, directed edges, or arrows.

An arc $e = \langle x, y \rangle$ is considered to be directed from x to y; y is said to be a *direct successor* of x, and x is said to be a *direct predecessor* of y. If a path made up of one or more successive arcs leads from x to y, then y is said to be a *successor* of x, and x is said to be a *predecessor* of y.

A Hasse diagram for a partially ordered set (X, \leq_X) is a digraph (X, A_X) , where X is the set of vertices and $A_X \subseteq X \times X$ is the set of directed edges such that the pair $\langle v_1, v_2 \rangle$ belongs to A_X if and only if $v_1 \leqslant_X v_2, v_1 \neq v_2$, and implication

$$
(v_1 \leq x \le v \leq x \cdot v_2) \Rightarrow (v_1 = w \vee v_2 = w)
$$

holds for every $w \in X$.

Recall that a subset B of a semimetric space (X, d) is called a closed ball if it can be represented as follows:

$$
B = B_r(t) = \{x \in X : d(x, t) \leqslant r\},\
$$

where $t \in X$ and $r \in [0,\infty)$. Denote by **B**_X the set of all distinct balls of semimetric space (X,d) .

Definition 4.1. Let X and Y be semimetric spaces. A mapping $F: X \to Y$ is ball-preserving if

$$
F(Z) \in \mathbf{B}_Y,\tag{4.1}
$$

for every $Z \in \mathbf{B}_X$.

Definition 4.2. Let $G_1 = (V_1, A_1)$ and $G_2 = (V_2, A_2)$ be directed graphs. A map $F: V_1 \rightarrow V_2$ is a *graph homomorphism* if the implication

$$
(\langle u, v \rangle \in A_1) \Rightarrow (\langle F(u), F(v) \rangle \in A_2)
$$

holds for all $u, v \in V_1$. A homomorphism $F: V_1 \to V_2$ is an *isomorphism* if F bijective and the inverse map F^{-1} is also a homomorphism.

According to [12] we shall say that a graph homomorphism $F: V_1 \to V_2$ from $G_1 = (V_1, A_1)$ to $G_2 = (V_2, A_2)$ is a *surjective* homomorphism if $V_2 = F(V_1)$ and $A_2 = F(A_1)$ where

$$
F(A_1) = \{ \langle F(u), F(v) \rangle : \langle u, v \rangle \in A_1 \}.
$$

Remark 4.3*.* It is evident that every isomorphism is a surjective homomorphism.

It was shown in [13] that if X and Y are finite ultrametric spaces, then the following conditions are equivalent.

- There is a bijective ball-preserving mapping $F: X \rightarrow Y$ such that the inverse mapping $F^{-1}: Y \to X$ is also ball-preserving.
- The Hasse diagrams $(\mathbf{B}_X, A_{\mathbf{B}_X})$ and $(\mathbf{B}_Y, A_{\mathbf{B}_Y})$ of the posets $(\mathbf{B}_X, \subseteq)$ and $(\mathbf{B}_Y, \subseteq)$ are isomorphic as directed graphs.

Definition 4.4. Let (X, d) and (Y, ρ) be semimetric spaces and let $\varepsilon > 0$. A surjective mapping $F: X \to Y$ Y is an ε -isometry if the inequality

$$
|d(x,y)-\rho(F(x),F(y))|\leqslant \varepsilon
$$

holds for all $x, y \in X$.

The main result of the present section is the following two theorems.

Theorem 4.5. *Let* X *be a finite nonempty semimetric space. Then there is a finite ultrametric space* Y and a surjective ball-preserving function $F: Y \to X$ such that the mapping

$$
\mathbf{B}_Y \ni B \mapsto F(B) \in \mathbf{B}_X
$$

is a surjective homomorphism from the Hasse diagram (B_Y, A_Y) *of* (B_Y, \subseteq) *to the Hasse diagram* (\mathbf{B}_X, A_X) of $(\mathbf{B}_X, \subseteq)$.

Theorem 4.6. *Let* (Y, d) *be a finite ultrametric space. Then for every* $\varepsilon > 0$ *there is a bijective* ε *isometry* $\Phi: W \to Y$ *such that* $W \in \mathfrak{U}$.

