RESEARCH ARTICLES

New Results on Applications of Nevanlinna Methods to Value Sharing Problems[∗]

A. Escassut1, K. Boussaf1***, and J. Ojeda2******

¹Laboratoire de Mathematiques UMR 6620, Université Blaise Pascal Les Cézeaux, 63171 Aubiere, France

²Departamento de Matematica, Facultad de Ciencias Fisicas y Matematicas Universidad de Concepcion, Concepcion, Chile

Received August 18, 2013

Abstract—Let \mathbb{K} be a complete algebraically closed *p*-adic field of characteristic zero. We give a new Nevanlinna-type theorem that lets us obtain results of uniqueness for two meromrphic functions inside a disk, sharing 4 bounded functions CM. Let *P* be a polynomial of uniqueness for meromorphic functions in K or in an open disk, let f , g be two transcendental meromorphic functions in the whole field K or meromorphic functions in an open disk of K that are not quotients of bounded analytic functions and let α be a small meromorphic function with respect to *f* and *g*. We apply results in algebraic geometry and a new Nevanlinna theorem for *p*-adic meromorphic functions in order to prove a result of uniqueness for functions: we show that if $f'P'(f)$ and $g'P'(g)$ share α counting multiplicity, then $f = g$, provided that the multiplicity order of zeros of P['] satisfy certain inequalities. A breakthrough in this paper consists of replacing inequalities $n \geq k+2$ or $n \geq k+3$ used in previous papers by a new Hypothesis (G). Another consists of using the new Nevanlinna-type Theorem.

DOI: 10.1134/S2070046613040031

Key words: *meromorphic, Nevanlinna, sharing value, unicity, distribution of values.*

1. INTRODUCTION

Notations and definitions: Let K be an algebraically closed field of characteristic zero, complete with respect to an ultrametric absolute value $\vert \cdot \vert$. We denote by $\mathcal{A}(\mathbb{K})$ the K-algebra of entire functions in K, by $\mathcal{M}(\mathbb{K})$ the field of meromorphic functions in K, i.e. the field of fractions of $\mathcal{A}(\mathbb{K})$ and by $\mathbb{K}(x)$ the field of rational functions. Throughout the paper, *a* is a point in K and *R* is a strictly positive number and we denote by $d(a, R)$ the disk $\{x \in \mathbb{K} \mid |x - a| \leq R\}$ and by $d(a, R^-)$ the "open" disk $\{x \in \mathbb{K} : |x - a| < R\}$, by $\mathcal{A}(d(a, R^-))$ the K-algebra of analytic functions in $d(a, R^-)$ i.e. the K-algebra of power series \sum^{∞} $\sum_{n=0} a_n (x - a)^n$ converging in *d*(*a, R*[−]) and we denote

by M(*d*(*a, R*−)) the field of meromorphic functions inside *d*(*a, R*−), i.e. the field of fractions of $A(d(a, R^-))$. Moreover, we denote by $A_b(d(a, R^-))$ the K-subalgebra of $A(d(a, R^-))$ consisting of the bounded analytic functions in $d(a, R^-)$, i.e. which satisfy $\sup_{a \in \mathbb{N}} |a_n| R^n < +\infty$. And we denote *ⁿ*∈^N

by $\mathcal{M}_b(d(a, R^-))$ the field of fractions of $\mathcal{A}_b(d(a, R^-))$. Finally, we denote by $\mathcal{A}_u(d(a, R^-))$ the set of unbounded analytic functions in $d(a, R^-)$, i.e. $\mathcal{A}(d(a, R^-)) \setminus \mathcal{A}_b(d(a, R^-))$. Similarly, we set $\mathcal{M}_u(d(a, R^-)) = \mathcal{M}(d(a, R^-)) \setminus \mathcal{M}_b(d(a, R^-)).$

⁰Based on talk at the *International Workshop on p-Adic Methods for Modelling of Complex Systems*, Bielefeld, April 15–19, 2013.

[∗]The text was submitted by the authors in English.

^{**}E-mail: alain.escassut@math.univ-bpclermont.fr

^{***}E-mail: kamal.boussaf@math.univ-bpclermont.fr

^{****}E-mail: jacqojeda@udec.cl

Let $f \in \mathcal{M}(d(a, R^-))$, and let $r \in]0, R[$. By classical results [7] we know that $|f(x)|$ has a limit when |*x*| tends to *r*, while being different from *r*. We set $|f|(r) = \lim_{|x-a| \to r, |x| \neq r} |f(x)|$.

Let *f*, *g*, $\alpha \in \mathcal{M}(\mathbb{K})$ (resp. let *f*, *g*, $\alpha \in \mathcal{M}(d(a, R^-))$). We say that *f* and *g share the function* α *C.M.*, if $f - \alpha$ and $g - \alpha$ have the same zeros with the same multiplicities in K (resp. in $d(a, R^-)$) and we say that *f* and *g share the function* α *I.M.*, if $f - \alpha$ and $g - \alpha$ have the same zeros without considering multiplicities in \mathbb{K} (resp. in $d(a, R^-)$). In particular, those definitions apply to constants as small functions.

Throughout the paper, the symbol ∀ means *for all*.

The paper aims at showing a new Nevanlinna-type theorem for meromorphic functions both in the whole field and inside a disk $d(a, R^-)$, which is not a direct consequence of the classical *p*-adic Second Main Theorem. Concerning functions inside the disk, our reasoning lets us obtain a kind of "Second Main Theorem on *n* small functions" provided small functions are bounded inside the disk. Indeed, in the general situation, Yamanoi's Theorem proven in [17] in the complex context has no equivalent in the field K.

Let us recall the definition of the Nevanlinna Functions for meromorphic functions in K. Let log be a real logarithm function of base $b > 1$ and let $f \in \mathcal{M}(\mathbb{K})$ (resp. $\tilde{f} \in \mathcal{M}(d(0, R^-))$) having no zero and no pole at 0. Let $r \in]0, +\infty[$ (resp. $r \in]0, R[$) and let $\gamma \in d(0, r)$. If *f* has a zero of order *n* at γ , we put $\omega_{\gamma}(f) = n$. If *f* has a pole of order *n* at γ , we put $\omega_{\gamma}(f) = -n$ and finally, if $f(\gamma) \neq 0, \infty$, we set $\omega_{\gamma}(f) = 0$.

We denote by $Z(r, f)$ the *counting function of zeros of* f in $d(0, r)$, counting multiplicity, defined as follows:

if *f* has no zero at 0, we set

$$
Z(r, f) = \sum_{\omega_{\gamma}(f) > 0, \ |\gamma| \le r} \omega_{\gamma}(f) (\log r - \log |\gamma|),
$$

and if *f* has a zero of order *q* at 0, we set

$$
Z(r, f) = q \log r + \sum_{\omega_{\gamma}(f) > 0, \ |\gamma| \le r} \omega_{\gamma}(f) (\log r - \log |\gamma|),
$$

Similarly, we denote by $\overline{Z}(r, f)$ the counting function of zeros of f in $d(0, r)$, ignoring multiplicity: if *f* has no zero at 0, we set

$$
Z(r, f) = \sum_{\omega_{\gamma}(f) > 0, \ |\gamma| \le r} (\log r - \log |\gamma|),
$$

and if *f* has a zero of order at 0, we set

.

$$
Z(r, f) = \log r + \sum_{\omega_{\gamma}(f) > 0, \ |\gamma| \le r} (\log r - \log |\gamma|),
$$

In the same way, we set $N(r, f) = Z(r, \frac{1}{r})$ $\frac{1}{f}$) (resp. $\overline{N}(r, f) = \overline{Z}(r, \frac{1}{f})$ $\left(\frac{1}{f}\right)$ to denote the *counting function of poles of* f in $d(0, r)$, counting multiplicity (resp. ignoring multiplicity).

For $f \in \mathcal{M}(d(0, R^-))$ the *characteristic Nevanlinna function* is defined by

$$
T(r, f) = \max\{Z(r, f), N(r, f)\}\
$$

Remark: There exist other definitions of the Nevanlinna functions, involving for instance $|f(0)|$ when the function f has no zero and no pole at 0. Actually, all definitions are equivalent through inequalities, up to an additive constant.

As usual, given a function $f \in \mathcal{M}(\mathbb{K})$ (resp. $\mathcal{M}(d(0,R^-))$), we denote by $S_f(r)$ a function of *r* defined in $]0, +\infty[$ (resp. in $]0, R[$) such that $\lim_{r \to +\infty} \frac{S_f(r)}{T(r, f)} = 0$ (resp. $\lim_{r \to R} \frac{S_f(r)}{T(r, f)} = 0$).

Let us first recall the well known *p*-adic Nevanlinna Theorems:

Theorem N1. [6] *Let* $a_1, ..., a_n \in \mathbb{K}$ *with* $n \geq 2, n \in \mathbb{N}$ *, and let* $f \in \mathcal{M}(\mathbb{K})$ *(resp. let* $f \in$ $\mathcal{M}(d(0, R^{-})))$ *.* Let $S = \{a_1, ..., a_n\}$ *. Then, for* $r > 0$ we have

$$
(n-1)T(r, f) \le \sum_{j=1}^{n} \overline{Z}(r, f - a_j) + \overline{N}(r, f) - \log r + O(1),
$$

(resp.

$$
(n-1)T(r, f) \le \sum_{j=1}^{n} \overline{Z}(r, f - a_j) + \overline{N}(r, f) + O(1)).
$$

Now, we must recall the definition of a *small function* with respect to a meromorphic function and some pertinent properties.

Definition. Let $f \in \mathcal{M}(\mathbb{K})$ (resp. let $f \in \mathcal{M}(d(0, R^-))$) such that $f(0) \neq 0, \infty$. A function $\alpha \in \mathcal{M}(\mathbb{K})$ (resp. $\alpha \in \mathcal{M}(d(0,R^-))$) is called *a small function with respect to f*, if it satisfies $\lim_{r \to +\infty} \frac{T(r, \alpha)}{T(r, f)} = 0$ (resp. $\lim_{r \to R}$ *r*→*R*[−] $\frac{T(r,\alpha)}{T(r,f)}=0.$

We denote by $\mathcal{M}_f(\mathbb{K})$ (resp. $\mathcal{M}_f(d(0,R^-)))$) the set of small meromorphic functions with respect to *f* in K (resp. in $d(0, R^-)$) and similarly we denote by $A_f(\mathbb{K})$ (resp. $A_f(d(0, R^-))$) the set of small analytic functions with respect to f in K (resp. in $d(0, R^-)$).

Remark: Thanks to classical properties of the Nevanlinna function $T(r, f)$ [9] with respect to the operations in a field of meromorphic functions, such as $T(r, f + g) \leq T(r, f) + T(r, g) +$ $O(1)$ and $T(r, fg) \leq T(r, f) + T(r, g) + O(1)$, for $f, g \in \mathcal{M}(\mathbb{K})$ and $r > 0$, it is easily proven that $\mathcal{M}_f(\mathbb{K})$ (resp. $\mathcal{M}_f(d(0,R^-))$) is a subfield of $\mathcal{M}(\mathbb{K})$ (resp. $\mathcal{M}(d(0,R^-))$) and that $\mathcal{M}(\mathbb{K})$ (resp. $\mathcal{M}(d(0, R^-)))$ is a transcendental extension of $\mathcal{M}_f(\mathbb{K})$ (resp. of $\mathcal{M}_f(d(0, R^-)))$).

Theorem N2: [9, 11] *Let* $f \in \mathcal{A}(\mathbb{K})$ *(resp. let* $f \in \mathcal{A}(d(0,R^-))$ *)* and let $u \in f \in \mathcal{A}_f(\mathbb{K})$ *(resp. let u* ∈ $A_f(d(0, R^-))$ *). Then* $T(r, f) ≤ Z(r, f) + Z(r, f - u) + S_f(r)$.

A) A new Nevanlinna-type Theorem

2. RESULTS

Now, we can give here a new theorem which will be useful to obtain results in Part B comparatively to results of [4] and first we can obtain new results of uniqueness for functions inside a disk.

Theorem A1: *Let* $f \in \mathcal{M}(\mathbb{K})$ *and let* $a_1, ..., a_q \in \mathbb{K}$ *be distinct. Then*

$$
(q-1)T(r, f) \le \max_{1 \le k \le q} \Big(\sum_{j=1, j \ne k}^{q} Z(r, f - a_j) \Big) + O(1).
$$

Corollary A1.1: *Let* $f \in \mathcal{M}(\mathbb{K})$ *and let* $a_1, ..., a_q \in \mathbb{K}$ *be distinct. Then*

$$
(q-1)T(r, f) \le \sum_{j=1}^{q} Z(r, f - a_j) + O(1).
$$

Theorem A2: *Let* $f \in \mathcal{M}(d(0, R^-))$ *)* and let $\theta_1, ..., \theta_q \in \mathcal{M}_b(d(0, R^-))$ be distinct. Then

$$
(q-1)T(r, f) \le \max_{1 \le k \le q} \Big(\sum_{j=1, j \ne k}^{q} Z(r, f - \theta_j) \Big) + O(1).
$$

Corollary A2.1: *Let* $f \in \mathcal{M}(d(0, R^-))$ *)* and let $\theta_1, ..., \theta_q \in \mathcal{M}_b(d(0, R^-))$ be distinct. Then

$$
(q-1)T(r, f) \le \sum_{j=1}^{q} Z(r, f - \theta_j) + O(1).
$$

Remark: Corollary A1.1 does not hold in complex analysis. Indeed, let *f* be a meromorphic function in C omitting two values *a* and *b*, such as $f(x) = \frac{e^{x}}{x}$ $\frac{e^x - 1}{e^x - 1}$. Then $Z(r, f - a) + Z(r, f - b) = 0$.

