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Abstract—Let K be a complete algebraically closed p-adic field of characteristic zero. We give
a new Nevanlinna-type theorem that lets us obtain results of uniqueness for two meromrphic
functions inside a disk, sharing 4 bounded functions CM. Let P be a polynomial of uniqueness
for meromorphic functions in K or in an open disk, let f, g be two transcendental meromorphic
functions in the whole field K or meromorphic functions in an open disk of K that are not
quotients of bounded analytic functions and let α be a small meromorphic function with respect
to f and g. We apply results in algebraic geometry and a new Nevanlinna theorem for p-adic
meromorphic functions in order to prove a result of uniqueness for functions: we show that if
f ′P ′(f) and g′P ′(g) share α counting multiplicity, then f = g, provided that the multiplicity
order of zeros of P ′ satisfy certain inequalities. A breakthrough in this paper consists of replacing
inequalities n ≥ k + 2 or n ≥ k + 3 used in previous papers by a new Hypothesis (G). Another
consists of using the new Nevanlinna-type Theorem.
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1. INTRODUCTION
Notations and definitions: Let K be an algebraically closed field of characteristic zero, complete
with respect to an ultrametric absolute value | . |. We denote by A(K) the K-algebra of entire
functions in K, by M(K) the field of meromorphic functions in K, i.e. the field of fractions of
A(K) and by K(x) the field of rational functions. Throughout the paper, a is a point in K and
R is a strictly positive number and we denote by d(a,R) the disk {x ∈ K | |x− a| ≤ R} and by
d(a,R−) the “open” disk {x ∈ K : |x− a| < R}, by A(d(a,R−)) the K-algebra of analytic functions

in d(a,R−) i.e. the K-algebra of power series
∞∑

n=0
an(x− a)n converging in d(a,R−) and we denote

by M(d(a,R−)) the field of meromorphic functions inside d(a,R−), i.e. the field of fractions of
A(d(a,R−)). Moreover, we denote by Ab(d(a,R−)) the K-subalgebra of A(d(a,R−)) consisting of
the bounded analytic functions in d(a,R−), i.e. which satisfy sup

n∈N
|an|Rn < +∞. And we denote

by Mb(d(a,R−)) the field of fractions of Ab(d(a,R−)). Finally, we denote by Au(d(a,R−)) the
set of unbounded analytic functions in d(a,R−), i.e. A(d(a,R−)) \ Ab(d(a,R−)). Similarly, we set
Mu(d(a,R−)) = M(d(a,R−)) \Mb(d(a,R−)).
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Let f ∈ M(d(a,R−)), and let r ∈]0, R[. By classical results [7] we know that |f(x)| has a limit
when |x| tends to r, while being different from r. We set |f |(r)= lim

|x−a|→r,|x|�=r
|f(x)|.

Let f, g, α ∈ M(K)
(
resp. let f, g, α ∈ M(d(a,R−))

)
. We say that f and g share the function α

C.M., if f − α and g − α have the same zeros with the same multiplicities in K
(
resp. in d(a,R−)

)

and we say that f and g share the function α I.M., if f − α and g − α have the same zeros without
considering multiplicities in K

(
resp. in d(a,R−)

)
. In particular, those definitions apply to constants

as small functions.
Throughout the paper, the symbol ∀ means for all.

The paper aims at showing a new Nevanlinna-type theorem for meromorphic functions both in
the whole field and inside a disk d(a,R−), which is not a direct consequence of the classical p-adic
Second Main Theorem. Concerning functions inside the disk, our reasoning lets us obtain a kind
of ”Second Main Theorem on n small functions” provided small functions are bounded inside the
disk. Indeed, in the general situation, Yamanoi’s Theorem proven in [17] in the complex context
has no equivalent in the field K.

Let us recall the definition of the Nevanlinna Functions for meromorphic functions in K. Let
log be a real logarithm function of base b > 1 and let f ∈ M(K)

(
resp. f ∈ M(d(0, R−))

)
having

no zero and no pole at 0. Let r ∈]0,+∞[
(
resp. r ∈]0, R[

)
and let γ ∈ d(0, r). If f has a zero of

order n at γ, we put ωγ(f) = n. If f has a pole of order n at γ, we put ωγ(f) = −n and finally, if
f(γ) �= 0,∞, we set ωγ(f) = 0.

We denote by Z(r, f) the counting function of zeros of f in d(0, r), counting multiplicity, defined
as follows:

if f has no zero at 0, we set

Z(r, f) =
∑

ωγ(f)>0, |γ|≤r

ωγ(f)(log r − log |γ|),

and if f has a zero of order q at 0, we set

Z(r, f) = q log r +
∑

ωγ(f)>0, |γ|≤r

ωγ(f)(log r − log |γ|),

Similarly, we denote by Z(r, f) the counting function of zeros of f in d(0, r), ignoring multiplicity:
if f has no zero at 0, we set

Z(r, f) =
∑

ωγ(f)>0, |γ|≤r

(log r − log |γ|),

and if f has a zero of order at 0, we set

Z(r, f) = log r +
∑

ωγ(f)>0, |γ|≤r

(log r − log |γ|),

In the same way, we set N(r, f) = Z
(
r,

1
f

) (
resp. N(r, f) = Z

(
r,

1
f

))
to denote the counting

function of poles of f in d(0, r), counting multiplicity (resp. ignoring multiplicity).
For f ∈ M(d(0, R−)) the characteristic Nevanlinna function is defined by

T (r, f) = max
{
Z(r, f), N(r, f)

}

.

Remark: There exist other definitions of the Nevanlinna functions, involving for instance |f(0)|
when the function f has no zero and no pole at 0. Actually, all definitions are equivalent through
inequalities, up to an additive constant.
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As usual, given a function f ∈ M(K) (resp. M(d(0, R−))), we denote by Sf (r) a function of r

defined in ]0,+∞[ (resp. in ]0, R[) such that lim
r→+∞

Sf (r)
T (r, f)

= 0 (resp. lim
r→R

Sf (r)
T (r, f)

= 0).

Let us first recall the well known p-adic Nevanlinna Theorems:
Theorem N1. [6] Let a1, ..., an ∈ K with n ≥ 2, n ∈ N, and let f ∈ M(K) (resp. let f ∈
M(d(0, R−))). Let S = {a1, ..., an}. Then, for r > 0 we have

(n− 1)T (r, f) ≤
n∑

j=1
Z(r, f − aj) + N(r, f) − log r + O(1),

(resp.

(n − 1)T (r, f) ≤
n∑

j=1
Z(r, f − aj) + N(r, f) + O(1)).

Now, we must recall the definition of a small function with respect to a meromorphic function
and some pertinent properties.

Definition. Let f ∈ M(K)
(
resp. let f ∈ M(d(0, R−))

)
such that f(0) �= 0,∞. A function

α ∈ M(K)
(
resp. α ∈ M(d(0, R−))

)
is called a small function with respect to f , if it satisfies

lim
r→+∞

T (r, α)
T (r, f)

= 0
(
resp. lim

r→R−

T (r, α)
T (r, f)

= 0
)
.

We denote by Mf (K)
(
resp. Mf (d(0, R−))

)
the set of small meromorphic functions with respect

to f in K
(
resp. in d(0, R−)

)
and similarly we denote by Af(K)

(
resp. Af (d(0, R−))

)
the set of

small analytic functions with respect to f in K
(
resp. in d(0, R−)

)
.

Remark: Thanks to classical properties of the Nevanlinna function T (r, f) [9] with respect
to the operations in a field of meromorphic functions, such as T (r, f + g) ≤ T (r, f) + T (r, g) +
O(1) and T (r, fg) ≤ T (r, f) + T (r, g) + O(1), for f, g ∈ M(K) and r > 0, it is easily proven that
Mf (K)

(
resp. Mf (d(0, R−))

)
is a subfield of M(K)

(
resp. M(d(0, R−))

)
and that M(K)

(
resp.

M(d(0, R−))
)

is a transcendental extension of Mf (K)
(
resp. of Mf (d(0, R−))

)
.

Theorem N2: [9, 11] Let f ∈ A(K) (resp. let f ∈ A(d(0, R−))) and let u ∈ f ∈ Af (K) (resp. let
u ∈ Af (d(0, R−))). Then T (r, f) ≤ Z(r, f) + Z(r, f − u) + Sf (r).

A) A new Nevanlinna-type Theorem

2. RESULTS
Now, we can give here a new theorem which will be useful to obtain results in Part B

comparatively to results of [4] and first we can obtain new results of uniqueness for functions
inside a disk.

Theorem A1: Let f ∈ M(K) and let a1, ..., aq ∈ K be distinct. Then

(q − 1)T (r, f) ≤ max
1≤k≤q

( q∑

j=1,j �=k

Z(r, f − aj)
)

+ O(1).
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Corollary A1.1: Let f ∈ M(K) and let a1, ..., aq ∈ K be distinct. Then

(q − 1)T (r, f) ≤
q∑

j=1
Z(r, f − aj) + O(1).