Theorems 4.5 and 4.6 imply the following

Corollary 4.7. *For every finite nonempty semimetric space* X and every $\varepsilon > 0$ there are mappings $F: Y \to X$ and $\Phi: Z \to Y$ such that Y is finite and ultrametric, $Z \in \mathfrak{U}$, F is ball-preserving, Φ is *an* ε*-isometry and*

$$
X = F(\Phi(Z)).
$$

The next lemma will be used in the proof of Theorem 4.5.

Lemma 4.8. Let X be a finite semimetric space. If $B \in \mathbf{B}_X$ and $|B| \geq 2$, then the following *statements hold.*

(i) The ball B has at least two direct predecessors in the Hasse diagram (B_X, A_{B_X}) .

(ii) The union of all direct predecessors of B *coincides with* B*.*

p-ADIC NUMBERS, ULTRAMETRIC ANALYSIS AND APPLICATIONS Vol. 7 No. 2 2015

Proof. Let $B \in \mathbf{B}_X$ and $|B| \ge 2$. The set of all direct predecessors of B is simply the set of all maximal elements of the subset

$$
\mathbf{S} = \{ S \in \mathbf{B}_X \colon S \subseteq B \text{ and } S \neq B \} \tag{4.2}
$$

of the poset $(\mathbf{B}_X, \subseteq)$. The inequality $|B| \geq 2$ implies

$$
B\subseteq \bigcup S, \quad S\in \mathbf{S},
$$

because $\{x\} \in \mathbf{S}$ for every $x \in B$. Since X is finite, **S** is also finite and consequently for every $x \in B$ there is a maximal element S of **S** such that $x \in S$. Statement (ii) follows. Now to finish the proof it suffices to note that if B contains a unique direct predecessor S, then $B = S$ contrary to (4.2). \Box

Proof of Theorem 4.5. Let $(\mathbf{B}_X, A_{\mathbf{B}_X})$ be a Hasse diagram of the poset $(\mathbf{B}_X, \subseteq)$. To this diagram we assign n-ary rooted labeled tree T by the following procedure. Let the root v_0 of T be labeled by X. Let $B_1, ..., B_k$ be direct predecessors of X in $(\mathbf{B}_X, A_{\mathbf{B}_X})$. Define $v_1, ..., v_k$ to be the children (nodes of the first level) of v_0 with the labels $B_1, ..., B_k$ respectively. Let us look at the nodes of the first level of the tree T. Define the children of the nodes v_i , $i = 1, ..., k$, as follows: if there is no Y such that $\langle Y, B_i \rangle \in A_{\mathbf{B}_X}$ then v_i is a leaf of T; if $B_{i1}, B_{i2},..., B_{in}$ are direct predecessors of B_i in $(\mathbf{B}_X, A_{\mathbf{B}_X})$, then define $v_{i1}, v_{i2},...,v_{in}$ to be the children of v_i (nodes of the second level) with labels $B_{i1}, B_{i2}, ..., B_{in}$ respectively. Note that the nodes of the second level may have the identical labels in the case when B_{ij} is a direct predecessor both B_{k_1} and B_{k_2} . Do the same procedure with the nodes of the second level and so on. By Lemma 4.8 T is *n*-ary tree with $n \ge 2$. Note also that the leaves of T are labeled with the balls $\{x_i\}, x_i \in X$.

Let *n* be the number of leaves of T. We define a new names y_i , $i = 1, ..., n$, for the leaves of T in any order but save the labels of these leaves. Let Y be an ultrametric space with representing tree isomorphic to $T, Y = \{y_1, ..., y_n\}$. Define $F: Y \to X$ by the rule

$$
F(y_i) = x_i
$$
 if the label of y_i is x_i .

We claim that F is ball-preserving. Indeed, by Lemma 4 in [13] for every $B \in \mathbf{B}_Y$ there exists a node \tilde{v} of T such that $\Gamma_T(\tilde{v}) = B$, where $\Gamma_T(\tilde{v})$ is the set of all leaves of subtree with the root \tilde{v} . And let B be the label of \tilde{v} . According to Lemma 4.8 and the construction of T the set $F(B)$ coincides with B. It suffices to note that \tilde{B} is a ball in \mathbf{B}_X because all the nodes in T are labeled by balls of semimetric space X . Furthermore, it is easily seen that the mapping

$$
\mathbf{B}_X \ni B \mapsto F(B) \in \mathbf{B}_Y
$$

is a surjective homomorphism from (\mathbf{B}_Y, A_Y) to (\mathbf{B}_X, A_X) as required.