Concerning unbounded functions inside a disk, Corollary A2.1 may in certain sense, replace the Nevanlinna Theorem on *n* small functions proven by Yamanoi in C [17]: this theorem does not hold for meromorphic functions defined on the whole field K.

Thanks to Corollaries A1.1 and A2.1 we can obtain a new result on functions sharing 4 bounded functions inside a disk. Let us first recall results already known on value sharing IM for *p*-adic functions [9]:

Definition: Two functions $f, g \in \mathcal{M}(K)$ or $\mathcal{M}(d(a, R^-))$ are said *to share I.M. a value* $\alpha \in \mathbb{K}$ or *a function* α *defined in the same domain,* if $f - \alpha$ and $g - \alpha$ have the same distinct zeros, ignoring multiplicity, in their domain of defintion. And *f*, *g* are said *to share C.M. a value* $\theta \in \mathbb{K}$ or *a function* α *defined in the same domain,* if $f - \alpha$ and $g - \alpha$ have the same distinct zeros, counting multiplicity.

Theorem AC: *Let* $f, g \in \mathcal{M}(\mathbb{K})$ *(resp.* $f, g \in \mathcal{M}_u(d(a, R^-))$ *) share I.M.* 4 *(resp.*5*)* distinct *points* $a_1, a_2, a_3, a_4 \in \mathbb{K}$ (resp. $a_1, a_2, a_3, a_4, a_5 \in \mathbb{K}$). Then $f = g$.

Theorem AD: *Let* $f, g \in \mathcal{A}(\mathbb{K})$ *(resp.* $f, g \in \mathcal{A}_u(d(a, R^-))$ *) share I.M.* 2 *(resp.*3*)* distinct points $a_1, a_2 \in \mathbb{K}$ *(resp.* $a_1, a_2, a_3 \in \mathbb{K}$ *). Then* $f = g$.

Now, thanks to Corollary A2.1 we can obtain a new result concerning value sharing bounded functions CM inside a disk:

Theorem A3: *Let* $f, g \in \mathcal{M}(\mathbb{K})$ *(resp.* $f, g \in \mathcal{M}_u(d(a, R^-)))$ *share C.M.* 4 *distinct points* $a_1, a_2, a_3, a_4 \in \mathbb{K}$ *. Then* $f = g$ *.*

Theorem A4: *Let* $f, g \in M_u(d(a, R^-))$ *share C.M.* 4 *distinct functions* $\theta_1, \theta_2, \theta_3, \theta_4 \in \mathcal{M}_b(d(a, R^-))$ *. Then* $f = g$ *.*

In order to complete results known on this topic, we can notice Theorem A5 which does not need our new Nevanlinna theorems:

Theorem A5: Let $f, g \in A_u(d(a, R^-))$ share C.M. 2 distinct functions $\theta_1, \theta_2 \in A_b(d(a, R^-))$. *Then* $f = g$ *.*

3. PROOFS OF PART A

First, we must recall Lemmas AL1 and AL2 that are classical.

Lemma AL1 [7] : *For every* $r \in]0, R[$, the mapping $| \cdot |(r)$ is an ultrametric multiplicative norm *on* $\mathcal{M}(d(0, R^{-}))$.

The following Lemma AL2 is the *p*-adic Schwarz formula:

Lemma AL2 [9]: *Let* $f \in \mathcal{A}(\mathbb{K})$ *(resp.* $f \in \mathcal{A}(d(0, R^{-}))$ *)* and let r' , $r'' \in]0, +\infty[$ *(resp. let* $r', r'' \in]0, R[$ satisfy $r' < r''.$ Then $\log(|f|(r'')) - \log(|f|(r')) = Z(r'', f) - Z(r', f)$. If f has no *zero and no pole at* 0*, then* $\log(|f|(r)) - \log(|f(0)|) = Z(r, f)$ *.*

By Lemma AL2, we can derive Lemma AL3 which is also classical:

Lemma AL3 [9]: Let $f, g \in \mathcal{A}(d(0,R^-))$ *(resp.* $f, g \in \mathcal{A}(\mathbb{K})$ *). The Nevanlinna functions* T and Z satisfy $T(r, f) = Z(r, f)$, $T(r, f + g) \leq max(T(r, f), T(r, g)) + O(1), r \in]0, R]$. Suppose *f,* $g \in \mathcal{A}(d(0, R^-))$ *have no zero at the origin and let S be a subset of* $]0, R[$ *(resp. of* $]0, +∞[)$ *such that* $Z(r, f) + \log |f(0)| > Z(r, g) + \log |g(0)|$ $\forall r \in S$ *. Then* $Z(r, f + g) = Z(r, f)$ $\forall r \in S$ *.*

Lemma AL4 is essential and directly leads to the theorems:

Lemma AL4: Let $f \in \mathcal{M}(\mathbb{K})$ (resp. $f \in \mathcal{M}_u(d(0,R^-))$). Suppose that there exists $\theta \in \mathbb{K}$ (resp. $\theta \in M_b(d(0, R^-))$ *)* and a sequence of intervals $I_n = [u_n, v_n]$ such that

$$
u_n < v_n < u_{n+1}
$$
, $\lim_{n \to +\infty} u_n = +\infty$ (resp. $\lim_{n \to +\infty} u_n = R$) and

 $\lim_{n\to+\infty}\Big(\inf_{r\in I_n}$ $\inf_{r \in I_n} T(r, f) - Z(r, f - \theta)$ $= +\infty \text{ (resp. } \lim_{n \to +\infty} \left(\inf_{r \in I_n} T(r, f) - Z(r, f - \theta) \right)$ $\inf_{r \in I_n} T(r, f) - Z(r, f - \theta)$ = +∞) Let $\tau \in$ $\mathbb K$ (resp. let $\tau \in \mathcal M_b(d(0,R^-)))$, $\tau \neq \theta$. Then $Z(r, f - \tau) = T(r, f) + O(1)$ $\forall r \in I_n$ when n is big *enough.*

Proof: We know that the Nevanlinna functions of a meromorphic function f are the same in K and in an algebraically closed complete extension of K whose absolute value extends that of K . Consequently, without loss of generality, we can suppose that $\mathbb K$ is spherically complete because we know that such a field does admit a spherically complete algebraically closed extension whose absolute value expands that of K. If *f* belongs to $\mathcal{M}(\mathbb{K})$, we can obviously set it in the form $\frac{g}{h}$ where g, h belong to $\mathcal{A}(\mathbb{K})$ and have no common zero. Next, since K is supposed to be spherically complete, if *f* belongs to $\mathcal{M}(d(0, R^-))$ we can also set it in the form $\frac{g}{h}$ where *g*, *h* belong to $\mathcal{A}(d(0,R^-))$ and have no common zero [9]. Consequently, we have $T(r, f) = \max(Z(r, g), Z(r, h))$.

When θ is a constant we can obviously suppose that $\theta = 0$. Suppose now $\theta \in \mathcal{M}_b(d(0, R^-))$. Then $f - \theta$ belongs to $\mathcal{M}_u(d(0, R^-))$ like f and $\tau - \theta$ belongs to $\mathcal{M}_b(d(0, R^-))$. Consequently, in both cases, we can assume $\theta = 0$ to prove the claim. Next, up to a change of origin, we can also assume that none of the functions we consider have a pole or a zero at the origin.

Now, we have $\lim_{n \to +\infty} \Big(\inf_{r \in I_n}$ $\inf_{r \in I_n} T(r, f) - Z(r, f) = +\infty$, i.e.

$$
\lim_{n \to +\infty} \left(\inf_{r \in I_n} (Z(r, h) - Z(r, g)) \right) = +\infty.
$$

Particularly, by Lemma AL3 we notice that $T(r, f) = Z(r, h) + O(1)$ whenever $r \in I_n$ when *n* is big enough.

Consider now $Z(r, f - \tau) = Z(r, g - \tau h)$. Then $Z(r, \tau h) = Z(r, h)$, hence by Lemma AL3, $Z(r, g - \tau h) = Z(r, h) + O(1)$, whenever $r \in I_n$ when *n* is big enough. Therefore $Z(r, f - \tau) =$ $Z(r, h) + O(1) = T(r, f) + O(1)$, $r \in I_n$ when *n* is big enough. So the claim is proven when τ is a constant.

Suppose now that $f \in \mathcal{M}(d(0, R^-))$ and $\tau \in \mathcal{M}_b(d(0, R^-))$. We can write τ in the form $\frac{\phi}{\psi}$ where $\phi, \psi \in A_b((d(0, R^-))$ have no common zero. Consider $Z(r, f - \tau) = Z(r, \frac{\psi g - \phi h}{\psi h})$. Since *g* and *h* have no common zero and since both ϕ, ψ are bounded, we have $Z(r, \frac{\psi g - \phi h}{\psi h}) = Z(r, \psi g - \phi h) + O(1)$. Now, since the norm $| \cdot |(r)$ is multiplicative and increasing in *r*, by Lemma AL3 in I_n we have $|\psi g|(r) < |\phi h|(r)$ when *n* is big enough. Consequently,

by Lemma AL1, $|\psi g - \phi h|(r) = |\phi h|(r)$ in I_n when *n* is big enough. Therefore, by Lemma AL3, $Z(r, \psi g - \phi h) = Z(r, \phi h) = Z(r, h) + O(1)$ in I_n when *n* is big enough and consequently we $Z(r, f - \tau) = Z(r, h) + O(1) = T(r, h) + O(1) = T(r, f) + O(1)$. That finishes proving Lemma AL4.

Problems of value sharing constants or functions, counting multiplicity or ignoring multiplicity, have been the focus of a lot of papers [4, 6, 12, 13, 15, 18]. Here we will apply Corollaries A1.1 and A2.1 to functions $f, g \in M_u(d(a, R^-))$ sharing C.M. four constants or four functions $\theta_j \in \mathcal{M}_b(d(a, R^-)).$

Proof of Theorems A1 and A2: Suppose Theorem A1 (resp. Theorem A2) is wrong. In order to make a unique proof for the two theorems, in Theorem A1 we set $\theta_j = a_j$. Thus, there exists $f \in \mathcal{M}(\mathbb{K})$ (resp. $f \in \mathcal{M}_u(d(0,R^-))$) and $\theta_1, ..., \theta_q \in \mathbb{K}$ (resp. $\theta_1, ..., \theta_q \in \mathcal{M}_b(d(0,R^-))$) such that $(q-1)T(r, f) - \max_{1 \leq k \leq q} \left(\sum_{j=1, j \neq k}^{q} Z(r, f - \theta_j) \right)$ admits no superior bound in $]0, +\infty[$. So, there exists a sequence of intervals $J_s = [w_s, y_s]$ such that $w_s < y_s < w_{s+1}$, $\lim_{s \to +\infty} w_s = +\infty$ (resp. $\lim_{s \to +\infty} w_s = R$ and two distinct indices *m* and *t* such that

$$
\lim_{s \to +\infty} \inf_{r \in J_s} \left(T(r, f) - Z(r, f - \theta_m) \right) = +\infty
$$

and

$$
\lim_{s \to +\infty} \inf_{r \in J_s} \left(T(r, f) - Z(r, f - \theta_t) \right) = +\infty.
$$

But by Lemma AL4, this is impossible. This ends the proof of Theorems A1 and A2.

Proof of Theorems A3 and A4: In Theorem A3 we put $\theta_j = a_j$, $j = 1, 2, 3, 4$. In Theorem A4 we can obviously assume $a = 0$. Suppose that f and g are not identical. We have

$$
\sum_{j=1}^{4} Z(r, f - \theta_j) \leq Z(r, f - g) \leq T(r, f - g) \leq T(r, f) + T(r, g).
$$

On the other hand by Corollary A1.1 (resp. A2.1), we have $\sum_{j=1}^{4} Z(r, f - \theta_j) \ge 3T(r, f) + O(1)$. Consequently, $3T(r, f) \leq T(r, f) + T(r, g)$. Similarly, $3T(r, g) \leq T(r, f) + T(r, g)$, hence $3(T(r, f) + T(r, g) \leq T(r, f) + T(r, g)$ $T(r, g) \leq 2(T(r, f) + T(r, g))$, a contradiction.

Remark: When f , g belong to $\mathcal{M}(\mathbb{K})$, it is possible to prove the statement of Theorem A3 by using the classical *p*-adic Second Main Theorem. But when *f, g* belong to $\mathcal{M}_u(d(0, R^-))$, the *p*-adic Second Main Theorem does not let us prove that statement.