Theorem A2: Let f ∈ M(d(0, R−))) and let θ1, ..., θq ∈ Mb(d(0, R−)) be distinct. Then

(q − 1)T (r, f) ≤ max
1≤k≤q

( q∑

j=1,j �=k

Z(r, f − θj)
)

+ O(1).

Corollary A2.1: Let f ∈ M(d(0, R−))) and let θ1, ..., θq ∈ Mb(d(0, R−)) be distinct. Then

(q − 1)T (r, f) ≤
q∑

j=1
Z(r, f − θj) + O(1).

Remark: Corollary A1.1 does not hold in complex analysis. Indeed, let f be a meromorphic

function in C omitting two values a and b, such as f(x) =
ex

ex − 1
. Then Z(r, f − a) +Z(r, f − b) = 0.

Concerning unbounded functions inside a disk, Corollary A2.1 may in certain sense, replace the
Nevanlinna Theorem on n small functions proven by Yamanoi in C [17]: this theorem does not hold
for meromorphic functions defined on the whole field K.

Thanks to Corollaries A1.1 and A2.1 we can obtain a new result on functions sharing 4 bounded
functions inside a disk. Let us first recall results already known on value sharing IM for p-adic
functions [9]:

Definition: Two functions f, g ∈ M(K) or M(d(a,R−)) are said to share I.M. a value α ∈ K or
a function α defined in the same domain, if f − α and g − α have the same distinct zeros, ignoring
multiplicity, in their domain of defintion. And f, g are said to share C.M. a value θ ∈ K or a
function α defined in the same domain, if f − α and g − α have the same distinct zeros, counting
multiplicity.

Theorem AC: Let f, g ∈ M(K) (resp. f, g ∈ Mu(d(a,R−))) share I.M. 4 (resp.5) distinct
points a1, a2, a3, a4 ∈ K (resp. a1, a2, a3, a4, a5 ∈ K). Then f = g.

Theorem AD: Let f, g ∈ A(K) (resp. f, g ∈ Au(d(a,R−))) share I.M. 2 (resp.3) distinct points
a1, a2 ∈ K (resp. a1, a2, a3 ∈ K). Then f = g.

Now, thanks to Corollary A2.1 we can obtain a new result concerning value sharing bounded
functions CM inside a disk:

Theorem A3: Let f, g ∈ M(K) (resp. f, g ∈ Mu(d(a,R−))) share C.M. 4 distinct points
a1, a2, a3, a4 ∈ K. Then f = g.

Theorem A4: Let f, g ∈ Mu(d(a,R−)) share C.M. 4 distinct functions
θ1, θ2, θ3, θ4 ∈ Mb(d(a,R−)). Then f = g.

In order to complete results known on this topic, we can notice Theorem A5 which does not
need our new Nevanlinna theorems:

Theorem A5: Let f, g ∈ Au(d(a,R−)) share C.M. 2 distinct functions θ1, θ2 ∈ Ab(d(a,R−)).
Then f = g.
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3. PROOFS OF PART A

First, we must recall Lemmas AL1 and AL2 that are classical.

Lemma AL1 [7] : For every r ∈]0, R[, the mapping | . |(r) is an ultrametric multiplicative norm
on M(d(0, R−)).

The following Lemma AL2 is the p-adic Schwarz formula:

Lemma AL2 [9]: Let f ∈ A(K) (resp. f ∈ A(d(0, R−))) and let r′, r′′ ∈]0,+∞[ (resp. let
r′, r′′ ∈]0, R[) satisfy r′ < r′′. Then log(|f |(r′′)) − log(|f |(r′)) = Z(r′′, f) − Z(r′, f). If f has no
zero and no pole at 0, then log(|f |(r)) − log(|f(0)|) = Z(r, f).

By Lemma AL2, we can derive Lemma AL3 which is also classical:

Lemma AL3 [9]: Let f, g ∈ A(d(0, R−)) (resp. f, g ∈ A(K)). The Nevanlinna functions
T and Z satisfy T (r, f) = Z(r, f), T (r, f + g) ≤ max(T (r, f), T (r, g)) + O(1), r ∈]0, R[. Suppose
f, g ∈ A(d(0, R−)) have no zero at the origin and let S be a subset of ]0, R[ (resp. of ]0,+∞[)
such that Z(r, f) + log |f(0)|) > Z(r, g) + log |g(0)|) ∀r ∈ S. Then Z(r, f + g) = Z(r, f) ∀r ∈ S.

Lemma AL4 is essential and directly leads to the theorems:

Lemma AL4: Let f ∈ M(K) (resp. f ∈ Mu(d(0, R−))). Suppose that there exists θ ∈ K (resp.
θ ∈ Mb(d(0, R−))) and a sequence of intervals In = [un, vn] such that
un < vn < un+1, limn→+∞ un = +∞ (resp. limn→+∞ un = R) and

lim
n→+∞

(
inf
r∈In

T (r, f) − Z(r, f − θ)
)

= +∞ (resp. lim
n→+∞

(
inf
r∈In

T (r, f) − Z(r, f − θ)
)

= +∞) Let τ ∈
K (resp. let τ ∈ Mb(d(0, R−))) , τ �= θ. Then Z(r, f − τ) = T (r, f) + O(1) ∀r ∈ In when n is big
enough.

Proof: We know that the Nevanlinna functions of a meromorphic function f are the same in K

and in an algebraically closed complete extension of K whose absolute value extends that of K.
Consequently, without loss of generality, we can suppose that K is spherically complete because
we know that such a field does admit a spherically complete algebraically closed extension whose
absolute value expands that of K. If f belongs to M(K), we can obviously set it in the form g

h
where g, h belong to A(K) and have no common zero. Next, since K is supposed to be spherically
complete, if f belongs to M(d(0, R−)) we can also set it in the form g

h
where g, h belong to

A(d(0, R−)) and have no common zero [9]. Consequently, we have T (r, f) = max(Z(r, g), Z(r, h)).
When θ is a constant we can obviously suppose that θ = 0. Suppose now θ ∈ Mb(d(0, R−)).

Then f − θ belongs to Mu(d(0, R−)) like f and τ − θ belongs to Mb(d(0, R−)). Consequently, in
both cases, we can assume θ = 0 to prove the claim. Next, up to a change of origin, we can also
assume that none of the functions we consider have a pole or a zero at the origin.

Now, we have lim
n→+∞

(
inf
r∈In

T (r, f) − Z(r, f)
)

= +∞, i.e.

lim
n→+∞

(
inf
r∈In

(Z(r, h) − Z(r, g))
)

= +∞.

Particularly, by Lemma AL3 we notice that T (r, f) = Z(r, h) + O(1) whenever r ∈ In when n is
big enough.

Consider now Z(r, f − τ) = Z(r, g − τh). Then Z(r, τh) = Z(r, h), hence by Lemma AL3,
Z(r, g − τh) = Z(r, h) + O(1), whenever r ∈ In when n is big enough. Therefore Z(r, f − τ) =
Z(r, h) + O(1) = T (r, f) + O(1), r ∈ In when n is big enough. So the claim is proven when τ is a
constant.
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Suppose now that f ∈ M(d(0, R−)) and τ ∈ Mb(d(0, R−)). We can write τ in the form φ

ψ
where

φ,ψ ∈ Ab((d(0, R−)) have no common zero. Consider

Z(r, f − τ) = Z(r, ψg − φh

ψh
). Since g and h have no common zero and since both φ,ψ are bounded,

we have Z(r, ψg − φh

ψh
) = Z(r, ψg − φh) + O(1). Now, since the norm | . |(r) is multiplicative and

increasing in r, by Lemma AL3 in In we have |ψg|(r) < |φh|(r) when n is big enough. Consequently,
by Lemma AL1, |ψg − φh|(r) = |φh|(r) in In when n is big enough. Therefore, by Lemma
AL3, Z(r, ψg − φh) = Z(r, φh) = Z(r, h) + O(1) in In when n is big enough and consequently we
Z(r, f − τ) = Z(r, h) +O(1) = T (r, h) +O(1) = T (r, f) +O(1). That finishes proving Lemma AL4.

Problems of value sharing constants or functions, counting multiplicity or ignoring multiplicity,
have been the focus of a lot of papers [4, 6, 12, 13, 15, 18]. Here we will apply Corollaries
A1.1 and A2.1 to functions f, g ∈ Mu(d(a,R−)) sharing C.M. four constants or four functions
θj ∈ Mb(d(a,R−)).