Definition 4.9. Let (Y, d_Y) and (W, d_W) be bounded metric spaces and let $\Delta > 0$. The Gromov-Hausdorff distance $d_{GH}(Y, W)$ is less than Δ if there exists a metric spaces (Z, d_Z) with subspaces Y' and W' such that

- Y and Y' are isometric;
- W and W' are isometric;
- We have the inclusions

$$
Y' \subseteq \bigcup_{w \in W'} O_{\Delta}(w) \text{ and } W' \subseteq \bigcup_{y \in Y'} O_{\Delta}(y), \tag{4.3}
$$

where for $t \in Z$, $O_{\Delta}(t) = \{z \in Z : d_Z(t, z) < \Delta\}$ is an open ball from (Z, d_Z) that has the radius Δ.

The next lemma is a reformulation of Proposition 4.1 from [2].

Lemma 4.10. Let Y be a finite ultrametric space and let $\varepsilon > 0$. Then there is a finite ultrametric *space* $W \in \mathfrak{U}$ *such that* $|Y| = |W|$ *and*

$$
d_{GH}(Y,W) < \varepsilon.
$$

 \Box

Now we are ready to prove Theorem 4.6.

Proof of Theorem 4.6. The theorem is trivial if $|Y| \le 2$. Let $|Y| \ge 3$, let $\varepsilon > 0$ and let

 $\delta = \min\{d_Y(x, y) : x, y \in Y, x \neq y\}.$

Since $3 \leq |Y| < \infty$, we have $0 < \delta < \infty$. By Lemma 4.10 for every Δ from the interval $(0, \min(\frac{\delta}{2}, \frac{\epsilon}{2}))$ there is $W \in \mathfrak{U}$ such that $d_{GH}(Y, W) < \Delta$. Let (Z, d_Z) be metric space which contains isometric copies Y' and W' of Y and W respectively such that inclusions (4.3) hold. We claim that for every $w \in W'$ there is a unique $y \in Y'$ such that $y \in O_\Delta(w)$. Suppose we can find $w \in W$ and two distinct $y_1, y_2 \in Y'$ which satisfy

$$
y_1 \in O_{\Delta}(w)
$$
 and $y_2 \in O_{\Delta}(w)$.

Then the triangle inequality and the definitions of δ and Δ imply

 $\delta \leq d_Z(y_1, y_2) \leq d_Z(y_1, w) + d_Z(w, y_2) \leq 2\Delta < \delta.$

This contradiction shows that, for every $w \in W'$, the set

$$
O_{\Delta}(w) \cap Y'
$$

is either empty or contains a single point. Consequently, if there exists $w^* \in W'$ such that

$$
O_{\Delta}(w^*) \cap Y' = \varnothing,
$$

then from the first inclusion in (4.3) it follows that

$$
|Y'| = \left| \bigcup_{w \in W'} O_{\Delta}(w) \cap Y' \right| = \sum_{\substack{w \in W' \\ w \neq w^*}} |O_{\Delta}(w) \cap Y'| \leq |W'| - 1,
$$

contrary to $|Y'| = |Y| = |W| = |W'|$.

Let $\varphi: W \to W'$ and $\psi: Y \to Y'$ be isometries. We define a function $\Phi: W \to Y$ by setting

$$
(\Phi(w) = y) \Leftrightarrow (\psi(y) \in O_{\Delta}(\varphi(w))) \tag{4.4}
$$

for all $w \in W$ and $y \in Y$. The first part of the proof shows that this definition is correct and Φ is bijective. It remains to prove that Φ is an ε -isometry. For this purpose note that if $w_1, w_2 \in W$ and $y_1 = \Phi(w_1)$, $y_2 = \Phi(w_2)$, then

$$
d_W(w_1, w_2) = d_Z(\varphi(w_1), \varphi(w_2)),
$$

$$
d_Y(\Phi(w_1), \Phi(w_2)) = d_Z(\psi(\Phi(w_1)), \psi(\Phi(w_2)))
$$

and, by (4.4),

$$
d_Z(\varphi(w_i), \psi(\Phi(w_i))) < \Delta
$$

for $i=1,2.$ Now using the triangle inequality and the inequality $\Delta < \frac{\varepsilon}{2}$ we obtain

$$
|d_W(w_1, w_2) - d_Y(\Phi(w_1), \Phi(w_2))|
$$

= $|d_Z(\varphi(w_1), \varphi(w_2)) - d_Z(\psi(\Phi(w_1)), \psi(\Phi(w_2)))|$
 $\leq d_Z(\varphi(w_1), \psi(\Phi(w_1))) + d_Z(\varphi(w_2), \psi(\Phi(w_2))) < \varepsilon.$

Thus Φ is an ε -isometry as required.