Proof of Theorem A5: Suppose that f and g are not identical. By Theorem 2.4.15 [9] we have

$$
\sum_{j=1}^{2} Z(r, f - \theta_j) \leq Z(r, f - g) \leq T(r, f - g) \leq \max(T(r, f), T(r, g)).
$$

On the other hand, since θ_j is bounded, so is $T(r, \theta_j)$ and therefore $T(r, f - \theta_j) = T(r, f) + O(1)$ and similarly, $T(r, g - \theta_j) = T(r, g) + O(1)$. Now, by definition, $T(r, f) = Z(r, f) + O(1)$, $T(r, g) =$ $Z(r, g) + O(1)$. Consequently, $T(r, f) + T(r, g) \leq \max(T(r, f), T(r, g)) + O(1)$, a contradiction.

B) New results on *p*-adic meromorphic functions $f'P'(f)$, $g'P'(g)$ sharing a small function

4. RESULTS

Throughout the paper we will denote by $P(X)$ a polynomial in $\mathbb{K}[X]$ such that $P'(X)$ is of the form \prod^l $\prod_{i=1} (X - a_i)^{k_i}$ with $l \geq 2$ and $k_1 \geq 2$. The polynomial *P* will be said *to satisfy Hypothesis (G)* if $P(a_i) + P(a_i) \neq 0 \ \forall i \neq j$.

We will improve the main theorems obtained in [4] and [5] with the help of the new hypothesis Hypothesis (G) and by thorougly examining the situation in order to avoid a lot of exclusions.

Notation: Let *L* be an algebraically closed field and let $P \in L[x] \setminus L$ and let $\Xi(P)$ be the set of zeros *c* of *P'* such that $P(c) \neq P(d)$ for every zero *d* of *P'* other than *c*. We denote by $\Phi(P)$ its cardinal.

Definitions. Let *f*, *g*, $\alpha \in \mathcal{M}(\mathbb{K})$ (resp. let *f*, *g*, $\alpha \in \mathcal{M}(d(a, R^-))$). We say that *f* and *g share the function* α *C.M.*, if $f - \alpha$ and $g - \alpha$ have the same zeros with the same multiplicities in K (resp. in $d(0, R^{-})$.

Recall that a polynomial $P \in \mathbb{K}[x]$ is called *a polynomial of uniqueness* for a family of functions F if for any two functions $f, g \in \mathcal{F}$ the property $P(f) = P(g)$ implies $f = g$.

The definition of polynomials of uniqueness was introduced in by H. Fujimoto [10] and was used in many papers, explicitly or implicitly, $[2, 4, 9, 10, 12, 19]$ for complex functions and $[1-3, 9, 16]$ for *p*-adic functions.

Let us recall general results on polynomials of uniqueness:

Theorem BU1 [8]: *Let* $P(X) \in K[X]$ *. If* $\Phi(P) \geq 2$ *then P is a polynomial of uniqueness for* $\mathcal{A}(\mathbb{K})$ *. If* $\Phi(P) \geq 3$ *then P is a polynomial of uniqueness for* $\mathcal{M}(\mathbb{K})$ *and for* $\mathcal{A}_u(d(a, R^-))$ *. If* $\Phi(P) \geq 4$ *then P is a polynomial of uniqueness for* $\mathcal{M}_u(d(a, R^-))$ *.*

Concerning polynomials such that P' has exactly two distinct zeros, we know other results:

Theorem BU2 [1, 8]: *Let* $P \in \mathbb{K}[x]$ *be such that* P' *has exactly two distinct zeros* γ_1 *of order* c_1 *and* γ_2 *of order c*₂*. If* $\min\{c_1, c_2\} \geq 2$, *then P is a polynomial of uniqueness for* $\mathcal{M}(\mathbb{K})$ *. Moreover, if* $c_1 = 1$, $c_2 \geq 2$, then *P is a polynomial of uniqueness for* $\mathcal{A}(\mathbb{K})$ *and for* $\mathcal{A}(d(a, R^-))$.

Theorem BU3 [15]: *Let* $P \in \mathbb{K}[x]$ *be of degree* $n \geq 6$ *, such that* P' *only has two distinct zeros, one of them being of order* 2*. Then P is a polynomial of uniqueness for* $\mathcal{M}_u(d(a, R^-))$ *.*

In the present paper, thanks to the new Hypothesis (G) introduced above, we mean to avoid the hypothesis $k_1 \geq k+2$ for $\mathcal{M}(\mathbb{K})$ and $k_1 \geq k+3$ for $\mathcal{M}(d(a, R^-))$. On the other hand, here we will use a new Nevanlinna-type theorem.

Among the first results obtained in that domain, we must cite the work by W. Lin and H. Yi [13]. Here we first have a new theorem for *p*-adic analytic functions:

Theorem B1: *Let* $P(X) \in \mathbb{K}[X]$ *and let* $P'(X) = b \prod_{i=1}^{l}$ $\prod_{i=1} (X - a_i)^{k_i}$ *with* $b \in \mathbb{K}^*, f, g \in \mathcal{A}(\mathbb{K})$ *(resp.*) *f,* $g \in \mathcal{A}(d(0, R[−]))$ *)* be a polynomial of uniqueness for $\mathcal{A}(\mathbb{K})$ (resp. for $\mathcal{A}(d(0, R[−]))$) and be such *that* $f'P'(f)$ *and* $g'P'(g)$ *share a function* $\alpha \in \mathcal{A}_f(\mathbb{K}) \cap \mathcal{A}_g(\mathbb{K})$ *C.M. (resp.* $\alpha \in \mathcal{A}_f(d(0,R^-)) \cap$ $\mathcal{A}_g(d(0,R^-))$ *CM*). If \sum^l $\sum_{j=1}^{n} k_j \geq 2l + 3$, then $f = g$. Moreover, if $f, g \in \mathcal{A}(\mathbb{K})$ and if $\alpha \in \mathbb{K} \setminus \{0\}$ and *if* $deg(P) > 2l + 2$ *, then* $f = q$ *.*

Corollary B1.1 *Let* $P(x) \in \mathbb{K}[x]$ *be such that* $\Phi(P) \ge 2$ *and let* $P'(x) = \prod_{k=1}^{n}$ $f, g \in \mathcal{A}(\mathbb{K})$ *be transcendental such that* $f'P'(f)$ *and* $g'P'(g)$ *share a small function* $\alpha \in \mathcal{A}_f(\mathbb{K}) \cap$ $(x - a_i)^{k_i}$ *and let* $\mathcal{A}_g(\mathbb{K})$ *.* If \sum^l $\sum_{i=1}^{n} k_i \geq 2l + 3$ *then* $f = g$ *. Moreover, if* α *is a constant and if* deg(*P*) $\geq 2l + 2$ *, then* $f = g$..

Corollary B1.2 *Let* $P(x) \in \mathbb{K}[x]$ *be such that* $\Phi(P) \geq 3$ *and let* $P'(x) = \prod_{k=1}^{n}$ $\prod_{i=1}$ $(x - a_i)^{k_i}$ *and let* $f, g \in A_u(d(0, R^-))$ *be such that* $f'P'(f)$ *and* $g'P'(g)$ *share a small function* $\alpha \in A_f(d(0, R^-)) \cap A$ $\mathcal{A}_q(d(0, R^-))$ *.* If deg(P) ≥ 2*l* + 3*, then* $f = q$ *..*

Example: Let $P(x) = \frac{x^9}{9} - \frac{3x^7}{7} +$ $\frac{3x^5}{5} - \frac{x^3}{3}$. We can check that $P'(x) = x^2(x^2 - 1)^3$ hence $l = 3$. Next, we have $P(0) = 0$, $P(1) \neq 0$, $P(-1) = -P(1)$. Consequently, $\Phi(P) = 3$ and $\deg(P) = 2l + 3$. Then, given $f, g \in \mathcal{A}(\mathbb{K})$ (resp. $f, g \in \mathcal{A}_u(d(0, R^-))$) such that $f'P'(f)$ and $g'P'(g)$ share a small function $\alpha \in \mathcal{A}_f(\mathbb{K}) \cap \mathcal{A}_g(\mathbb{K})$ (rersp. $\alpha \in \mathcal{A}_f(d(0,R^-)) \cap \mathcal{A}_g(d(0,R^-))$) then $f = g$.

By Theorems BU2 and BU3 we can also derive Corollaries B1.3 and B1.4:

Corollary B1.3 *Let* $f, g \in \mathcal{A}(\mathbb{K})$ *, let* $\alpha \in \mathcal{A}_f(\mathbb{K}) \cap \mathcal{A}_g(\mathbb{K})$ *and let* $a, b \in \mathbb{K} (a \neq b)$ *. If* $(f-a)^n(f-b)^k f'$ and $(g-a)^n(g-b)^k g'$ share the function α C.M. with $\max(n,k) \geq 2$, then $f = g$.

Corollary B1.4: Let $f, g \in \mathcal{A}_u(d(0,R^-))$, let $\alpha \in \mathcal{A}_f(d(0,R^-)) \cap \mathcal{A}_g(d(0,R^-))$ and let $a \in \mathcal{A}_g(d(0,R^-))$ $\mathbb{K}\setminus\{0\}$. Suppose $(f-a)^n(f-b)^k f'$ and $(g-a)^n(g-b)^k g'$ share the function α C.M. If $k=1$. *and* $n \geq 2$ *or if* $k = 2$ *and* $n \geq 3$ *then* $f = g$ *.*

In order to improve results of [4] on *p*-adic meromorphic functions, we have to state Propositions BP derived from results of [3].

Notation and definition: Henceforth, we assume that $a_1 = P(a_1) = 0$ and that $P'(X)$ is of the form $b \prod^l$ $\prod_{i=1} (X - a_i)^{k_i}$ with $n \geq 2$.

Proposition BP: Let $P \in K[X]$ *satisfy Hypothesis (G) and* deg(P) \geq 3 *(resp.* deg(P) \geq 4*). If meromorphic functions* $f, g \in \mathcal{M}(\mathbb{K})$ (resp. $f, g \in \mathcal{M}(d(a, R^-))$) satisfy $P(f(x)) = P(g(x)) +$ *C* (*C* ∈ K^*), $\forall x \in K$ (resp. $\forall x \in d(a, R^-)$) then both *f* and *g* are constant (resp. *f* and *q* belong to $\mathcal{M}_b(d(a, R^-))$.

From [4] and thanks to Propositions BP we can now derive the following Theorems B2, B3, B4: **Theorem B2:** Let P be a polynomial of uniqueness for $\mathcal{M}(\mathbb{K})$ (resp. for $\mathcal{M}(d(0,R^-))$) with $l \geq 2$ *, let* $P'(X) = b \prod$ $\prod_{i=1} (X - a_i)^{k_i}$ with $b \in \mathbb{K}^*$, $k_i \ge k_{i+1}$, $2 \le i \le l-1$, let $k = \sum_{i=2}^l k_i$. For each *m* ∈ N, *m* ≥ 5*, let* u_m *be the biggest of the <i>i such that* $k_i > 4$ *, let* $s_5 = \max(0, u_5 - 3)$ *and for each* $m ∈ ℕ$, $m ≥ 6$, let $s_m = max(0, u_m − 2)$ *. Suppose P satisfies the following conditions: l*

$$
k_1 \ge 10 + \max(0, 5 - k_2) + \sum_{i=3}^{l} \max(0, 4 - k_i) - \min(\sum_{m=5}^{\infty} s_m, 2l)
$$

either $k_1 \geq k+2$ (resp. $k_1 \geq k+3$) or *P satisfies Hypothesis* (*G*), if $l = 2, then$ $k_1 \neq k+1, 2k, 2k+1, 3k+1,$ if $l = 3$ *, then* $k_1 \neq \frac{k}{2}$ *,* $k_1 \neq k+1$ *,* $2k+1$ *,* $3k_i - k$ $\forall i = 2, 3$ *. If* $l \geq 4$ *, then* $k_1 \neq k+1$

Let $f, g \in \mathcal{M}(\mathbb{K})$ *(resp.* $f, g \in \mathcal{M}_u((d(0, R^-))$ *be transcendental and let* $\alpha \in \mathcal{M}_f(\mathbb{K}) \cap \mathcal{M}_g(\mathbb{K})$ $(r \exp \cdot \alpha \in M_f(d(0, R^-)) \cap M_g(d(0, R^-))$ *be non-identically zero. If* $f'P'(f)$ *and* $g'P'(g)$ *share* α *C.M., then* $f = g$ *.*

Remark: The sum $\sum_{m=5}^{\infty} s_m$ is obviously finite.