Proof of Theorems A1 and A2: Suppose Theorem A1 (resp. Theorem A2) is wrong. In order
to make a unique proof for the two theorems, in Theorem A1 we set θj = aj . Thus, there exists
f ∈ M(K) (resp. f ∈ Mu(d(0, R−))) and θ1, ..., θq ∈ K (resp. θ1, ..., θq ∈ Mb(d(0, R−))) such that
(q − 1)T (r, f) − max1≤k≤q

( ∑q
j=1,j �=k Z(r, f − θj)

)
admits no superior bound in ]0,+∞[. So, there

exists a sequence of intervals Js = [ws, ys] such that ws < ys < ws+1, lims→+∞ws = +∞ (resp.
lims→+∞ws = R) and two distinct indices m and t such that

lim
s→+∞

inf
r∈Js

(
T (r, f) − Z(r, f − θm)

)
= +∞

and
lim

s→+∞
inf
r∈Js

(
T (r, f) − Z(r, f − θt)

)
= +∞.

But by Lemma AL4, this is impossible. This ends the proof of Theorems A1 and A2.

Proof of Theorems A3 and A4: In Theorem A3 we put θj = aj , j = 1, 2, 3, 4. In Theorem A4
we can obviously assume a = 0. Suppose that f and g are not identical. We have

4∑

j=1
Z(r, f − θj) ≤ Z(r, f − g) ≤ T (r, f − g) ≤ T (r, f) + T (r, g).

On the other hand by Corollary A1.1 (resp. A2.1), we have
∑4

j=1 Z(r, f − θj) ≥ 3T (r, f) + O(1).
Consequently, 3T (r, f) ≤ T (r, f) + T (r, g). Similarly, 3T (r, g) ≤ T (r, f) + T (r, g), hence 3(T (r, f) +
T (r, g)) ≤ 2(T (r, f) + T (r, g)), a contradiction.

Remark: When f, g belong to M(K), it is possible to prove the statement of Theorem A3 by
using the classical p-adic Second Main Theorem. But when f, g belong to Mu(d(0, R−)), the p-adic
Second Main Theorem does not let us prove that statement.

Proof of Theorem A5: Suppose that f and g are not identical. By Theorem 2.4.15 [9] we have
2∑

j=1
Z(r, f − θj) ≤ Z(r, f − g) ≤ T (r, f − g) ≤ max(T (r, f), T (r, g)).

On the other hand, since θj is bounded, so is T (r, θj) and therefore T (r, f − θj) = T (r, f) + O(1)
and similarly, T (r, g − θj) = T (r, g) + O(1). Now, by definition, T (r, f) = Z(r, f) + O(1), T (r, g) =
Z(r, g) + O(1). Consequently, T (r, f) + T (r, g) ≤ max(T (r, f), T (r, g)) + O(1), a contradiction.

B) New results on p-adic meromorphic functions f ′P ′(f), g′P ′(g) sharing a small function
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4. RESULTS
Throughout the paper we will denote by P (X) a polynomial in K[X] such that P ′(X) is of the

form
l∏

i=1
(X − ai)ki with l ≥ 2 and k1 ≥ 2. The polynomial P will be said to satisfy Hypothesis (G)

if P (ai) + P (aj) �= 0 ∀i �= j.
We will improve the main theorems obtained in [4] and [5] with the help of the new hypothesis

Hypothesis (G) and by thorougly examining the situation in order to avoid a lot of exclusions.

Notation: Let L be an algebraically closed field and let P ∈ L[x] \ L and let Ξ(P ) be the set of
zeros c of P ′ such that P (c) �= P (d) for every zero d of P ′ other than c. We denote by Φ(P ) its
cardinal.

Definitions. Let f, g, α ∈ M(K)
(
resp. let f, g, α ∈ M(d(a,R−))

)
. We say that f and g share the

function α C.M., if f − α and g − α have the same zeros with the same multiplicities in K
(
resp.

in d(0, R−)
)
.

Recall that a polynomial P ∈ K[x] is called a polynomial of uniqueness for a family of functions
F if for any two functions f, g ∈ F the property P (f) = P (g) implies f = g.

The definition of polynomials of uniqueness was introduced in by H. Fujimoto [10] and was used
in many papers, explicitly or implicitly, [2, 4, 9, 10, 12, 19] for complex functions and [1–3, 9, 16]
for p-adic functions.

Let us recall general results on polynomials of uniqueness:

Theorem BU1 [8]: Let P (X) ∈ K[X]. If Φ(P ) ≥ 2 then P is a polynomial of uniqueness for
A(K). If Φ(P ) ≥ 3 then P is a polynomial of uniqueness for M(K) and for Au(d(a,R−)). If
Φ(P ) ≥ 4 then P is a polynomial of uniqueness for Mu(d(a,R−)).

Concerning polynomials such that P ′ has exactly two distinct zeros, we know other results:

Theorem BU2 [1, 8]: Let P ∈ K[x] be such that P ′ has exactly two distinct zeros γ1 of order c1
and γ2 of order c2. If min{c1, c2} ≥ 2, then P is a polynomial of uniqueness for M(K). Moreover,
if c1 = 1, c2 ≥ 2, then P is a polynomial of uniqueness for A(K) and for A(d(a,R−)).

Theorem BU3 [15]: Let P ∈ K[x] be of degree n ≥ 6, such that P ′ only has two distinct zeros,
one of them being of order 2. Then P is a polynomial of uniqueness for Mu(d(a,R−)).

In the present paper, thanks to the new Hypothesis (G) introduced above, we mean to avoid
the hypothesis k1 ≥ k + 2 for M(K) and k1 ≥ k + 3 for M(d(a,R−)). On the other hand, here we
will use a new Nevanlinna-type theorem.

Among the first results obtained in that domain, we must cite the work by W. Lin and H. Yi
[13]. Here we first have a new theorem for p-adic analytic functions:

Theorem B1: Let P (X) ∈ K[X] and let P ′(X) = b
l∏

i=1
(X − ai)ki with b ∈ K

∗, f, g ∈ A(K) (resp.

f, g ∈ A(d(0, R−))) be a polynomial of uniqueness for A(K) (resp. for A(d(0, R−))) and be such
that f ′P ′(f) and g′P ′(g) share a function α ∈ Af (K) ∩ Ag(K) C.M. (resp. α ∈ Af (d(0, R−)) ∩

Ag(d(0, R−)) CM). If
l∑

j=1
kj ≥ 2l + 3, then f = g. Moreover, if f, g ∈ A(K) and if α ∈ K \ {0} and

if deg(P ) ≥ 2l + 2, then f = g.
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Corollary B1.1 Let P (x) ∈ K[x] be such that Φ(P ) ≥ 2 and let P ′(x) =
l∏

i=1
(x− ai)ki and let

f, g ∈ A(K) be transcendental such that f ′P ′(f) and g′P ′(g) share a small function α ∈ Af (K) ∩

Ag(K). If
l∑

i=1
ki ≥ 2l + 3 then f = g. Moreover, if α is a constant and if deg(P ) ≥ 2l + 2, then

f = g..

Corollary B1.2 Let P (x) ∈ K[x] be such that Φ(P ) ≥ 3 and let P ′(x) =
l∏

i=1
(x− ai)ki and let

f, g ∈ Au(d(0, R−)) be such that f ′P ′(f) and g′P ′(g) share a small function α ∈ Af (d(0, R−)) ∩
Ag(d(0, R−)). If deg(P ) ≥ 2l + 3, then f = g..

Example: Let P (x) =
x9

9
− 3x7

7
+

3x5

5
− x3

3
. We can check that P ′(x) = x2(x2 − 1)3 hence l = 3.

Next, we have P (0) = 0, P (1) �= 0, P (−1) = −P (1). Consequently, Φ(P ) = 3 and deg(P ) = 2l + 3.
Then, given f, g ∈ A(K) (resp. f, g ∈ Au(d(0, R−))) such that f ′P ′(f) and g′P ′(g) share a small
function α ∈ Af (K) ∩ Ag(K) (rersp. α ∈ Af (d(0, R−)) ∩Ag(d(0, R−))) then f = g.

By Theorems BU2 and BU3 we can also derive Corollaries B1.3 and B1.4:

Corollary B1.3 Let f, g ∈ A(K), let α ∈ Af(K) ∩ Ag(K) and let a, b ∈ K(a �= b). If
(f − a)n(f − b)kf ′ and (g− a)n(g− b)kg′ share the function α C.M. with max(n, k) ≥ 2, then f = g.

Corollary B1.4: Let f, g ∈ Au(d(0, R−)), let α ∈ Af (d(0, R−)) ∩ Ag(d(0, R−)) and let a ∈
K \ {0}. Suppose (f − a)n(f − b)kf ′ and (g − a)n(g − b)kg′ share the function α C.M. If k = 1,
and n ≥ 2 or if k = 2 and n ≥ 3 then f = g.

In order to improve results of [4] on p-adic meromorphic functions, we have to state Propositions
BP derived from results of [3].

Notation and definition: Henceforth, we assume that a1 = P (a1) = 0 and that P ′(X) is of the

form b
l∏

i=1
(X − ai)ki with n ≥ 2.