The class $\mathfrak U$ consisting of finite ultrametric spaces which are extremal for the Gomory-Hu inequality can be extended by the following way. If X is a compact ultrametric space, then we define $X \in \mathfrak{U}_C$ if $Y \in \mathfrak{U}$ for every finite $Y \subseteq X$. It was shown in [2] that $Y \in \mathfrak{U}$ if $Y \subset X$ and $X \in \mathfrak{U}$. Hence the class \mathfrak{U} is a subclass of \mathfrak{U}_C . The following conjecture seems to be a natural generalization of theorems 4.5 and 4.6.

p-ADIC NUMBERS, ULTRAMETRIC ANALYSIS AND APPLICATIONS Vol. 7 No. 2 2015

 \Box

Conjecture 4.11. Let X be a compact nonempty semimetric space and let $\varepsilon > 0$. Then there are continuous mappings $F: Y \to X$ and $\Phi: W \to Y$ such that Y is compact ultrametric, $W \in \mathfrak{U}_C$, Φ is an ε -isometry and F is ball-preserving and

$$
\mathbf{B}_Y \ni B \mapsto F(B) \in \mathbf{B}_X
$$

is a surjective homomorphism from (\mathbf{B}_Y, A_Y) to (\mathbf{B}_X, A_X) .

This statement can be considered as a variation of the following "universal" property of the Cantor set: "Any compact metric space is a continuous image of the Cantor set."

ACKNOWLEDGEMENTS

The research of the first author was supported by a grant received from TUBITAK within 2221- Fellowship Programme for Visiting Scientists and Scientists on Sabbatical Leave. The research of the second author was supported as a part of EUMLS project with grant agreement $PIRSES - GA - 2011$ $-295164.$

REFERENCES

- 1. R. E. Gomory and T. C. Hu, "Multi-terminal network flows," SIAM **9** (4), 551–570 (1961).
- 2. E. Petrov and A. Dovgoshey, "On the Gomory-Hu inequality," J. Math. Sci. **198** (4), 392–411 (2014); Transl. from Ukr. Mat. Visn. **10** (4), 469–496 (2013).
- 3. J. A. Bondy and U. S. R. Murty, *Graph Theory*, Graduate Texts in Math. **244** (Springer, New York, 2008).
- 4. A. Dovgoshey and E. Petrov, "Subdominant pseudoultrametric on graphs," Sb. Math. **204** (8), 1131–1151 (2013); Transl. from Mat. Sb. **204** (8), 51–72 (2013).
- 5. R. I. Grigorchuk, V. V. Nekrashevich and V. I. Sushanskyi, "Automata, dynamical systems, and groups," Proc. Steklov Inst. Math. **231** (4), 128–203 (2000); Transl. from Tr. Mat. Inst. Steklova **231**, 134–214 (2000).
- 6. V. Gurvich and M. Vyalyi, "Characterizing (quasi)-ultrametric finite spaces in terms of (directed) graphs," Discrete Appl. Math. **160** (12), 1742–1756 (2012).
- 7. B. Hughes, "Trees and ultrametric spaces: a categorical equivalence," Adv. Math. **189** (1), 148–191 (2004).
- 8. O. Dovgoshey and E. Petrov, "Weak similarities of metric and semimetric spaces," Acta Math. Hungar. **141** (4), 301–319 (2013).
- 9. F. Disanto and T. Wiehe, "Exact enumeration of cherries and pitchforks in ranked trees under the coalescent model," Mathematical Biosci. **242**, 195–200 (2013).
- 10. N. J. A. Sloane, "The on-line encyclopedia of integer sequences," Notices Amer. Math. Soc. **50** (8), (2003).
- 11. L. M. Blumenthal, *Theory and Applications of Distance Geometry* (Clarendon Press, Oxford, 1953).
- 12. P. Hell and J. Nešetřil, *Graphs and Homomorphisms*, Oxford Lecture Series in Math. and its Appl. (Oxford Univ. Press, 2004).
- 13. E. A. Petrov, "Ball-preserving mappings of finite ulrametric spaces," Proceedings of IAMM **26**, 150–158 (2013) [in Russian].