Corollary B2.1 *Let* $P \in \mathbb{K}[x]$ *satisfy* $\Phi(P) \geq 3$ *and hypothesis (G), let* $P' = b \prod$ *i*=1 $(X - a_i)^{k_i}$ with $b \in \mathbb{K}^*$, $l \geq 3$, $k_i \geq k_{i+1}$, $2 \leq i \leq l-1$, let $k = \sum_{i=2}^l k_i$, and for each $m \in \mathbb{N}$, $m \geq 5$, let u_m *be the biggest of the i such that* $k_i > 4$ *, let* $s_5 = \max(0, u_5 - 3)$ *and for every* $m \ge 6$ *, let* $s_m = \max(0, u_m - 2)$. Suppose *P* satisfies the following conditions:

$$
k_1 \ge 10 + \max(0, 5 - k_2) + \sum_{i=3}^{l} \max(0, 4 - k_i) - \min\left(\sum_{m=5}^{\infty} s_m, 2l\right)
$$

if $l = 3$, then $k_1 \ne \frac{k}{2}$, $k + 1$, $2k + 1$, $3k_i - k$ $\forall i = 2, 3$,

if $l \geq 4$ *, then* $n \neq k+1$ *. Let* $f, g \in \mathcal{M}(\mathbb{K})$ *be transcendental and let* $\alpha \in \mathcal{M}_f(\mathbb{K}) \cap \mathcal{M}_g(\mathbb{K})$ *be non-identically zero.* If $f'P'(f)$ *and* $g'P'(g)$ *share* α *C.M., then* $f = g$ *.*

Example: Let

$$
P(X) = \frac{X^{20}}{20} - \frac{X^{19}}{19} - \frac{4X^{18}}{18} + \frac{4X^{17}}{17}
$$

$$
+ \frac{6X^{16}}{16} - \frac{6X^{15}}{15} - \frac{4X^{14}}{14} + \frac{4X^{13}}{13} + \frac{X^{12}}{12} - \frac{X^{11}}{11}.
$$

We can check that $P'(X) = X^{10}(X-1)^5(X+1)^4$ and

$$
P(0) = 0, \ P(1) = \sum_{j=0}^{4} C_4^j (-1)^j \Big(\frac{1}{12 + 2j} - \frac{1}{11 + 2j} \Big),
$$

$$
P(-1) = -\sum_{j=0}^{4} C_4^j \Big(\frac{1}{12 + 2j} + \frac{1}{11 + 2j} \Big).
$$

Consequently, we have $\Phi(P) = 3$ and we check that Hypothesis (G) is satisfied. Now, let *f*, $g \in$ $M(\mathbb{K})$ be transcendental and let $\alpha \in M_f(\mathbb{K}) \cap M_g(\mathbb{K})$ be non-identically zero. If $f'P'(f)$ and $g'P'(g)$ share α C.M., then $f = g$.

Remark: In that example, we have $k_1 = 10$, $k = 9$. Applying our previous work, a conclusion would have required $k_1 \geq k+2 = 11$.

Example: Let

$$
P(X) = \frac{X^{24}}{24} - \frac{10X^{23}}{23} + \frac{36X^{22}}{22} - \frac{40X^{21}}{21} - \frac{74X^{20}}{20} + \frac{226X^{19}}{19}
$$

$$
-\frac{84X^{18}}{18} - \frac{312X^{17}}{17} + \frac{321X^{16}}{16} + \frac{88X^{15}}{15}
$$

$$
-\frac{280X^{14}}{14} + \frac{48X^{13}}{13} + \frac{80X^{12}}{12} - \frac{32X^{11}}{11}.
$$

We can check that $P'(X) = X^{10}(X-2)^5(X+1)^4(X-1)^4$. Next, we have $P(2) < -134378$, *P*(1) ∈] − 2*,* 11; −2*,* 10[*, P*(−1) ∈]2*,* 18; 2*,* 19[*.* Therefore, *P*(0*), P*(1*), P*(−1*), P*(2*)* are all distinct, hence $\Phi(P) = 4$. Moreover, Hypothesis (G) is satisfied.

Now, let $f, g \in \mathcal{M}(\mathbb{K})$ (resp. let $f, g \in \mathcal{M}_u(d(0,R^-))$) and let $\alpha \in \mathcal{M}_f(\mathbb{K}) \cap \mathcal{M}_g(\mathbb{K})$ (resp. let $\alpha \in M_f(d(0, R^-)) \cap M_g(d(0, R^-))$ be non-identically zero. If $f'P'(f)$ and $g'P'(g)$ share α C.M., then $f = g$.

Remark: In that example, we have $k_1 = 10$, $k = 13$. Applying our previous work, a conclusion would have required $k_1 \geq k+2 = 15$ if f, g belong to $\mathcal{M}(\mathbb{K})$ and $k_1 \geq k+3 = 16$ if f, g belong to $\mathcal{M}_u(d(0,R^-))$.

As noticed in [4], if *f*, g belong to $\mathcal{M}(\mathbb{K})$ and if α is a constant or a Moebius function, we can get a more accurate statement:

Theorem B3: Let P be a polynomial of uniqueness for $\mathcal{M}(\mathbb{K})$, let $P' = b \prod$ $\prod_{i=1}$ $(x - a_i)^{k_i}$ *with* $b \in$

 $\mathbb{K}^*, l \geq 2, k_i \geq k_{i+1}, 2 \leq i \leq l-1, let k = \sum_{i=2}^l k_i$. For each $m \in \mathbb{N}, m \geq 5$, let u_m be the biggest of the *i* such that $k_i > 4$, let $s_5 = \max(0, u_5 - 3)$ and for each $m \in \mathbb{N}$, $m \ge 6$, let $s_m = \max(0, u_m - 2)$. *Suppose P satisfies the following conditions:*

$$
k_1 \ge 9 + \max(0, 5 - k_2) + \sum_{i=3}^{l} \max(0, 4 - k_i) - \min(\sum_{m=5}^{\infty} s_m, 2l - 1)
$$

either $k_1 \geq k+2$ *or P satisfies* (G)

 if $l = 2$ *, then* $k_1 \neq k+1$ *,* $2k$ *,* $2k+1$ *,* $3k+1$ *,*

 if $l = 3$ *, then* $k_1 \neq \frac{k}{2}$ *,* $k_1 \neq k+1$ *,* $2k+1$ *,* $3k_i - k$ $\forall i = 2, 3$ *.*

Let $f, g \in \mathcal{M}(\mathbb{K})$ *be transcendental and let* α *be a Moebius function. If* $f'P'(f)$ *and* $g'P'(g)$ *share* α *C.M.*, then $f = g$.

By Theorem BU1, we have Corollary B3.1.

 $\textbf{Corollary B3.1} \quad Let \ P \in \mathbb{K}[x] \ \ satisfy \ \Phi(P) \geq 3, \ \ let \ \ P' = b \prod_{i=1}^{n}$ *i*=1 $(x - a_i)^{k_i}$ *with b* ∈ **K**^{*}, *l* ≥ 3*,*

 $k_i \geq k_{i+1}, 2 \leq i \leq l-1$, let $k = \sum_{i=2}^{l} k_i$. For each $m \in \mathbb{N}$, $m \geq 5$, let u_m be the biggest of the *i such that* $k_i > 4$ *, let* $s_5 = \max(0, u_5 - 3)$ *and for each* $m \in \mathbb{N}$ *,* $m \geq 6$ *, let* $s_m = \max(0, u_m - 2)$ *.*

Suppose P satisfies the following conditions:

$$
k_1 \ge 9 + \max(0, 5 - k_2) + \sum_{i=3}^{l} \max(0, 4 - k_i) - \min(\sum_{m=5}^{\infty} s_m, 2l - 1)
$$

either $k_1 > k + 2$ *or P satisfies* (G),

 if $l = 3$ *, then* $k_1 \neq \frac{k}{2}$ *,* $k_1 \neq k+1$ *,* $2k+1$ *,* $3k_i - k$ $\forall i = 2, 3$ *.*

Let $f, g \in \mathcal{M}(\mathbb{K})$ *be transcendental and let* α *be a Moebius function. If* $f'P'(f)$ *and* $g'P'(g)$ *share* α *C.M.*, then $f = g$.

And by Theorem BU2 we have Corollary B3.2.

Corollary B3.2 *Let* $P \in \mathbb{K}[x]$ *be such that* P' *is of the form* $b(x-a_1)^n(x-a_2)^k$ *with* $k \leq n$ *,* $\min(k,n) \geq 2$ *and with* $b \in \mathbb{K}^*$. Suppose P satisfies the following conditions: $n \geq 9 + \max(0, 5 - k)$,

either $n \geq k+2$ *or P satisfies* (G),

 $n \neq k+1, 2k, 2k+1, 3k+1,$

Let $f, g \in \mathcal{M}(\mathbb{K})$ *be transcendental and let* α *be a Moebius function. If* $f'P'(f)$ *and* $g'P'(g)$ *share* α *C.M.*, then $f = g$.

Theorem B4: Let P be a polynomial of uniqueness for $\mathcal{M}(\mathbb{K})$, let $P' = b \prod$ $\prod_{i=1}$ $(x - a_i)^{k_i}$ *with* $b \in$

 $\mathbb{K}^*, l \geq 2, k_i \geq k_{i+1}, 2 \leq i \leq l-1, let k = \sum_{i=2}^l k_i, and for each m \in \mathbb{N}, m \geq 5, let u_5 be the biggest.$ *of the i* such that $k_i > 4$, let $s_5 = \max(0, u_5 - 3)$ and for every $m \geq 6$ let $s_m = \max(0, u_m - 2)$. *Suppose P satisfies the following conditions:*

either $k_1 \geq k+2$ *or P satisfies* (G)

$$
k_1 \ge 9 + \max(0, 5 - k_2) + \sum_{i=3}^{l} \max(0, 4 - k_i) - \min(\sum_{m=5}^{\infty} s_m, 2l),
$$

 $k_1 \neq k+1$.

Let $f, g \in M(\mathbb{K})$ *be transcendental and let* α *be a non-zero constant. If* $f'P'(f)$ *and* $g'P'(g)$ *share* α *C.M.*, then $f = g$.

By Theorem BU1, we have Corollary B4.1

 $\textbf{Corollary B4.1} \quad Let \ P \in \mathbb{K}[x] \ \ satisfy \ \Phi(P) \geq 3, \ \ let \ \ P' = b \prod_{i=1}^{n}$ $\prod_{i=1} (x - a_i)^{k_i}$ *with* $b \in \mathbb{K}^*, \ l \geq 3,$

 $k_i \geq k_{i+1}, \ 2 \leq i \leq l-1, \ let \ k = \sum_{i=2}^l k_i.$

For each $m \in \mathbb{N}$, $m \geq 5$, let u_m be the biggest of the *i* such that $k_i > 4$, let $s_5 = \max(0, u_5 - 3)$ *and for every* $m \geq 6$ *let* $s_m = \max(0, u_m - 2)$ *. Suppose P satisfies the following conditions:*

 $k_1 \geq k+2$ *or P satisfies Hypothesis (G),*

$$
k_1 \ge 9 + \max(0, 5 - k_2) + \sum_{i=3}^{l} \max(0, 4 - k_i) - \min(\sum_{m=5}^{\infty} s_m, 2l),
$$

$$
k_1 \neq k+1.
$$

Let $f, g \in M(\mathbb{K})$ *be transcendental and let* α *be a non-zero constant. If* $f'P'(f)$ *and* $g'P'(g)$ *share* α *C.M.*, then $f = g$.

And by Theorem BU2, we have Corollary B4.2

Corollary B4.2 *Let* $P \in \mathbb{K}[x]$ *be such that* P' *is of the form* $b(x - a_1)^n(x - a_2)^k$ *with* $\min(k, n) \ge$ 2 and with $b \in \mathbb{K}^*$. Suppose P satisfies the following conditions:

 $k_1 \geq 9 + \max(0, 5 - k)$, *either* $n \geq k+2$ *or P satisfies* (G), $k_1 \neq k+1$.

Let $f, g \in \mathcal{M}(\mathbb{K})$ *be transcendental and let* α *be a non-zero constant. If* $f'P'(f)$ *and* $g'P'(g)$ *share* α *C.M.*, then $f = g$.

Example: Let

$$
P(X) = \frac{X^{15}}{15} + \frac{5X^{14}}{14} + \frac{10X^{13}}{13} + \frac{10X^{12}}{12} + \frac{5X^{11}}{11} + \frac{X^{10}}{10}.
$$

Then $P'(X) = X^9(X+1)^5$. We can apply Corollary B4.2: given *f, g* ∈ $\mathcal{A}(\mathbb{K})$ transcendental such that $f'P'(f)$ and $g'P'(g)$ share a constant $\alpha \in \mathcal{M}(\mathbb{K})$ C.M., we have $f = g$.