Proposition BP: Let P ∈ K[X] satisfy Hypothesis (G) and deg(P ) ≥ 3 (resp. deg(P ) ≥ 4).
If meromorphic functions f, g ∈ M(K) (resp. f, g ∈ M(d(a,R−))) satisfy P (f(x)) = P (g(x)) +
C (C ∈ K

∗), ∀x ∈ K (resp. ∀x ∈ d(a,R−)) then both f and g are constant (resp. f and g belong to
Mb(d(a,R−))).

From [4] and thanks to Propositions BP we can now derive the following Theorems B2, B3, B4:

Theorem B2: Let P be a polynomial of uniqueness for M(K) (resp. for M(d(0, R−))) with

l ≥ 2, let P ′(X) = b
l∏

i=1
(X − ai)ki with b ∈ K

∗, ki ≥ ki+1, 2 ≤ i ≤ l − 1, let k =
∑l

i=2 ki. For each

m ∈ N, m ≥ 5, let um be the biggest of the i such that ki > 4, let s5 = max(0, u5 − 3) and for each
m ∈ N, m ≥ 6, let sm = max(0, um − 2). Suppose P satisfies the following conditions:

k1 ≥ 10 + max(0, 5 − k2) +
l∑

i=3
max(0, 4 − ki) − min(

∞∑

m=5
sm, 2l)

p-ADIC NUMBERS, ULTRAMETRIC ANALYSIS AND APPLICATIONS Vol. 5 No. 4 2013



286 ESCASSUT et al.

either k1 ≥ k + 2 (resp. k1 ≥ k + 3) or P satisfies Hypothesis (G),
if l = 2, then k1 �= k + 1, 2k, 2k + 1, 3k + 1,
if l = 3, then k1 �= k

2 , k1 �= k + 1, 2k + 1, 3ki − k ∀i = 2, 3.
If l ≥ 4, then k1 �= k + 1
Let f, g ∈ M(K) (resp. f, g ∈ Mu((d(0, R−)) be transcendental and let α ∈ Mf (K) ∩Mg(K)

(resp. α ∈ Mf (d(0, R−)) ∩Mg(d(0, R−))) be non-identically zero. If f ′P ′(f) and g′P ′(g) share α
C.M., then f = g.

Remark: The sum
∑∞

m=5 sm is obviously finite.

Corollary B2.1 Let P ∈ K[x] satisfy Φ(P ) ≥ 3 and hypothesis (G), let P ′ = b
l∏

i=1
(X − ai)ki

with b ∈ K
∗, l ≥ 3, ki ≥ ki+1, 2 ≤ i ≤ l − 1, let k =

∑l
i=2 ki, and for each m ∈ N, m ≥ 5, let

um be the biggest of the i such that ki > 4, let s5 = max(0, u5 − 3) and for every m ≥ 6, let
sm = max(0, um − 2) . Suppose P satisfies the following conditions:

k1 ≥ 10 + max(0, 5 − k2) +
l∑

i=3
max(0, 4 − ki) − min(

∞∑

m=5
sm, 2l)

if l = 3, then k1 �= k

2
, k + 1, 2k + 1, 3ki − k ∀i = 2, 3,

if l ≥ 4, then n �= k + 1. Let f, g ∈ M(K) be transcendental and let α ∈ Mf (K) ∩Mg(K) be
non-identically zero. If f ′P ′(f) and g′P ′(g) share α C.M., then f = g.

Example: Let

P (X) = X20

20
− X19

19
− 4X18

18
+ 4X17

17

+
6X16

16
− 6X15

15
− 4X14

14
+

4X13

13
+

X12

12
− X11

11
.

We can check that P ′(X) = X10(X − 1)5(X + 1)4 and

P (0) = 0, P (1) =
4∑

j=0
Cj

4(−1)j
( 1
12 + 2j

− 1
11 + 2j

)
,

P (−1) = −
4∑

j=0
Cj

4

( 1
12 + 2j

+
1

11 + 2j

)
.

Consequently, we have Φ(P ) = 3 and we check that Hypothesis (G) is satisfied. Now, let f, g ∈
M(K) be transcendental and let α ∈ Mf (K) ∩Mg(K) be non-identically zero. If f ′P ′(f) and
g′P ′(g) share α C.M., then f = g.

Remark: In that example, we have k1 = 10, k = 9. Applying our previous work, a conclusion
would have required k1 ≥ k + 2 = 11.

Example: Let

P (X) =
X24

24
− 10X23

23
+

36X22

22
− 40X21

21
− 74X20

20
+

226X19

19

−84X18

18
− 312X17

17
+ 321X16

16
+ 88X15

15
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−280X14

14
+

48X13

13
+

80X12

12
− 32X11

11
.

We can check that P ′(X) = X10(X − 2)5(X + 1)4(X − 1)4. Next, we have P (2) < −134378,
P (1) ∈]− 2, 11;−2, 10[, P (−1) ∈]2, 18; 2, 19[. Therefore, P (0), P (1), P (−1), P (2) are all distinct,
hence Φ(P ) = 4. Moreover, Hypothesis (G) is satisfied.

Now, let f, g ∈ M(K) (resp. let f, g ∈ Mu(d(0, R−))) and let α ∈ Mf (K) ∩Mg(K) (resp. let
α ∈ Mf (d(0, R−)) ∩Mg(d(0, R−))) be non-identically zero. If f ′P ′(f) and g′P ′(g) share α C.M.,
then f = g.

Remark: In that example, we have k1 = 10, k = 13. Applying our previous work, a conclusion
would have required k1 ≥ k + 2 = 15 if f, g belong to M(K) and k1 ≥ k + 3 = 16 if f, g belong to
Mu(d(0, R−)).

As noticed in [4], if f, g belong to M(K) and if α is a constant or a Moebius function, we can
get a more accurate statement:

Theorem B3: Let P be a polynomial of uniqueness for M(K), let P ′ = b
l∏

i=1
(x− ai)ki with b ∈

K
∗, l ≥ 2, ki ≥ ki+1, 2 ≤ i ≤ l− 1, let k =

∑l
i=2 ki. For each m ∈ N, m ≥ 5, let um be the biggest of

the i such that ki > 4, let s5 = max(0, u5 − 3) and for each m ∈ N, m ≥ 6, let sm = max(0, um − 2).
Suppose P satisfies the following conditions:

k1 ≥ 9 + max(0, 5 − k2) +
l∑

i=3
max(0, 4 − ki) − min(

∞∑

m=5
sm, 2l − 1)

either k1 ≥ k + 2 or P satisfies (G)
if l = 2, then k1 �= k + 1, 2k, 2k + 1, 3k + 1,
if l = 3, then k1 �= k

2 , k1 �= k + 1, 2k + 1, 3ki − k ∀i = 2, 3.
Let f, g ∈ M(K) be transcendental and let α be a Moebius function. If f ′P ′(f) and g′P ′(g) share

α C.M., then f = g.

By Theorem BU1, we have Corollary B3.1.

Corollary B3.1 Let P ∈ K[x] satisfy Φ(P ) ≥ 3, let P ′ = b
l∏

i=1
(x− ai)ki with b ∈ K

∗, l ≥ 3,

ki ≥ ki+1, 2 ≤ i ≤ l − 1, let k =
∑l

i=2 ki. For each m ∈ N, m ≥ 5, let um be the biggest of the
i such that ki > 4, let s5 = max(0, u5 − 3) and for each m ∈ N, m ≥ 6, let sm = max(0, um − 2).

Suppose P satisfies the following conditions:

k1 ≥ 9 + max(0, 5 − k2) +
l∑

i=3
max(0, 4 − ki) − min(

∞∑

m=5
sm, 2l − 1)

either k1 ≥ k + 2 or P satisfies (G),
if l = 3, then k1 �= k

2 , k1 �= k + 1, 2k + 1, 3ki − k ∀i = 2, 3.
Let f, g ∈ M(K) be transcendental and let α be a Moebius function. If f ′P ′(f) and g′P ′(g) share

α C.M., then f = g.

And by Theorem BU2 we have Corollary B3.2.

Corollary B3.2 Let P ∈ K[x] be such that P ′ is of the form b(x− a1)n(x− a2)k with k ≤ n,
min(k, n) ≥ 2 and with b ∈ K

∗. Suppose P satisfies the following conditions:
n ≥ 9 + max(0, 5 − k),
either n ≥ k + 2 or P satisfies (G),
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n �= k + 1, 2k, 2k + 1, 3k + 1,
Let f, g ∈ M(K) be transcendental and let α be a Moebius function. If f ′P ′(f) and g′P ′(g) share

α C.M., then f = g.