Theorem B5: *Let ^P be a polynomial of uniqueness for* ^M(K) *such that ^P is of the form* $b(x-a_1)^n\prod$ $\prod_{i=2}$ $(x - a_i)$ *with* $l \geq 3$, $b \in \mathbb{K}^*$, *satisfying:* $n > l + 10$, *if* $l = 3$ *, then* $n \neq 2l - 1$ *.* Let $f, g \in \mathcal{M}(\mathbb{K})$ *be transcendental and let* $\alpha \in \mathcal{M}_f(\mathbb{K}) \cap \mathcal{M}_g(\mathbb{K})$ *be non-identically zero. If* $f'P'(f)$ *and* $g'P'(g)$ *share* α *C.M., then* $f = g$ *.*

By Theorem BU1, we have Corollary B5.1:

Corollary B5.1 *Let* $P \in \mathbb{K}[x]$ *satisfy* $\Phi(P) \geq 3$ *and be such that* P' *is of the form* $b(x-a_1)^n\prod$ $\prod_{i=2}$ (*x* − *a*_{*i*}) *with l* ≥ 3*, b* ∈ K^{*} *satisfying:* $n \geq l + 10$, *if* $l = 3$ *, then* $n \neq 2l - 1$ *.* Let $f, g \in \mathcal{M}(\mathbb{K})$ *be transcendental and let* $\alpha \in \mathcal{M}_f(\mathbb{K}) \cap \mathcal{M}_g(\mathbb{K})$ *be non-identically zero. If* $f'P'(f)$

and $g'P'(g)$ *share* α *C.M., then* $f = g$ *.*

Theorem B6: *Let* $a \in \mathbb{K}$ *and* $R > 0$ *. Let* P *be a polynomial of uniqueness for* $\mathcal{M}_u(d(0, R[−]))$ *such that* P' *is of the form* $P' = b(x - a_1)^n \prod_{i=1}^l$ $\prod_{i=2}$ $(x - a_i)$ *with* $l \geq 3$ *,* $b \in \mathbb{K}^*$ *satisfying:*

 $n \geq l + 10$,

if $l = 3$ *, then* $n \neq 2l - 1$ *.*

Let $f, g \in \mathcal{M}_u(d(0, R^-))$ *and let* $\alpha \in \mathcal{M}_f(d(0, R^-)) \cap \mathcal{M}_g(d(0, R^-))$ *be non-identically zero. If* $f'P'(f)$ and $g'P'(g)$ share α *C.M., then* $f = g$.

By Theorem BU1, we have Corollary B6.1:

Corollary B6.1 *Let* $a \in \mathbb{K}$ *and* $R > 0$ *. Let* $P \in \mathbb{K}[x]$ *satisfy* $\Phi(P) \geq 4$ *and be such that* P' *is of the form* $P' = b(x - a_1)^n \prod_1^l$ $\prod_{i=2}$ $(x - a_i)$ *with* $l \geq 4$ *,* $b \in \mathbb{K}^*$ *and* $n \geq l + 10$ *.*

Let $f, g \in \mathcal{M}_u(d(0, R^-))$ *and let* $\alpha \in \mathcal{M}_f(d(0, R^-)) \cap \mathcal{M}_g(d(0, R^-))$ *be non-identically zero. If* $f'P'(f)$ and $g'P'(g)$ share α *C.M., then* $f = g$.

Example: Let $P(x) = \frac{x^{18}}{18} - \frac{2x^{17}}{17} - \frac{x^{16}}{16} + \dots$ $2x^{15}$ $\frac{x}{15}$. Then $P'(x) = x^{17} - 2x^{16} - x^{15} + 2x^{14} = x^{14}(x 1(x+1)(x-2)$. We check that: $P(0) = 0$, $P(1) = \frac{1}{18} - \frac{2}{17} - \frac{1}{16} + \frac{2}{15},$ $P(-1) = \frac{1}{18} + \frac{2}{17} - \frac{1}{16} - \frac{2}{15} \neq 0, P(1), \text{and } P(2) = \frac{2^{18}}{18} - \frac{2^{18}}{17} - \frac{2^{16}}{16} + \dots$ 2^{16} $\frac{1}{15}$ ≠ 0*, P*(1*), P*(-1*).* Then $\Upsilon(P) = 4$ *.* So, *P* is a polynomial of uniqueness for both $\mathcal{M}(\mathbb{K})$ and $\mathcal{M}(d(0, R^{-}))$.

Given $f, g \in \mathcal{M}(\mathbb{K})$ transcendental or $f, g \in \mathcal{M}_u(d(0, R^-))$ such that $f'P'(f)$ and $g'P'(g)$ share C.M. a small function α , we have $f = q$.

Theorem B7: *Let ^P be a polynomial of uniqueness for* ^M(K) *such that ^P is of the form* $P' = b(x - a_1)^n \prod^l$ $\prod_{i=2}$ (*x* − *a*_{*i*}) *with l* ≥ 3*, b* ∈ K^{*} *satisfying*

 $n \geq l + 9$,

if $l = 3$ *, then* $n \neq 2l - 1$ *.*

Let $f, g \in \mathcal{M}(\mathbb{K})$ be transcendental and let α be a Moebius function or a non-zero constant. If $f'P'(f)$ and $g'P'(g)$ share α *C.M., then* $f = g$.

Example: Let $P(x) = x^q - ax^{q-2} + b$ with $a \in \mathbb{K}^*$, $b \in \mathbb{K}$, with $q \ge 5$ an odd integer. Then *q* and *q* − 2 are relatively prime and hence by Theorem 3.21 in [11] *P* is a polynomial of uniqueness for $\mathcal{M}(\mathbb{K})$ and *P'* admits 0 as a zero of order $n = q - 3$ and two other zeros of order 1.

Let $f, g \in \mathcal{M}(\mathbb{K})$ be transcendental and let $\alpha \in \mathcal{M}(\mathbb{K})$ be a small function such that f, g share *α* C.M.

Suppose first $q \ge 17$. By Theorem B6 we have $f = g$. Now suppose $q \ge 15$ and suppose α is a Moebius function or a non-zero constant. Then by Theorems B7 we have $f = g$.

Theorem B8: Let $f, g \in \mathcal{M}(\mathbb{K})$ be transcendental and let $\alpha \in \mathcal{M}_f(\mathbb{K}) \cap \mathcal{M}_g(\mathbb{K})$ be non*identically zero.* Let $a \in \mathbb{K} \setminus \{0\}$. If $f'f^{n}(f - a)$ and $g'g^{n}(g - a)$ share the function $\alpha \in \mathbb{C}M$. and if $n \geq 12$, then either $f = g$ or there exists $h \in \mathcal{M}(\mathbb{K}) \setminus \mathbb{K}(x)$ such that $f = \frac{a(n+2)}{n+1}$ $\int h^{n+1} - 1$ *hn*+2 − 1 *h and* $g = \frac{a(n+2)}{n+1}$ $\int_0^h n^{n+1} - 1$ $h^{n+2} - 1$ *. Moreover, if α is a constant or a Moebius function, then the conclusion holds whenever* $n \geq 1$.

Inside an open disk, we have a version similar to the general case in the whole field.

Theorem B9: Let $f, g \in M_u(d(0, R^-))$, and let $\alpha \in M_f(d(0, R^-)) \cap M_g(d(0, R^-))$ be non*identically zero. Let* $a \in \mathbb{K} \setminus \{0\}$. If $f'f^{n}(f - a)$ and $g'g^{n}(g - a)$ share the function α *C.M.* and $n \ge 12$, then either $f = g$ or there exists $h \in M_u(d(0, R^-))$ such that $f = \frac{a(n+2)}{n+1}$ $\left(\frac{h^{n+1}-1}{h^{n+1}-1} \right)$ *hn*+2 − 1 *h and* $g = \frac{a(n+2)}{n+1}$ $\sqrt{h^{n+1}-1}$ *^hn*+2 [−] ¹ *.*

Remark: In Theorems B8 and B9, the second conclusion does occur. Indeed, let $h \in \mathcal{M}(\mathbb{K}) \setminus \mathbb{K}(x)$ (resp. let $h \in \mathcal{M}_u(d(0, R^-))$). Now, let us precisely define f and g as: $g = \left(\frac{n+2}{n+1}\right)$ $\left(\frac{h^{n+1}-1}{h^{n+2}-1}\right)$ and $h^{n+2} - 1$ $f = hg$. Then, both *f, g* are transcendental (resp. both *f, g* belong to $\mathcal{M}_u(d(0, R^-))$) and then we can check that the polynomial $P(y) = \frac{1}{n+2}y^{n+2} - \frac{1}{n+1}y^{n+1}$ satisfies $P(f) = P(g)$, hence $f'P'(f) = g'P'(g)$, therefore $f'P'(f)$ and $g'P'(g)$ trivially share any function.

5. PROOFS OF PART B:

Notation: As usual, given a function $f \in \mathcal{M}(\mathbb{K})$ (resp. $\mathcal{M}(d(0,R^-))$), we denote by $S_f(r)$ a function of r defined in $]0, +\infty[$ (resp. in $]0, R[$) such that $\lim_{r \to +\infty} \frac{S_f(r)}{T(r, f)} = 0$ (resp. $\lim_{r \to R} \frac{S_f(r)}{T(r, f)} = 0$)

In the proof of Theorems B2, B3, B4 we will need the following Lemmas [11]:

Lemma BL1: Let $Q \in \mathbb{K}[x]$ be of degree *n* and let $f \in \mathcal{M}(\mathbb{K})$, (resp. $f \in \mathcal{M}(d(0,R^-))$) be $a_n = \frac{1}{2}$ *(r, f*) = $N(r, f) = N(r, f) + N(r, f)$, $Z(r, f') \leq Z(r, f) + N(r, f) + O(1)$, $nT(r, f) \leq Z(r, f) + O(1)$ $T(r, f'Q(f)) \leq (n+2)T(r, f) - \log r + O(1)$ (resp. $nT(r, f) \leq T(r, f'Q(f)) \leq (n+2)T(r, f) + O(1)$). $Particularly, if f \in \mathcal{A}(\mathbb{K}), (resp. f \in \mathcal{A}(d(0, R^-))), then nT(r, f) \leq T(r, f^{\prime}Q(f)) \leq (n+1)T(r, f) \log r + O(1)$ *(resp.* $nT(r, f) \leq T(r, f'Q(f)) \leq (n + 1)T(r, f) + O(1)$).

Let $P \in \mathcal{M}_b(d(0, R^-))[X]$ *be of degree n* and let $f \in \mathcal{M}_u(d(0, R^-))$ *. Then* $T(r, P(f)) =$ $nT(r, f) + O(1)$.

Lemma BL2 : *Let* $f \in \mathcal{M}(d(0, R^-))$ *. Then,* $Z(r, f') - N(f', r) \leq Z(r, f) - N(r, f) - \log r +$ $O(1)$ *. Moreover,* $T(r, f) - Z(r, f) \leq T(r, f') - Z(r, f') + O(1)$ *. Further, given* $\alpha \in \mathcal{M}(d(0, R^-))$ *, we have* $T(r, \alpha f) - Z(r, \alpha f) \leq T(r, f) - Z(r, f) + T(r, \alpha)$.

The following lemma is given in [4], for *p*-adic meromorphic functions. The same applies for complex meromorphic functions [5].

Lemma BL3: Let $Q(x) = (x - a_1)^n \prod_{i=2}^l (x - a_i)^{k_i} \in \mathbb{K}[x]$ $(a_i \neq a_j, \forall i \neq j)$ with $l \geq 2$ and $n \geq$ $\max\{k_2, ..., k_l\}$ and let $k = \sum_{i=2}^l k_i$. Let $f, g \in \mathcal{M}(\mathbb{K})$ be transcendental (resp. $f, g \in \mathcal{M}_u(d(0, R^-))$) *such that* $\theta = Q(f)f'Q(g)g'$ *is a small function with respect to* f *and* g *. We have the following :*

- *If* $l = 2$ *then n belongs to* $\{k, k+1, 2k, 2k+1, 3k+1\}.$
- If $l = 3$ *then n belongs to* $\{\frac{k}{2}, k + 1, 2k + 1, 3k_2 k, ..., 3k_l k\}.$
- *If* $l \geq 4$ *then* $n = k + 1$ *.*
- *If* θ *is a constant and* $f, g \in \mathcal{M}(\mathbb{K})$ *then* $n = k + 1$ *.*

Lemma BL4: Let $P \in \mathbb{K}[x] \setminus \mathbb{K}$ with $\deg(P) > 1$ and let $f, g \in \mathcal{A}(\mathbb{K}) \setminus \mathbb{K}$ (resp. $f, g \in \mathcal{A}(\mathbb{K})$) $\mathcal{A}_u(d(a,R^-)))$ be such that $P(f) = P(g) + c$, $c \in \mathbb{K}$ (resp. $P(f) = P(g) + h$, $h \in \mathcal{M}_b(d(a,R^-)))$). *Then* $c = 0$ (resp. $h = 0$).

Proof: Let $P(x) = \sum_{k=0}^{n} a_k x^k$ with $a_n \neq 0$. For each $k = 1, ..., n-1$, let $Q_k(x, y) = a_k \sum_{j=0}^{k} x^j y^{k-j}$. Then $P(x) - P(y) = (x - y)(\sum_{k=1}^{n-1} Q_k(x, y))$. Suppose first *f*, $g \in \mathcal{A}(\mathbb{K})$ and suppose $c \neq 0$. Since (*f* − *g*)(*n* \sum $\overline{-}1$ $\sum_{k=1} Q_k(f,g)$ is a constant, both $f-g$ and *n* \sum $\overline{-}1$ *k*=1 $Q_k(f,g)$ are constants different from 0 because the semi-norm $| \cdot |(r)$ is multiplicative on $\mathcal{A}(\mathbb{K})$ (resp. on $\mathcal{A}_u(d(0,R^-))$) and is an increasing function in *r*. Thus we have $g = f + b$ with $b \in \mathbb{K}$. Let $G(x) = \sum_{k=1}^{n-1} Q_k(x, x + b)$. Since K has characteristic 0, we can check that *G* is a polynomial of degree $n-1$. And since $G(f)$ is a constant, we have $n - 1 = 0$, a contradiction. Consequently, $c = 0$.

Similarly, suppose now $f, g \in \mathcal{A}_u(d(a, R^-))$. Since $P(f) - P(g)$ belongs to $\mathcal{A}_b(d(a, R^-))$, both *f* − *g* and *n* \sum $\overline{-}1$ *k*=1 $Q_k(f,g)$ are bounded and not identically 0, so we have $g = f + h$, with $h \in$ A*b*(*d*(*a, R*−)). Suppose that *h* is not identically zero. Consider the polynomial $B(x) =$ *n* \sum $\overline{-}1$ $\sum_{k=1} Q_k(x, x+h) \in \mathcal{M}_b(d(a, R^-))[x]$. Clearly, $B(x)$ is a polynomial with coefficients in $\mathcal{M}_b(d(a, R^-))$ and deg(*B*)) is $n-1$, hence we have $T(r, B(f)) = (n-1)T(r, f) + o(T(r, f))$. But

since $B(f)$ is bounded, it belongs to $\mathcal{M}_b(d(a, R^-))[x]$, hence $T(r, B(f))$ is bounded and so is $(n-1)T(r, f)$, which leads to $n = 1$, a contradiction again.

Proof of Theorem B1. Put
$$
F = f'b \prod_{j=1}^{l} (f - a_j)^{k_j}
$$
 and $G = g'b \prod_{j=1}^{l} (g - a_j)^{k_j}$. Since $f, g \in \mathcal{A}(\mathbb{K})$

(resp. $f, g \in \mathcal{A}_u(d(0, R^-))$) and since *F* and *G* share α C.M., then $\frac{F - \alpha}{G - \alpha}$ is a meromorphic function having no zero and no pole in K (resp. in $d(0, R^-)$), hence it is a constant *w* in K \{0} (resp. it is an invertible function $w \in A_b(d(0,R^-))$.

Suppose $w \neq 1$. Then, $F = wG + \alpha(1 - w)$.

Let $r > 0$. Since $\alpha(1 - w) \in \mathcal{A}_f(\mathbb{K})$ (resp. $\alpha(1 - w) \in \mathcal{A}_f(d(0, R^-))$), $\alpha(1 - w)$ obviously belongs to $\mathcal{A}_F(\mathbb{K})$ (resp. to $\mathcal{A}_F(d(0,R^-))$). So, applying Theorem N1 to *F*, we obtain

$$
T(r, F) \leq \overline{Z}(r, F) + \overline{Z}(r, F - \alpha(1 - w)) + S_F(r) = \overline{Z}(r, F) + \overline{Z}(G) + S_F(r)
$$

$$
= \sum_{j=1}^{l} \overline{Z}(r, (f - a_j)^k) + \overline{Z}(r, f') + \sum_{j=1}^{l} \overline{Z}(r, (g - a_j)^k) + \overline{Z}(r, g') + S_f(r)
$$

$$
\leq l(T(r, f) + T(r, g)) + Z(r, f') + Z(r, g') + S_f(r).
$$

We also notice that if *f*, $g \in \mathcal{A}(\mathbb{K})$ and if $\alpha \in \mathbb{K} \setminus \{0\}$, we have $T(r, F) \leq \overline{Z}(r, F) + \overline{Z}(r, F - \alpha(1 - w)) - \log r + O(1)$ and therefore we obtain $T(r, F) \le l(T(r, f) + T(r, g)) + Z(r, f') + Z(r, g') - \log r + O(1).$

Now, let us go back to the general case. Since f is entire (resp. f belongs to $\mathcal{M}_u(d(0, R^-))$), by Lemma BL1 we have $T(r, F) = (\sum_{j=1}^{l} k_j)T(r, f) + Z(r, f') + O(1)$. Consequently, $(\sum_{j=1}^{l} k_j)T(r, f) \le l(T(r, f) + T(r, g)) + Z(r, g') + S_f(r).$ Similarly, $(\sum_{j=1}^{l} k_j)T(r, g) \le l(T(r, f) + T(r, g)) + Z(r, f') + S_f(r)$. Therefore

$$
(\sum_{j=1}^{l} k_j)(T(r, f) + T(r, g)) \le 2l(T(r, f) + T(r, g)) + Z(r, f') + Z(r, g') + S_f(r)
$$

$$
\le (2l + 1)(T(r, f) + T(r, g)) + S_f(r).
$$

So, $\sum_{j=1}^{l} k_j \le 2l + 1$. Thus, since $\sum_{j=1}^{l} k_j > 2l + 1$ we have $w = 1$.

j=1 *j*=1

And if $\alpha \in \mathbb{K} \setminus \{0\}$ and if *f, g* belong to $\mathcal{A}(\mathbb{K})$, by applying Theorem N1 we obtain

$$
\sum_{j=1}^{l} k_j (T(r, f) + T(r, g)) \le 2l (T(r, f) + T(r, g)) + Z(r, f') + Z(r, g') - 2\log r + O(1)
$$

$$
\le (2l + 1)(T(r, f) + T(r, g)) - 4\log r + O(1)
$$

because $T(r, f') \leq T(r, f) - \log r + O(1)$, hence $\sum_{n=1}^{\infty}$ $\sum_{j=1}^{n} k_j \leq 2l$ which also contradicts the hypothesis

 $w \neq 1$ whenever $\sum_{i=1}^{l}$ *j*=1 $k_j > 2l$.

Consequently, in the general case, whenever $\sum_{i=1}^{l}$ *j*=1 $k_j > 2l + 1$, we have $w = 1$ and therefore $f'P'(f) = g'P'(g)$ hence $P(f) - P(g)$ is a constant *c*. And by Lemma BL4 we have $c = 0$. But since *P* is a polynomial of uniqueness for $\mathcal{A}(\mathbb{K})$ (resp. for $\mathcal{A}(d(0,R^-))$), that yields $f = g$.

And similarly, if $\alpha \in \mathbb{K}$ and $f, g \in \mathcal{A}(\mathbb{K})$, whenever $\sum_{i=1}^{l}$ *j*=1 $k_j > 2l$, we have $w = 1$ and therefore we can conclude in the same way.

From results of [3] we can extract this:

Theorem BF: Let P , $Q \in \mathbb{K}[x]$ *of respective degree* m *and* n *with* $m \leq n$ *and* P *monic and let* $P'(x) = m \prod_{i=1}^{h} (x - a_i)^{k_I}$, $Q'(x) = nb \prod_{i=1}^{l} (x - b_i)^{q_I}$, where $a_1, ..., a_h$ are distinct and $b_1, ..., b_l$ are *distinct.*

Let $H = \{i \mid 1 \le i \le h, P(a_i) \ne Q(b_j) \,\forall j = 1, ..., l\}$ and let $L = \{j \mid 1 \le j \le l, Q(b_j) \ne P(a_i)\}\$ $\forall i = 1, ..., h$.

Suppose that one of the following two statement holds:

$$
\sum_{a_i \in H} k_i \ge n - m + 2 \text{ (resp. } \sum_{a_i \in H} k_i \ge n - m + 3),
$$

$$
\sum_{b_j \in L} q_j \ge 2 \text{ (resp. } \sum_{b_i \in L} q_j \ge 3).
$$

If two meromorphic functions $f, g \in \mathcal{M}(\mathbb{K})$ *(resp.* $f, g \in \mathcal{M}(d(0, R^-)))$) satisfy $P(f(x)) =$ *Q*($g(x)$), $\forall x \in \mathbb{K}$, (resp. $\forall x \in d(0, R^-)$) then both *f* and *g* are constant (resp. belong to $\mathcal{M}_b(d(0,R^-)))$.

Proof of Proposition BP: Let $n = \deg(P)$. Suppose that two functions $f, g \in \mathcal{M}(\mathbb{K})$ (resp. *f,* $g \in \mathcal{M}(d(0, R^-))$ satisfy $P(f(x)) = P(g(x)) + C$ ($C \in \mathbb{K}^*$), $\forall x \in \mathbb{K}$ (resp. $\forall x \in d(0, R^-)$). We can apply Theorem BF by putting $Q(X) = P(X) + C$ and next keeping the same notations. So, here we have $h = l$, $m = n$ and $b_i = a_i$, $i = 1, ..., l$. Let Γ be the curve of equation $P(X) - P(Y) = C$. By hypothesis we have $n \geq 3$, so Γ is of degree ≥ 3 . Therefore, if Γ has no singular point, it is of genus ≥ 1 and hence, by Picard-Berkovich Theorem, the conclusion is immediate. Consequently, we can assume that Γ has a singular point (α, β) . But then $P'(\alpha) = P'(\beta) = 0$ and hence (α, β) is of the form (a_h, a_k) . Consequently, $C = P(a_h) - P(a_k)$ and since $C \neq 0$, we have $h \neq k$. We will prove that either $a_1 \in H$, or $a_1 \in L$.

Suppose first that $a_1 \notin H \cup L$. Since $a_1 \notin H$, there exists $i \in \{2, ..., l\}$ such that $P(a_1) =$ $P(a_i) + C$. Now since $1 \notin L$, there exists $j \in \{2, ..., l\}$ such that $P(a_1) + C = P(a_i)$. But since $C = -P(a_i)$, we have $P(a_j) = -P(a_i)$, therefore $P(a_i) + P(a_j) = 0$. Since *P* satisfies (G), we have $i = j$, hence $P(a_i) = 0$. But then $C = 0$, a contradiction. Therefore, we have proven that *a*₁ ∈ *F'* ∪ *F''*. Now, by Theorem BF, *f* and *g* are constant (resp. *f* and *g* belong to $\mathcal{M}_b(d(0, R^-))$).

The following basic lemma applies to both complex and meromorphic functions. A proof is given in [4].

Lemma BL5: *Let* $f \in \mathcal{M}(\mathbb{K})$, (resp. $f \in \mathcal{M}(d(0, R[−])))$. *Then* $T(r, f) - Z(r, f) \leq T(r, f') - Z(r, f') + O(1).$

Notation: Given two meromorphic functions $f, g \in \mathcal{M}(K)$ (resp. $f, g \in \mathcal{M}(d(0, R^-))$), we will denote by $\Psi_{f,g}$ the function

$$
\frac{f''}{f'} - \frac{2f'}{f-1} - \frac{g''}{g'} + \frac{2g'}{g-1}.
$$

We denote by $Z_{[2]}(r, f)$ the counting function of zeros of f in K (resp. in $d(0, R^-)$) where zeros of order > 2 are only counted with multiplicity order 2. Similarly, we denote by $N_{[2]}(r, f)$ the counting function of poles of *f* in K (resp. in $d(0, R^-)$) where poles of order > 2 are only counted with multiplicity order 2.

Now, we can extract the following Lemma BL6 from a result that is proven in several papers and particularly in Lemma 11 [4].

Lemma BL6: Let $f, g \in \mathcal{M}(\mathbb{K})$ (resp. $f, g \in \mathcal{M}(d(0, R^-))$) share the value 1 *CM.* If $\Psi_{f,g}$ is not *identically zero, then,* $\max(T(r, f), T(r, g)) \leq N_{[2]}(r, f) + Z_{[2]}(r, f) + N_{[2]}(r, g) + Z_{[2]}(r, g) - 3 \log r$.

We will need the following Lemma BL7:

Lemma BL7: Let $f, g \in \mathcal{M}(\mathbb{K})$ be transcendental (resp. $f, g \in \mathcal{M}_u(d(0,R^-))$). Let $P(x) =$ $x^{n+1}Q(x)$ *be a polynomial such that* $n \geq deg(Q) + 2$ (*resp.* $n \geq deg(Q) + 3$ *). If* $f'P'(f) = g'P'(g)$ *then* $P(f) = P(g)$ *.*

The following lemma holds in the same way in *p*-adic analysis and in complex analysis. It is proven in [4]:

By Lemma 8 in [4], we have the following Lemma BL8

Lemma BL8: *Let* $F, G \in \mathcal{M}(\mathbb{K})$ (resp. Let $F, G \in \mathcal{M}(d(0, R^-))$) be non-constant, having no zero *and no pole at* 0 *and sharing the value* 1 *C.M.*

If $\Theta_{FG} = 0$ *and if*

$$
\limsup_{r \to +\infty} \left(T(r, F) - [\overline{Z}(r, F) + \overline{N}(r, F) + \overline{Z}(r, G) + \overline{N}(r, G)] \right) = +\infty
$$

(resp.

$$
\limsup_{r \to R^{-}} \left(T(r, F) - [\overline{Z}(r, F) + \overline{N}(r, F) + \overline{Z}(r, G) + \overline{N}(r, G)] \right) = +\infty)
$$

then either $F = G$ *or* $FG = 1$ *.*

Proofs of Theorems. Theorems B5, B6, B7, B8, B9 were proven in [4]. Consequently, our work only consists of proving Theorem B2, B3 and B4.