Theorem B4: Let P be a polynomial of uniqueness for M(K), let P ′ = b
l∏

i=1
(x− ai)ki with b ∈

K
∗, l ≥ 2, ki ≥ ki+1, 2 ≤ i ≤ l− 1, let k =

∑l
i=2 ki, and for each m ∈ N, m ≥ 5, let u5 be the biggest

of the i such that ki > 4, let s5 = max(0, u5 − 3) and for every m ≥ 6 let sm = max(0, um − 2).
Suppose P satisfies the following conditions:

either k1 ≥ k + 2 or P satisfies (G)

k1 ≥ 9 + max(0, 5 − k2) +
l∑

i=3
max(0, 4 − ki) − min(

∞∑

m=5
sm, 2l),

k1 �= k + 1.
Let f, g ∈ M(K) be transcendental and let α be a non-zero constant. If f ′P ′(f) and g′P ′(g) share

α C.M., then f = g.

By Theorem BU1, we have Corollary B4.1

Corollary B4.1 Let P ∈ K[x] satisfy Φ(P ) ≥ 3, let P ′ = b
l∏

i=1
(x− ai)ki with b ∈ K

∗, l ≥ 3,

ki ≥ ki+1, 2 ≤ i ≤ l − 1, let k =
∑l

i=2 ki.
For each m ∈ N, m ≥ 5, let um be the biggest of the i such that ki > 4, let s5 = max(0, u5 − 3)

and for every m ≥ 6 let sm = max(0, um − 2). Suppose P satisfies the following conditions:
k1 ≥ k + 2 or P satisfies Hypothesis (G),

k1 ≥ 9 + max(0, 5 − k2) +
l∑

i=3
max(0, 4 − ki) − min(

∞∑

m=5
sm, 2l),

k1 �= k + 1.

Let f, g ∈ M(K) be transcendental and let α be a non-zero constant. If f ′P ′(f) and g′P ′(g) share
α C.M., then f = g.

And by Theorem BU2, we have Corollary B4.2

Corollary B4.2 Let P ∈ K[x] be such that P ′ is of the form b(x− a1)n(x− a2)k with min(k, n) ≥
2 and with b ∈ K

∗. Suppose P satisfies the following conditions:
k1 ≥ 9 + max(0, 5 − k),
either n ≥ k + 2 or P satisfies (G),
k1 �= k + 1.
Let f, g ∈ M(K) be transcendental and let α be a non-zero constant. If f ′P ′(f) and g′P ′(g) share

α C.M., then f = g.

Example: Let

P (X) = X15

15
+ 5X14

14
+ 10X13

13
+ 10X12

12
+ 5X11

11
+ X10

10
.

Then P ′(X) = X9(X + 1)5. We can apply Corollary B4.2: given f, g ∈ A(K) transcendental such
that f ′P ′(f) and g′P ′(g) share a constant α ∈ M(K) C.M., we have f = g.
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Theorem B5: Let P be a polynomial of uniqueness for M(K) such that P ′ is of the form

b(x− a1)n
l∏

i=2
(x− ai) with l ≥ 3 , b ∈ K

∗, satisfying:

n ≥ l + 10,
if l = 3, then n �= 2l − 1.

Let f, g ∈ M(K) be transcendental and let α ∈ Mf (K)∩Mg(K) be non-identically zero. If f ′P ′(f)
and g′P ′(g) share α C.M., then f = g.

By Theorem BU1, we have Corollary B5.1:

Corollary B5.1 Let P ∈ K[x] satisfy Φ(P ) ≥ 3 and be such that P ′ is of the form

b(x− a1)n
l∏

i=2
(x− ai) with l ≥ 3, b ∈ K

∗ satisfying:

n ≥ l + 10,
if l = 3, then n �= 2l − 1.

Let f, g ∈ M(K) be transcendental and let α ∈ Mf (K) ∩Mg(K) be non-identically zero. If f ′P ′(f)
and g′P ′(g) share α C.M., then f = g.

Theorem B6: Let a ∈ K and R > 0. Let P be a polynomial of uniqueness for Mu(d(0, R−)) such

that P ′ is of the form P ′ = b(x− a1)n
l∏

i=2
(x− ai) with l ≥ 3, b ∈ K

∗ satisfying:

n ≥ l + 10,
if l = 3, then n �= 2l − 1.

Let f, g ∈ Mu(d(0, R−)) and let α ∈ Mf (d(0, R−)) ∩Mg(d(0, R−)) be non-identically zero. If
f ′P ′(f) and g′P ′(g) share α C.M., then f = g.

By Theorem BU1, we have Corollary B6.1:

Corollary B6.1 Let a ∈ K and R > 0. Let P ∈ K[x] satisfy Φ(P ) ≥ 4 and be such that P ′ is of

the form P ′ = b(x− a1)n
l∏

i=2
(x− ai) with l ≥ 4, b ∈ K

∗ and n ≥ l + 10.

Let f, g ∈ Mu(d(0, R−)) and let α ∈ Mf (d(0, R−)) ∩Mg(d(0, R−)) be non-identically zero. If
f ′P ′(f) and g′P ′(g) share α C.M., then f = g.

Example: Let P (x) =
x18

18
− 2x17

17
− x16

16
+

2x15

15
. Then P ′(x) = x17 − 2x16 −x15 + 2x14 = x14(x−

1)(x + 1)(x − 2). We check that:
P (0) = 0,

P (1) =
1
18

− 2
17

− 1
16

+
2
15

,

P (−1) = 1
18

+ 2
17

− 1
16

− 2
15

�= 0, P (1), and P (2) = 218

18
− 218

17
− 216

16
+ 216

15
�= 0, P (1), P (−1). Then

Υ(P ) = 4. So, P is a polynomial of uniqueness for both M(K) and M(d(0, R−)).
Given f, g ∈ M(K) transcendental or f, g ∈ Mu(d(0, R−)) such that f ′P ′(f) and g′P ′(g) share

C.M. a small function α, we have f = g.

Theorem B7: Let P be a polynomial of uniqueness for M(K) such that P ′ is of the form

P ′ = b(x− a1)n
l∏

i=2
(x− ai) with l ≥ 3, b ∈ K

∗ satisfying
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n ≥ l + 9,
if l = 3, then n �= 2l − 1.
Let f, g ∈ M(K) be transcendental and let α be a Moebius function or a non-zero constant. If

f ′P ′(f) and g′P ′(g) share α C.M., then f = g.

Example: Let P (x) = xq − axq−2 + b with a ∈ K
∗, b ∈ K, with q ≥ 5 an odd integer. Then q and

q − 2 are relatively prime and hence by Theorem 3.21 in [11] P is a polynomial of uniqueness for
M(K) and P ′ admits 0 as a zero of order n = q − 3 and two other zeros of order 1.

Let f, g ∈ M(K) be transcendental and let α ∈ M(K) be a small function such that f, g share
α C.M.

Suppose first q ≥ 17. By Theorem B6 we have f = g. Now suppose q ≥ 15 and suppose α is a
Moebius function or a non-zero constant. Then by Theorems B7 we have f = g.

Theorem B8: Let f, g ∈ M(K) be transcendental and let α ∈ Mf (K) ∩Mg(K) be non-
identically zero. Let a ∈ K \ {0}. If f ′fn(f − a) and g′gn(g − a) share the function α C.M. and if

n ≥ 12, then either f = g or there exists h ∈ M(K) \K(x) such that f =
a(n + 2)
n + 1

(hn+1 − 1
hn+2 − 1

)
h and

g =
a(n + 2)
n + 1

(hn+1 − 1
hn+2 − 1

)
. Moreover, if α is a constant or a Moebius function, then the conclusion

holds whenever n ≥ 11.

Inside an open disk, we have a version similar to the general case in the whole field.

Theorem B9: Let f, g ∈ Mu(d(0, R−)), and let α ∈ Mf (d(0, R−)) ∩Mg(d(0, R−)) be non-
identically zero. Let a ∈ K \ {0}. If f ′fn(f − a) and g′gn(g − a) share the function α C.M. and

n ≥ 12, then either f = g or there exists h ∈ Mu(d(0, R−)) such that f =
a(n + 2)
n + 1

(hn+1 − 1
hn+2 − 1

)
h

and g = a(n + 2)
n + 1

(hn+1 − 1
hn+2 − 1

)
.

Remark: In Theorems B8 and B9, the second conclusion does occur. Indeed, let h ∈ M(K) \K(x)

(resp. let h ∈ Mu(d(0, R−))). Now, let us precisely define f and g as: g = (n + 2
n + 1

)
(hn+1) − 1
hn+2 − 1

)
and

f = hg. Then, both f, g are transcendental (resp. both f, g belong to Mu(d(0, R−))) and then

we can check that the polynomial P (y) =
1

n + 2
yn+2 − 1

n + 1
yn+1 satisfies P (f) = P (g), hence

f ′P ′(f) = g′P ′(g), therefore f ′P ′(f) and g′P ′(g) trivially share any function.