For simplicity, now we set $n = k_1$. Set $F = \frac{f'P'(f)}{R}$ $\frac{\partial'(f)}{\partial\alpha}$, $G = \frac{g'P'(g)}{\alpha}$ $\frac{G}{\alpha}$ and $F = P(f)$, $G = P(g)$. Suppose $F \neq G$. We notice that $P(x)$ is of the form $x^{n+1}Q(x)$ with $Q \in \mathbb{K}[x]$ of degree k. Now, with help of Lemma BL5, we can check that we have Since $(\hat{F})' = \alpha F$, by Lemma BL2 we have

$$
T(r,\hat{F}) \le T(r,F) + Z(r,\hat{F}) - Z(r,F) + T(r,\alpha) + O(1),
$$
\n(1)

hence, by (1) , we obtain

$$
T(r,\widehat{F}) \le T(r,F) + (n+1)Z(r,f) + Z(r,Q(f)) - nZ(r,f)
$$

$$
-\sum_{i=2}^{l} k_i Z(r,f-a_i) - Z(r,f') + T(r,\alpha) + O(1),
$$

i.e.

$$
T(r,\widehat{F}) \leq T(r,F) + Z(r,f) + Z(r,Q(f)) - \sum_{i=2}^{l} k_i Z(r,f-a_i) - Z(r,f') + T(r,\alpha) + O(1), \quad (2)
$$

and similarly,

$$
T(r,\widehat{G}) \leq T(r,G) + Z(r,g) + Z(r,Q(g)) - \sum_{i=2}^{l} k_i Z(r,g-a_i) - Z(r,g') + T(r,\alpha) + O(1). \tag{3}
$$

Now, it follows from the definition of *F* and *G* that

$$
Z_{[2]}(r,F) + N_{[2]}(r,F) \le 2Z(r,f) + 2\sum_{i=2}^{l} Z(r,f-a_i) + Z(r,f') + 2\overline{N}(r,f) + T(r,\alpha) + O(1) \quad (4)
$$

and similarly

$$
Z_{[2]}(r,G) + N_{[2]}(r,G) \le 2Z(r,g) + 2\sum_{i=2}^{l} Z(r,g-a_i) + Z(r,g') + 2\overline{N}(r,g) + T(r,\alpha) + O(1). \tag{5}
$$

And particularly, if $k_i = 1, \ \forall i \in \{2, ..., l\}$, then

$$
Z_{[2]}(r,F) + N_{[2]}(r,F) \le 2Z(r,f) + \sum_{i=2}^{l} Z(r,f-a_i) + Z(r,f') + 2\overline{N}(r,f) + T(r,\alpha) + O(1) \tag{6}
$$

and similarly

$$
Z_{[2]}(r, G) + N_{[2]}(r, G) \le 2Z(r, g) + \sum_{i=2}^{l} Z(r, g - a_i) + Z(r, g') + 2\overline{N}(r, g) + T(r, \alpha) + O(1). \tag{7}
$$

We will now prove that $\Psi_{F,G}$ is identically zero. Indeed, suppose now that $\Psi_{F,G}$ is not identically zero.

By Lemma BL6, we have

$$
T(r, F) \le Z_{[2]}(r, F) + N_{[2]}(r, F) + Z_{[2]}(r, G) + N_{[2]}(r, G) - 3\log r
$$

hence by (2) , we obtain

$$
T(r,\widehat{F}) \le Z_{[2]}(r,F) + N_{[2]}(r,F) + Z_{[2]}(r,G) + N_{[2]}(r,G) + Z(r,f) + Z(r,Q(f))
$$

$$
-\sum_{i=2}^{l} k_i Z(r,f-a_i) - Z(r,f') + T(r,\alpha) - 3\log r + O(1)
$$

and hence by (4) and (5) :

$$
T(r,\hat{F}) \le 2Z(r,f) + 2\sum_{i=2}^{l} Z(r,f-a_i) + Z(r,f') + 2\overline{N}(r,f) + 2Z(r,g) + 2\sum_{i=2}^{l} Z(r,g-a_i)
$$

$$
+ Z(r,g') + 2\overline{N}(r,g) + Z(r,f) + Z(r,Q(f))
$$

$$
- \sum_{i=2}^{l} k_i Z(r,f-a_i) - Z(r,f') + T(r,\alpha) - 3\log r + O(1)
$$
(8)

and similarly,

$$
T(r,\widehat{G}) \le 2Z(r,g) + 2\sum_{i=2}^{l} Z(r,g-a_i) + Z(r,g') + 2\overline{N}(r,g) + 2Z(r,f) + 2\sum_{i=2}^{l} Z(r,f-a_i) + Z(r,f')
$$

$$
+2\overline{N}(r,f)+Z(r,g)+Z(r,Q(g))-\sum_{i=2}^{l}k_iZ(r,g-a_i)-Z(r,g')+T(r,\alpha)-3\log r+O(1). \tag{9}
$$

Consequently,

$$
T(r,\widehat{F}) + T(r,\widehat{G}) \le 5(Z(r,f) + Z(r,g)) + \sum_{i=2}^{l} (4 - k_i)(Z(r,f - a_i) + Z(r,g - a_i)) + (Z(r,f'))
$$

$$
+Z(r,g'))+4(\overline{N}(r,f)+\overline{N}(r,g))+(Z(r,Q(f))+Z(r,Q(g))) +6T(r,\alpha)-6\log r+O(1). \tag{10}
$$

By Lemma BL1 we can write $Z(r, f') + Z(r, g') \leq Z(r, f - a_2) + Z(r, g - a_2) + \overline{N}(r, f) +$ $\overline{N}(r, g) - 2 \log r$. Hence, in general, by (10) we obtain

$$
T(r,\widehat{F}) + T(r,\widehat{G}) \le 5(Z(r,f) + Z(r,g))
$$

+
$$
\sum_{i=3}^{l} (4 - k_i)((Z(r, f - a_i) + Z(r, g - a_i))) + (5 - k_2)((Z(r, f - a_2) + Z(r, g - a_2)))
$$

 $+5(\overline{N}(r, f) + \overline{N}(r, g)) + (Z(r, Q(f)) + Z(r, Q(g))) + 6T(r, \alpha) - 8\log r + O(1)$ and hence, since $T(r, Q(f)) = kT(r, f) + O(1)$ and $T(r, Q(g)) = kT(r, g) + O(1)$,

$$
T(r,\hat{F}) + T(r,\hat{G}) \le 5(T(r,f) + T(r,g))
$$

+
$$
\sum_{i=3}^{l} (4 - k_i)((Z(r,f - a_i) + Z(r,g - a_i))) + (5 - k_2)((Z(r,f - a_2) + Z(r,g - a_2))
$$

+
$$
5(\overline{N}(r,f) + \overline{N}(r,g)) + k(T(r,f) + T(r,g)) + 6T(r,\alpha) - 8\log r + O(1).
$$
 (12)

Now, since \hat{F} is a polynomial in *f* of degree $n + k + 1$, we have $T(r, \hat{F}) = (n + k + 1)T(r, f) +$ $O(1)$ and similarly, $T(r, \hat{G}) = (n + k + 1)T(r, g) + O(1)$, hence by (12) we can derive

$$
(n+k+1)(T(r, f) + T(r, g)) \le 5(T(r, f) + T(r, g))
$$

+
$$
(5-k_2)(Z(r, f - a_2) + Z(r, g - a_2)) + \sum_{i=3}^{l} (4 - k_i)((Z(r, f - a_i) + Z(r, g - a_i)))
$$

+
$$
5(\overline{N}(r, f) + \overline{N}(r, g)) + k(T(r, f) + T(r, g)) + 6T(r, \alpha) - 8 \log r + O(1).
$$
 (15)

Hence

$$
(n+k+1)(T(r, f) + T(r, g)) \le 10(T(r, f) + T(r, g))
$$

+
$$
\sum_{i=3}^{l} (4 - k_i)((Z(r, f - a_i) + Z(r, g - a_i))) + (5 - k_2)((Z(r, f - a_2) + Z(r, g - a_2)))
$$

+
$$
k(T(r, f) + T(r, g)) + 6T(r, \alpha) - 8 \log r + O(1)),
$$

and hence

$$
n(Tr, f) + T(r, g)) \le 9(T(r, f) + T(r, g)) + (5 - k_2)((Z(r, f - a_2) + Z(r, g - a_2))
$$

$$
+ \sum_{i=3}^{l} (4 - k_i)((Z(r, f - a_i) + Z(r, g - a_i))) + 6T(r, \alpha) - 8\log r + O(1)).
$$
(16)

Then $(5 - k_2)(Z(r, f - a_2) + Z(r, g - a_2)) \leq \max(0, 5 - k_2)(T(r, f) + T(r, g)) + O(1)$ and at least, for each $i = 3,..,l$ we have $(4 - k_i)(Z(r, f - a_i) + Z(r, g - a_i)) \leq \max(0, 4 - k_i)(T(r, f) +$ $T(r, g)$ + $O(1)$.

Now suppose $s_5 > 0$. That means that $k_i \geq 5 \forall i = 3, ..., u_5$ with $l \geq 5$. We notice that the number of indices *i* superior or equal to 2 such that $k_i \geq 5$ is $u_5 - 2$. Similarly, for each $m > 5$, the number of indices superior or equal to 1 such that $k_i \geq m$ is $u_m - 1$.

Then we can apply Theorem A1 and we obtain

 $\sum_{i=3}^{u_5} Z(r, f - a_i) \ge (u_5 - 3)T(r, f) + O(1)$ and for each $m \geq 6$, $\sum_{i=3}^{u_m} Z(r, f - a_i) \ge (u_m - 2)T(r, f) + O(1)$, i.e. $\sum_{i=3}^{u_5} Z(r, f - a_i) \geq s_5T(r, f) + O(1)$ and for each $m \geq 6$, $\sum_{i=3}^{u_m} Z(r, f - a_i) \geq s_m T(r, f) + O(1),$ and similarly for *g*.

Consequently, by (16) we obtain

$$
n(Tr, f) + T(r, g)) \le 9(T(r, f) + T(r, g)) + \max(0, 5 - k_2)(Z(r, f - a_2) + Z(r, g - a_2))
$$

$$
+ \sum_{i=3}^{l} \max(0, 4 - k_i)(Z(r, f - a_i) + Z(r, g - a_i))
$$

$$
- \sum_{m=5}^{\infty} s_m(T(r, f) + T(r, g)) + 4T(r, \alpha) - 8\log r + O(1)),
$$
(17)

therefore

$$
n \le 9 + \max(5 - k_2) + \sum_{i=3}^{l} \max(0, 4 - k_i) - \sum_{j=5}^{\infty} s_j,
$$
\n(18)

a contradiction to the hypotheses of Theorem B2.

Consider now the situation in Theorems B3 and B4. Here we have $T(r, \alpha) \leq \log r + O(1)$. Consequently, Relation (16) now implies

$$
n(Tr, f) + T(r, g) \le 9(T(r, f) + T(r, g)) + \max(0, 5 - k_2)(Z(r, f - a_2) + Z(r, g - a_2))
$$

$$
+\sum_{i=3}^{l} \max(0, 4-k_i)(Z(r, f - a_i) + Z(r, g - a_i)) - \sum_{m=5}^{\infty} s_m(T(r, f) + T(r, g)) - 2\log r + O(1)),
$$

therefore

$$
n < 9 + \max(0, 5 - k_2) + \sum_{i=3}^{l} \max(0, 4 - k_i) - \sum_{m=5}^{\infty} s_m,
$$

but this is uncompatible with the hypotheses

$$
n \ge 9 + \max(5 - k_2) + \sum_{i=3}^{l} \max(0, 4 - k_i) - \min(\sum_{j=5}^{\infty} s_j, 2l - 1) \text{ in Theorem B3 and}
$$

$$
n \ge 9 + \max(5 - k_2) + \sum_{i=3}^{l} \max(0, 4 - k_i) - \min(\sum_{j=5}^{\infty} s_j, 2l) \text{ in Theorem B4.}
$$

Thus, in the hypotheses of Theorems B2, B3 and B4 we have proven that $\Psi_{F,G}$ is identically zero. Henceforth, we can assume that $\Psi_{F,G} = 0$ in all theorems. Note that we can write $\Psi_{F,G} = \frac{\phi'}{\phi}$

298 ESCASSUT et al.

with $\phi = \left(\frac{F'}{F}\right)$ $(F-1)^2$ $\binom{(G-1)^2}{ }$ *G*). Since $\Psi_{F,G} = 0$, there exist $A, B \in \mathbb{K}$ such that

$$
\frac{1}{G-1} = \frac{A}{F-1} + B
$$
\n(19)

and $A \neq 0$. We notice that

 $\overline{Z}(r, f) \leq T(r, f), \ \ \overline{N}(r, f) \leq T(r, f), \ \ \overline{Z}(r, f - a_i) \leq T(r, f - a_i) \leq T(r, f) + O(1), \ i = 2, ..., l$ and $Z(r, f') \leq T(r, f') \leq 2T(r, f) + O(1)$. Similarly for *g* and *g*'. Moreover, by Lemma BL1 we have

$$
T(r, F) \ge (n+k)T(r, f). \tag{20}
$$

We will show that $F = G$ in each theorem. We first notice that hypotheses of Theorems B2 and B3 imply

$$
n+k \ge 2l+7,\tag{21}
$$

and that in Theorem B4 we have

$$
n+k \ge 2l+6. \tag{22}
$$

Indeed, set $t = \sum_{i=5}^{\infty} s_m$, $s = \min(t, 2l)$ and $s' = \min(t, 2l - 1)$ *.* In theorem B2 we have

$$
n + k \ge 10 + k + \max(0, 5 - k_2) + \sum_{i=3}^{\infty} \max(0, 4 - k_i) - s
$$

$$
= 10 + [k_2 + \max(0, 5 - k_2)] + \sum_{i=3}^{\infty} [k_i + \max(0, 4 - k_i)] - s
$$

$$
= 10 + \max(k_2, 5) + \sum_{i=3}^{\infty} [\max(k_i, 4)] - s \ge 10 + 5 + 4(l - 2) - 2l = 2l + 7.
$$

And in Theorem B3 we have

$$
n + k \ge 9 + k + \max(0, 5 - k_2) + \sum_{i=3}^{\infty} \max(0, 4 - k_i) - s'
$$

= 9 + [k₂ + max(0, 5 - k₂)] + $\sum_{i=3}^{\infty} [k_i + \max(0, 4 - k_i)] - s'$

$$
= 9 + \max(k_2, 5) + \sum_{i=3}^{\infty} [\max(k_i, 4)] - s' \ge 9 + 5 + 4(l - 2) - 2l = 2l + 7.
$$

That finishes proving (21) in Theorems B2 and B3.

Now, in Theorem B4 we have

$$
n + k \ge 9 + k + \max(0, 5 - k_2) + \sum_{i=3}^{\infty} \max(0, 4 - k_i) - s'
$$

= 9 + [k₂ + max(0, 5 - k₂)] + $\sum_{i=3}^{\infty} [k_i + \max(0, 4 - k_i)] - s'$
= 9 + max(k₂, 5) + $\sum_{i=3}^{\infty} [\max(k_i, 4)] - s \ge 9 + 5 + 4(l - 2) - 2l = 2l + 6.$

We will consider the following two cases: $B = 0$ and $B \neq 0$.

Case 1: $B = 0$.

Suppose $A \neq 1$. Then, by (19), we have $F = \frac{1}{A}G + \left(1 - \frac{1}{A}\right)$. Applying Theorem N1 to *F*, we obtain

$$
T(r, F) \leq \overline{Z}(r, F) + \overline{Z}\Big(r, F - \Big(1 - \frac{1}{A}\Big)\Big) + \overline{N}(r, F) - \log r + O(1) \leq \overline{Z}(r, f) + \sum_{i=2}^{l} \overline{Z}(r, f - a_i)
$$

$$
+\overline{Z}(r,f')+\overline{Z}(r,g)+\sum_{i=2}^l\overline{Z}(r,g-a_i)+\overline{Z}(r,g')+\overline{N}(r,f)+3T(r,\alpha)-\log r+O(1).
$$

 B ut $Z(r, f) \leq T(r, f), N(r, f) \leq T(r, f), Z(r, f - 1) \leq T(r, f - 1) \leq T(r, f) + O(1)$ and $Z(r, f') \leq T(r, f) + O(1)$ $T(r, f') \leq 2T(r, f) + O(1)$. Moreover, by Lemma BL1, we have

 $T(r, F) \ge (n + k)T(r, f) - T(r, \alpha)$. Then, considering all the previous inequalities in (12), we can deduce that

$$
(n+k)T(r,f) \le (l+3)T(r,f) + (l+2)T(r,g) + 4T(r,\alpha) - \log r + O(1). \tag{23}
$$

And similarly,

$$
(n+k)T(r,g) \le (l+3)T(r,g) + (l+2)T(r,f) + 4T(r,\alpha) - \log r + O(1). \tag{24}
$$

Hence, adding (23) and (24), we have

$$
(n+k)[T(r,f) + T(r,g)] \le (2l+5)[T(r,f) + T(r,g)] + 4T(r,\alpha) - 2\log r + O(1), \qquad (25)
$$

which shows that $n + k|eq2l + 5$ and hence leads to a contradiction whenever $n + k \geq (2l + 6)$. Thus, by (21), this leads to a contradiction in Theorems B2 and B3.

In the same way, in Theorem B4, we have $T(r, \alpha) = 0$, hence Relation (25) shows that $n + k < 2l + 5$, a contradiction to (22).

Thus, we have $A = 1$ and this implies that $F = G$. Now, $\alpha F = \alpha G$, i.e. $(F)' = (G)'$. We assume $n \geq k+2$ in Theorem B2 when f, g belong to $\mathcal{M}(\mathbb{K})$ and in Theorems B3 and B4. And we assume $n \geq k+3$ in Theorem B2 when *f, q* belong to $\mathcal{M}(d(0, R^{-}))$.

Consequently, by Proposition BP and by Lemma BL4, we have $\hat{F} = \hat{G}$, i.e. $P(f) = P(g)$. But in Theorems B2, B3, B4, B5, B6, B7, *P* is a polynomial of uniqueness for the family of meromorphic functions we consider, hence we have $f = g$. And in Theorems B8 and B9, the conclusion was given in [4]. That finishes Case 1: $B = 0$.

Case 2: $B \neq 0$.

 $\overline{X}(r, F) \leq \overline{Z}(r, F) \leq \overline{Z}(r, f) + \sum_{i=2}^{l} \overline{Z}(r, f - a_i) + \overline{Z}(r, f') + T(r, \alpha)$ and $\overline{N}(r, F) \leq \overline{N}(r, f) + T(r, \alpha)$ $T(r, \alpha) + O(1)$ and similarly for G, so we can derive

$$
\overline{Z}(r,F) + \overline{Z}(r,G) + \overline{N}(r,F) + \overline{N}(r,G) \leq \overline{Z}(r,f) + \sum_{i=2}^{l} \overline{Z}(r,f-a_i) + \overline{Z}(r,f') + \overline{Z}(r,g)
$$

$$
+ \sum_{i=2}^{l} \overline{Z}(r,g-a_i) + \overline{Z}(r,g') + \overline{N}(r,f) + \overline{N}(r,g) + 4T(r,\alpha) + O(1)
$$

$$
\leq (l+3)[T(r,f) + T(r,g)] + 4T(r,\alpha) + O(1).
$$
(26)

Moreover, by (19), $T(r, F) = T(r, G) + O(1)$ and, by Lemma BL1, we have

 $T(r, f) \leq \frac{1}{n+1}$ $\frac{1}{n+k}(T(r, F) + T(r, \alpha)) + O(1)$ and $T(r, g) \leq \frac{1}{n+1}$ $\frac{1}{n+k}(T(r, G) + T(r, \alpha)) + O(1)$. Consequently, $T(r, f) + T(r, g) \leq 2 \left[\frac{1}{n+1} \right]$ $\frac{1}{n+k}(T(r, F) + T(r, \alpha)) + O(1).$

Thus, (26) is equivalent to

$$
\overline{Z}(r,F) + \overline{Z}(r,G) + \overline{N}(r,F) + \overline{N}(r,G) \le \frac{2(l+3)}{n+k}T(r,F) + \left(\frac{10}{n+k} + 4\right)T(r,\alpha) + O(1).
$$

Hence in Theorems 2 and 3, by (21) we have

$$
\limsup_{r \to +\infty} \left(T(r, F) - (\overline{Z}(r, F) + \overline{Z}(r, G) + \overline{N}(r, F) + \overline{N}(r, G)) \right) = +\infty
$$

(resp.

$$
\limsup_{r \to R^{-}} \left(T(r, F) - (\overline{Z}(r, F) + \overline{Z}(r, G) + \overline{N}(r, F) + \overline{N}(r, G)) \right) = +\infty.
$$

Next, in Theorem B4, we have $\overline{Z}(r, F) \leq \overline{Z}(r, f) + \sum_{i=2}^{l} \overline{Z}(r, f - a_i) + \overline{Z}(r, f')$ and $\overline{N}(r, F) \leq$ $\overline{N}(r, f) + O(1)$ and similarly for G, so we can derive

$$
\overline{Z}(r, F) + \overline{Z}(r, G) + \overline{N}(r, F) + \overline{N}(r, G) \leq \overline{Z}(r, f) + \sum_{i=2}^{l} \overline{Z}(r, f - a_i) + \overline{Z}(r, f') + \overline{Z}(r, g)
$$

$$
+ \sum_{i=2}^{l} \overline{Z}(r, g - a_i) + \overline{Z}(r, g') + \overline{N}(r, f) + \overline{N}(r, g) + O(1)
$$

$$
\leq (l+3) [\overline{T}(r, f) + \overline{T}(r, g)] - 2 \log r + O(1),
$$

therefore

$$
\overline{Z}(r,F) + \overline{Z}(r,G) + \overline{N}(r,F) + \overline{N}(r,G) \le \frac{2l+6}{n+k}T(r,F) - 2\log r + O(1).
$$

Consequently, by (22) we have again

$$
\limsup_{r \to +\infty} \left(T(r, F) - (\overline{Z}(r, F) + \overline{Z}(r, G) + \overline{N}(r, F) + \overline{N}(r, G)) \right) = +\infty.
$$

Thus, in each theorem, the hypotheses of Lemma BL8 are satisfied and hence, either $F = G$, or $FG=1$.

If $FG = 1$, then $f'P'(f)g'P'(g) = \alpha^2$. In Theorems B2, B3, B4 we have assumed that if $l = 2$, then $k_1 \neq k+1$, $2k$, $2k+1$, $3k+1$,

if *l* = 3, then $k_1 \neq \frac{k}{2}$, $k_1 \neq k+1$, 2 $k+1$, 3 $k_i - k$ ∀*i* = 2, 3. If $l \geq 4$, then $k_1 \neq k+1$.

And these hypotheses are automatically satisfied in the other theorems. Consequently, by Lemma BL3, $FG = 1$ is impossible. Consequently, $F = G$, hence $(\widehat{F})' = (\widehat{G})'$ and therefore we can conclude as in the case $B=0$.

NEW RESULTS 301

ACKNOWLEDGMENTS

Partially funded by the research project CONICYT "Inserción de nuevos investigadores en la academia" *N*°79090014) from the Chilean Government. We thank the referee for pointing out to us a few misprints.

REFERENCES

- 1. T. T. H. An, J. T. Y. Wang and P. M. Wong, "Unique range sets and uniqueness polynomials in positive characteristic II.," Acta Arithm. 115–143 (2005).
- 2. T. T. H. An, J. T. Y. Wang and P. M. Wong, "Strong uniqueness polynomials: the complex case," Complex Var. **49** (1), 25–54 (2004).
- 3. T. T. H. An and A. Escassut, "Meromorphic solutions of equations over non-Archimedean fields," Ramanujan J. **15** (3), 415–433 (2008).
- 4. K. Boussaf, A. Escassut and J. Ojeda, "*p*-Adic meromorphic functions $f'P'(f)$, $g'P'(g)$ sharing a small function," Bull. Scien. Mathématiques **136** (2), 172–200 (2012).
- 5. K. Boussaf, A. Escassut and J. Ojeda, "Complex meromorphic functions $f'P'(f)$, $g'P'(g)$ sharing a small function," Indagationes (N.S.) **24** (1), 15–41 (2013).
- 6. A. Boutabaa, "Théorie de Nevanlinna *p*-adique," Manuscripta Math. **67**, 251–269 (1990).
- 7. A. Escassut, *Analytic Elements in p-Adic Analysis* (World Scientific Publ. Co. Pte. Ltd. Singapore, 1995).
- 8. A. Escassut, "Meromorphic functions of uniqueness," Bull. Scien. Mathématiques **131** (3), 219–241 (2007).
- 9. A. Escassut, "*p*-Adic value distribution," *Some Topics on Value Distribution and Differentability in Complex and p-Adic Analysis* 42–138, Mathematics Monograph, Series **11** (Science Press, Beijing, 2008).
- 10. H. Fujimoto, "On uniqueness of meromorphic functions sharing finite sets," Amer. J. Math. **122** (6), 1175–1203 (2000).
- 11. P. C. Hu and C. C. Yang, *Meromorphic Functions over non-Archimedean Fields* (Kluwer Academic Publ., 2000).
- 12. X. Hua and C. C. Yang, "Uniqueness and value-sharing of meromorphic functions," Ann. Acad. Sci. Fenn. Math. **22**, 395–406 (1997).
- 13. W. Lin and H. Yi, "Uniqueness theorems for meromorphic functions concerning fixed-points," Complex Var. Theory Appl. **49** (11), 793–806 (2004).
- 14. R. Nevanlinna, *Le théoreme de Picard-Borel et la théorie des fonctions méromorphes* (Gauthiers-Villars, Paris, 1929).
- 15. J. Ojeda, "Uniqueness for ultrametric analytic functions," Bull. Math. Sci. Mathématiques de Roumanie **54** (102, 2), 153–165 (2011).
- 16. J. T. Y. Wang, "Uniqueness polynomials and bi-unique range sets," Acta Arithm. **104**, 183–200 (2002).
- 17. K. Yamanoi "The second main theorem for small functions and related problems," Acta Math. **192**, 225–294 (2004).
- 18. C. C. Yang and P. Li, "Some further results on the functional equation $P(f) = Q(g)$," Series Advances in Complex Analysis and Applications, Value Distribution Theory and Related Topics, pp. 219–231 (Kluwer Academic Publ., Dordrecht-Boston-London, 2004).
- 19. C. C. Yang and X. Hua, "Unique polynomials of entire and meromorphic functions," Matemat. Fizika Anal. Geom. **4** (3), 391–398 (1997).