5. PROOFS OF PART B:
Notation: As usual, given a function f ∈ M(K) (resp. M(d(0, R−))), we denote by Sf (r) a

function of r defined in ]0,+∞[ (resp. in ]0, R[) such that lim
r→+∞

Sf (r)
T (r, f)

= 0 (resp. lim
r→R

Sf (r)
T (r, f)

= 0)

In the proof of Theorems B2, B3, B4 we will need the following Lemmas [11]:

Lemma BL1: Let Q ∈ K[x] be of degree n and let f ∈ M(K), (resp. f ∈ M(d(0, R−))) be
transcendental. Then N(r, f ′) = N(r, f) +N(r, f), Z(r, f ′) ≤ Z(r, f) +N(r, f) +O(1), nT (r, f) ≤
T (r, f ′Q(f)) ≤ (n+ 2)T (r, f)− log r+O(1) (resp. nT (r, f) ≤ T (r, f ′Q(f)) ≤ (n+ 2)T (r, f)+O(1)).
Particularly, if f ∈ A(K), (resp. f ∈ A(d(0, R−))), then nT (r, f) ≤ T (r, f ′Q(f)) ≤ (n+ 1)T (r, f)−
log r + O(1) (resp. nT (r, f) ≤ T (r, f ′Q(f)) ≤ (n + 1)T (r, f) + O(1)).

Let P ∈ Mb(d(0, R−))[X] be of degree n and let f ∈ Mu(d(0, R−)). Then T (r, P (f)) =
nT (r, f) + O(1).
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Lemma BL2 : Let f ∈ M(d(0, R−)). Then, Z(r, f ′) −N(f ′, r) ≤ Z(r, f) −N(r, f) − log r +
O(1). Moreover, T (r, f)−Z(r, f) ≤ T (r, f ′)−Z(r, f ′) +O(1). Further, given α ∈ M(d(0, R−)), we
have T (r, αf) − Z(r, αf) ≤ T (r, f) − Z(r, f) + T (r, α).

The following lemma is given in [4], for p-adic meromorphic functions. The same applies for
complex meromorphic functions [5].

Lemma BL3: Let Q(x) = (x− a1)n
∏l

i=2(x− ai)ki ∈ K[x] (ai �= aj , ∀i �= j) with l ≥ 2 and n ≥
max{k2, .., kl} and let k =

∑l
i=2 ki. Let f, g ∈ M(K) be transcendental (resp. f, g ∈ Mu(d(0, R−)))

such that θ = Q(f)f ′Q(g)g′ is a small function with respect to f and g. We have the following :
If l = 2 then n belongs to {k, k + 1, 2k, 2k + 1, 3k + 1}.
If l = 3 then n belongs to {k

2 , k + 1, 2k + 1, 3k2 − k, .., 3kl − k}.
If l ≥ 4 then n = k + 1.
If θ is a constant and f, g ∈ M(K) then n = k + 1.

Lemma BL4: Let P ∈ K[x] \K with deg(P ) > 1 and let f, g ∈ A(K) \K (resp. f, g ∈
Au(d(a,R−))) be such that P (f) = P (g) + c, c ∈ K (resp. P (f) = P (g) + h, h ∈ Mb(d(a,R−))).
Then c = 0 (resp. h = 0).

Proof: Let P (x) =
∑n

k=0 akx
k with an �= 0. For each k = 1, ..., n− 1, let Qk(x, y) = ak

∑k
j=0 x

jyk−j.
Then P (x) − P (y) = (x− y)(

∑n−1
k=1 Qk(x, y)). Suppose first f, g ∈ A(K) and suppose c �= 0. Since

(f − g)(
n−1∑

k=1
Qk(f, g)) is a constant, both f − g and

n−1∑

k=1
Qk(f, g) are constants different from 0

because the semi-norm | . |(r) is multiplicative on A(K) (resp. on Au(d(0, R−))) and is an increasing
function in r. Thus we have g = f + b with b ∈ K. Let G(x) =

∑n−1
k=1 Qk(x, x + b)). Since K has

characteristic 0, we can check that G is a polynomial of degree n− 1. And since G(f) is a constant,
we have n− 1 = 0, a contradiction. Consequently, c = 0.

Similarly, suppose now f, g ∈ Au(d(a,R−)). Since P (f) − P (g) belongs to Ab(d(a,R−)), both

f − g and
n−1∑

k=1
Qk(f, g) are bounded and not identically 0, so we have g = f + h, with h ∈

Ab(d(a,R−)). Suppose that h is not identically zero. Consider the polynomial

B(x) =
n−1∑

k=1
Qk(x, x + h) ∈ Mb(d(a,R−))[x]. Clearly, B(x) is a polynomial with coefficients in

Mb(d(a,R−)) and deg(B)) is n− 1, hence we have T (r,B(f)) = (n− 1)T (r, f) + o(T (r, f)). But
since B(f) is bounded, it belongs to Mb(d(a,R−))[x], hence T (r,B(f)) is bounded and so is
(n− 1)T (r, f), which leads to n = 1, a contradiction again.

Proof of Theorem B1. Put F = f ′b
l∏

j=1
(f − aj)kj and G = g′b

l∏

j=1
(g − aj)kj . Since f, g ∈ A(K)

(resp. f, g ∈ Au(d(0, R−))) and since F and G share α C.M., then
F − α

G− α
is a meromorphic function

having no zero and no pole in K (resp. in d(0, R−)), hence it is a constant w in K \ {0} (resp. it is
an invertible function w ∈ Ab(d(0, R−))).

Suppose w �= 1. Then, F = wG + α(1 − w).
Let r > 0. Since α(1−w) ∈ Af (K) (resp. α(1−w) ∈ Af (d(0, R−))), α(1 −w) obviously belongs

to AF (K) (resp. to AF (d(0, R−))). So, applying Theorem N1 to F , we obtain

T (r, F ) ≤ Z(r, F ) + Z
(
r, F − α(1 − w)

)
+ SF (r) = Z(r, F ) + Z(G) + SF (r)
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=
l∑

j=1
Z

(
r, (f − aj)k

)
+ Z(r, f ′) +

l∑

j=1
Z

(
r, (g − aj)k

)
+ Z(r, g′) + Sf (r)

≤ l(T (r, f) + T (r, g)) + Z(r, f ′) + Z(r, g′) + Sf (r).

We also notice that if f, g ∈ A(K) and if α ∈ K \ {0}, we have
T (r, F ) ≤ Z(r, F ) + Z

(
r, F − α(1 − w)

)
− log r + O(1) and therefore we obtain

T (r, F ) ≤ l(T (r, f) + T (r, g)) + Z(r, f ′) + Z(r, g′) − log r + O(1).

Now, let us go back to the general case. Since f is entire (resp. f belongs to Mu(d(0, R−))), by
Lemma BL1 we have T (r, F ) = (

∑l
j=1 kj)T (r, f) + Z(r, f ′) + O(1). Consequently,

(
∑l

j=1 kj)T (r, f) ≤ l(T (r, f) + T (r, g)) + Z(r, g′) + Sf (r).
Similarly, (

∑l
j=1 kj)T (r, g) ≤ l(T (r, f) + T (r, g)) + Z(r, f ′) + Sf (r). Therefore

(
l∑

j=1
kj)(T (r, f) + T (r, g)) ≤ 2l(T (r, f) + T (r, g)) + Z(r, f ′) + Z(r, g′) + Sf (r)

≤ (2l + 1)(T (r, f) + T (r, g)) + Sf (r).

So,
l∑

j=1
kj ≤ 2l + 1. Thus, since

l∑

j=1
kj > 2l + 1 we have w = 1.

And if α ∈ K \ {0} and if f, g belong to A(K), by applying Theorem N1 we obtain

l∑

j=1
kj(T (r, f) + T (r, g)) ≤ 2l(T (r, f) + T (r, g)) + Z(r, f ′) + Z(r, g′) − 2 log r + O(1)

≤ (2l + 1)(T (r, f) + T (r, g)) − 4 log r + O(1)

because T (r, f ′) ≤ T (r, f) − log r + O(1), hence
l∑

j=1
kj ≤ 2l which also contradicts the hypothesis

w �= 1 whenever
l∑

j=1
kj > 2l.

Consequently, in the general case, whenever
l∑

j=1
kj > 2l + 1, we have w = 1 and therefore

f ′P ′(f) = g′P ′(g) hence P (f) − P (g) is a constant c. And by Lemma BL4 we have c = 0. But
since P is a polynomial of uniqueness for A(K) (resp. for A(d(0, R−))), that yields f = g.

And similarly, if α ∈ K and f, g ∈ A(K), whenever
l∑

j=1
kj > 2l, we have w = 1 and therefore we

can conclude in the same way.

From results of [3] we can extract this:

Theorem BF: Let P, Q ∈ K[x] of respective degree m and n with m ≤ n and P monic and let
P ′(x) = m

∏h
i=1(x− ai)kI , Q′(x) = nb

∏l
i=1(x− bi)qI , where a1, ..., ah are distinct and b1, ..., bl are

distinct.
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Let H = {i 1 ≤ i ≤ h, P (ai) �= Q(bj) ∀j = 1, ..., l} and let L = {j 1 ≤ j ≤ l, Q(bj) �= P (ai)
∀i = 1, ..., h}.

Suppose that one of the following two statement holds:∑

ai∈H
ki ≥ n−m + 2 (resp.

∑

ai∈H
ki ≥ n−m + 3),

∑

bj∈L
qj ≥ 2 (resp.

∑

bi∈L
qj ≥ 3).

If two meromorphic functions f, g ∈ M(K) (resp. f, g ∈ M(d(0, R−)))) satisfy P (f(x)) =
Q(g(x)), ∀x ∈ K, (resp. ∀x ∈ d(0, R−)) then both f and g are constant (resp. belong to
Mb(d(0, R−)))).

Proof of Proposition BP: Let n = deg(P ). Suppose that two functions f, g ∈ M(K) (resp.
f, g ∈ M(d(0, R−))) satisfy P (f(x)) = P (g(x)) + C (C ∈ K

∗), ∀x ∈ K (resp. ∀x ∈ d(0, R−)). We
can apply Theorem BF by putting Q(X) = P (X) +C and next keeping the same notations. So, here
we have h = l, m = n and bi = ai, i = 1, ..., l. Let Γ be the curve of equation P (X) − P (Y ) = C.
By hypothesis we have n ≥ 3, so Γ is of degree ≥ 3. Therefore, if Γ has no singular point, it is of
genus ≥ 1 and hence, by Picard-Berkovich Theorem, the conclusion is immediate. Consequently,
we can assume that Γ has a singular point (α, β). But then P ′(α) = P ′(β) = 0 and hence (α, β) is
of the form (ah, ak). Consequently, C = P (ah) − P (ak) and since C �= 0, we have h �= k. We will
prove that either a1 ∈ H, or a1 ∈ L.

Suppose first that a1 /∈ H ∪ L. Since a1 /∈ H, there exists i ∈ {2, ..., l} such that P (a1) =
P (ai) + C. Now since 1 /∈ L, there exists j ∈ {2, ..., l} such that P (a1) + C = P (ai). But since
C = −P (ai), we have P (aj) = −P (ai), therefore P (ai) + P (aj) = 0. Since P satisfies (G), we
have i = j, hence P (ai) = 0. But then C = 0, a contradiction. Therefore, we have proven that
a1 ∈ F ′ ∪ F ′′. Now, by Theorem BF, f and g are constant (resp. f and g belong to Mb(d(0, R−))).

The following basic lemma applies to both complex and meromorphic functions. A proof is given
in [4].

Lemma BL5: Let f ∈ M(K), (resp. f ∈ M(d(0, R−))). Then

T (r, f) − Z(r, f) ≤ T (r, f ′) − Z(r, f ′) + O(1).

Notation: Given two meromorphic functions f, g ∈ M(K) (resp. f, g ∈ M(d(0, R−))), we will
denote by Ψf,g the function

f ′′

f ′ −
2f ′

f − 1
− g′′

g′
+ 2g′

g − 1
.

We denote by Z[2](r, f) the counting function of zeros of f in K (resp. in d(0, R−)) where zeros
of order > 2 are only counted with multiplicity order 2. Similarly, we denote by N[2](r, f) the
counting function of poles of f in K (resp. in d(0, R−)) where poles of order > 2 are only counted
with multiplicity order 2.

Now, we can extract the following Lemma BL6 from a result that is proven in several papers
and particularly in Lemma 11 [4].

Lemma BL6: Let f, g ∈ M(K) (resp. f, g ∈ M(d(0, R−))) share the value 1 CM. If Ψf,g is not
identically zero, then, max(T (r, f), T (r, g)) ≤ N[2](r, f) + Z[2](r, f) + N[2](r, g) +Z[2](r, g) − 3 log r.

We will need the following Lemma BL7:
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Lemma BL7: Let f, g ∈ M(K) be transcendental (resp. f, g ∈ Mu(d(0, R−))). Let P (x) =
xn+1Q(x) be a polynomial such that n ≥ deg(Q) + 2 (resp. n ≥ deg(Q) + 3). If f ′P ′(f) = g′P ′(g)
then P (f) = P (g).

The following lemma holds in the same way in p-adic analysis and in complex analysis. It is
proven in [4]:

By Lemma 8 in [4], we have the following Lemma BL8

Lemma BL8: Let F,G ∈ M(K)
(
resp. Let F,G ∈ M(d(0, R−))

)
be non-constant, having no zero

and no pole at 0 and sharing the value 1 C.M.
If ΘF,G = 0 and if

lim sup
r→+∞

(
T (r, F ) − [Z(r, F ) + N(r, F ) + Z(r,G) + N(r,G)]

)
= +∞

(resp.

lim sup
r→R−

(
T (r, F ) − [Z(r, F ) + N(r, F ) + Z(r,G) + N(r,G)]

)
= +∞)

then either F = G or FG = 1.

Proofs of Theorems. Theorems B5, B6, B7, B8, B9 were proven in [4]. Consequently, our work
only consists of proving Theorem B2, B3 and B4.

For simplicity, now we set n = k1. Set F =
f ′P ′(f)

α
, G =

g′P ′(g)
α

and F̂ = P (f), Ĝ = P (g).
Suppose F �= G. We notice that P (x) is of the form xn+1Q(x) with Q ∈ K[x] of degree k. Now,
with help of Lemma BL5, we can check that we have Since (F̂ )′ = αF , by Lemma BL2 we have

T (r, F̂ ) ≤ T (r, F ) + Z(r, F̂ ) − Z(r, F ) + T (r, α) + O(1), (1)

hence, by (1), we obtain

T (r, F̂ ) ≤ T (r, F ) + (n + 1)Z(r, f) + Z
(
r,Q(f)

)
− nZ(r, f)

−
l∑

i=2
kiZ(r, f − ai) − Z(r, f ′) + T (r, α) + O(1),

i.e.

T (r, F̂ ) ≤ T (r, F ) + Z(r, f) + Z
(
r,Q(f)

)
−

l∑

i=2
kiZ(r, f − ai) − Z(r, f ′) + T (r, α) + O(1), (2)

and similarly,

T (r, Ĝ) ≤ T (r,G) + Z(r, g) + Z
(
r,Q(g)

)
−

l∑

i=2
kiZ(r, g − ai) − Z(r, g′) + T (r, α) + O(1). (3)

Now, it follows from the definition of F and G that

Z[2](r, F ) + N[2](r, F ) ≤ 2Z(r, f) + 2
l∑

i=2
Z(r, f − ai) + Z(r, f ′) + 2N (r, f) + T (r, α) + O(1) (4)
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and similarly

Z[2](r,G) + N[2](r,G) ≤ 2Z(r, g) + 2
l∑

i=2
Z(r, g − ai) + Z(r, g′) + 2N (r, g) + T (r, α) + O(1). (5)

And particularly, if ki = 1, ∀i ∈ {2, .., l}, then

Z[2](r, F ) + N[2](r, F ) ≤ 2Z(r, f) +
l∑

i=2
Z(r, f − ai) + Z(r, f ′) + 2N(r, f) + T (r, α) + O(1) (6)

and similarly

Z[2](r,G) + N[2](r,G) ≤ 2Z(r, g) +
l∑

i=2
Z(r, g − ai) + Z(r, g′) + 2N(r, g) + T (r, α) + O(1). (7)

We will now prove that ΨF,G is identically zero. Indeed, suppose now that ΨF,G is not identically
zero.

By Lemma BL6, we have

T (r, F ) ≤ Z[2](r, F ) + N[2](r, F ) + Z[2](r,G) + N[2](r,G) − 3 log r

hence by (2), we obtain

T (r, F̂ ) ≤ Z[2](r, F ) + N[2](r, F ) + Z[2](r,G) + N[2](r,G) + Z(r, f) + Z(r,Q(f))

−
l∑

i=2
kiZ(r, f − ai) − Z(r, f ′) + T (r, α) − 3 log r + O(1)

and hence by (4) and (5):

T (r, F̂ ) ≤ 2Z(r, f) + 2
l∑

i=2
Z(r, f − ai) + Z(r, f ′) + 2N(r, f) + 2Z(r, g) + 2

l∑

i=2
Z(r, g − ai)

+Z(r, g′) + 2N(r, g) + Z(r, f) + Z(r,Q(f))

−
l∑

i=2
kiZ(r, f − ai) − Z(r, f ′) + T (r, α) − 3 log r + O(1) (8)

and similarly,

T (r, Ĝ) ≤ 2Z(r, g) + 2
l∑

i=2
Z(r, g − ai) + Z(r, g′) + 2N (r, g) + 2Z(r, f) + 2

l∑

i=2
Z(r, f − ai) + Z(r, f ′)

+2N(r, f) + Z(r, g) + Z(r,Q(g)) −
l∑

i=2
kiZ(r, g − ai) − Z(r, g′) + T (r, α) − 3 log r + O(1). (9)

Consequently,

T (r, F̂ ) + T (r, Ĝ) ≤ 5(Z(r, f) + Z(r, g)) +
l∑

i=2
(4 − ki)(Z(r, f − ai) + Z(r, g − ai)) + (Z(r, f ′)
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+Z(r, g′)) + 4(N (r, f) + N(r, g)) + (Z(r,Q(f)) + Z(r,Q(g))) + 6T (r, α) − 6 log r + O(1). (10)

By Lemma BL1 we can write Z(r, f ′) + Z(r, g′) ≤ Z(r, f − a2) + Z(r, g − a2) + N(r, f) +
N(r, g) − 2 log r. Hence, in general, by (10) we obtain

T (r, F̂ ) + T (r, Ĝ) ≤ 5(Z(r, f) + Z(r, g))

+
l∑

i=3
(4 − ki)

(
(Z(r, f − ai) + Z(r, g − ai))

)
+ (5 − k2)

(
(Z(r, f − a2) + Z(r, g − a2))

+5(N(r, f) + N(r, g)) + (Z(r,Q(f)) + Z(r,Q(g))) + 6T (r, α) − 8 log r + O(1)

and hence, since T (r,Q(f)) = kT (r, f) + O(1) and T (r,Q(g)) = kT (r, g) + O(1),

T (r, F̂ ) + T (r, Ĝ) ≤ 5(T (r, f) + T (r, g))

+
l∑

i=3
(4 − ki)

(
(Z(r, f − ai) + Z(r, g − ai))

)
+ (5 − k2)

(
(Z(r, f − a2) + Z(r, g − a2))

+5(N (r, f) + N(r, g)) + k(T (r, f) + T (r, g)) + 6T (r, α) − 8 log r + O(1). (12)

Now, since F̂ is a polynomial in f of degree n + k + 1, we have T (r, F̂ ) = (n + k + 1)T (r, f) +
O(1) and similarly, T (r, Ĝ) = (n + k + 1)T (r, g) + O(1), hence by (12) we can derive

(n + k + 1)(T (r, f) + T (r, g)) ≤ 5(T (r, f) + T (r, g))

+(5 − k2)(Z(r, f − a2) + Z(r, g − a2)) +
l∑

i=3
(4 − ki)

(
(Z(r, f − ai) + Z(r, g − ai))

)

+5(N (r, f) + N(r, g)) + k(T (r, f) + T (r, g)) + 6T (r, α) − 8 log r + O(1). (15)
Hence

(n + k + 1)(T (r, f) + T (r, g)) ≤ 10(T (r, f) + T (r, g))

+
l∑

i=3
(4 − ki)

(
(Z(r, f − ai) + Z(r, g − ai))

)
+ (5 − k2)

(
(Z(r, f − a2) + Z(r, g − a2))

+k(T (r, f) + T (r, g)) + 6T (r, α) − 8 log r + O(1)),
and hence

n(Tr, f) + T (r, g)) ≤ 9(T (r, f) + T (r, g)) + (5 − k2)
(
(Z(r, f − a2) + Z(r, g − a2))

+
l∑

i=3
(4 − ki)

(
(Z(r, f − ai) + Z(r, g − ai))

)
+ 6T (r, α) − 8 log r + O(1)). (16)

Then (5 − k2)(Z(r, f − a2) + Z(r, g − a2)) ≤ max(0, 5 − k2)(T (r, f) + T (r, g)) + O(1) and at
least, for each i = 3, .., l we have (4 − ki)(Z(r, f − ai) + Z(r, g − ai)) ≤ max(0, 4 − ki)(T (r, f) +
T (r, g)) + O(1).

p-ADIC NUMBERS, ULTRAMETRIC ANALYSIS AND APPLICATIONS Vol. 5 No. 4 2013



NEW RESULTS 297

Now suppose s5 > 0. That means that ki ≥ 5 ∀i = 3, ..., u5 with l ≥ 5. We notice that the number
of indices i superior or equal to 2 such that ki ≥ 5 is u5 − 2. Similarly, for each m > 5, the number
of indices superior or equal to 1 such that ki ≥ m is um − 1.

Then we can apply Theorem A1 and we obtain
∑u5

i=3 Z(r, f − ai) ≥ (u5 − 3)T (r, f) + O(1)
and for each m ≥ 6,∑um

i=3 Z(r, f − ai) ≥ (um − 2)T (r, f) + O(1), i.e.
∑u5

i=3 Z(r, f − ai) ≥ s5T (r, f) + O(1)
and for each m ≥ 6,∑um

i=3 Z(r, f − ai) ≥ smT (r, f) + O(1),
and similarly for g.

Consequently, by (16) we obtain

n(Tr, f) + T (r, g)) ≤ 9(T (r, f) + T (r, g)) + max(0, 5 − k2)(Z(r, f − a2) + Z(r, g − a2))

+
l∑

i=3
max(0, 4 − ki)

(
Z(r, f − ai) + Z(r, g − ai)

)

−
∞∑

m=5
sm(T (r, f) + T (r, g)) + 4T (r, α) − 8 log r + O(1)), (17)

therefore

n ≤ 9 + max(5 − k2) +
l∑

i=3
max(0, 4 − ki) −

∞∑

j=5
sj , (18)

a contradiction to the hypotheses of Theorem B2.
Consider now the situation in Theorems B3 and B4. Here we have T (r, α) ≤ log r + O(1).

Consequently, Relation (16) now implies

n(Tr, f) + T (r, g)) ≤ 9(T (r, f) + T (r, g)) + max(0, 5 − k2)(Z(r, f − a2) + Z(r, g − a2))

+
l∑

i=3
max(0, 4 − ki)

(
Z(r, f − ai) + Z(r, g − ai)

)
−

∞∑

m=5
sm(T (r, f) + T (r, g)) − 2 log r + O(1)),

therefore

n < 9 + max(0, 5 − k2) +
l∑

i=3
max(0, 4 − ki) −

∞∑

m=5
sm,

but this is uncompatible with the hypotheses

n ≥ 9 + max(5 − k2) +
l∑

i=3
max(0, 4 − ki) − min(

∞∑

j=5
sj, 2l − 1) in Theorem B3 and

n ≥ 9 + max(5 − k2) +
l∑

i=3
max(0, 4 − ki) − min(

∞∑

j=5
sj, 2l) in Theorem B4.

Thus, in the hypotheses of Theorems B2, B3 and B4 we have proven that ΨF,G is identically

zero. Henceforth, we can assume that ΨF,G = 0 in all theorems. Note that we can write ΨF,G =
φ′

φ
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with φ =
( F ′

(F − 1)2
)((G− 1)2

G′

)
. Since ΨF,G = 0, there exist A,B ∈ K such that

1
G− 1

= A

F − 1
+ B (19)

and A �= 0. We notice that
Z(r, f) ≤ T (r, f), N(r, f) ≤ T (r, f), Z(r, f − ai) ≤ T (r, f − ai) ≤ T (r, f) + O(1), i = 2, ..., l and
Z(r, f ′) ≤ T (r, f ′) ≤ 2T (r, f) + O(1). Similarly for g and g′. Moreover, by Lemma BL1 we have

T (r, F ) ≥ (n + k)T (r, f). (20)

We will show that F = G in each theorem. We first notice that hypotheses of Theorems B2 and
B3 imply

n + k ≥ 2l + 7, (21)
and that in Theorem B4 we have

n + k ≥ 2l + 6. (22)
Indeed, set t =

∑∞
i=5 sm, s = min(t, 2l) and s′ = min(t, 2l − 1). In theorem B2 we have

n + k ≥ 10 + k + max(0, 5 − k2) +
∞∑

i=3
max(0, 4 − ki) − s

= 10 + [k2 + max(0, 5 − k2)] +
∞∑

i=3
[ki + max(0, 4 − ki)] − s

= 10 + max(k2, 5) +
∞∑

i=3
[max(ki, 4)] − s ≥ 10 + 5 + 4(l − 2) − 2l = 2l + 7.

And in Theorem B3 we have

n + k ≥ 9 + k + max(0, 5 − k2) +
∞∑

i=3
max(0, 4 − ki) − s′

= 9 + [k2 + max(0, 5 − k2)] +
∞∑

i=3
[ki + max(0, 4 − ki)] − s′

= 9 + max(k2, 5) +
∞∑

i=3
[max(ki, 4)] − s′ ≥ 9 + 5 + 4(l − 2) − 2l = 2l + 7.

That finishes proving (21) in Theorems B2 and B3.

Now, in Theorem B4 we have

n + k ≥ 9 + k + max(0, 5 − k2) +
∞∑

i=3
max(0, 4 − ki) − s′

= 9 + [k2 + max(0, 5 − k2)] +
∞∑

i=3
[ki + max(0, 4 − ki)] − s′

= 9 + max(k2, 5) +
∞∑

i=3
[max(ki, 4)] − s ≥ 9 + 5 + 4(l − 2) − 2l = 2l + 6.
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We will consider the following two cases: B = 0 and B �= 0.

Case 1: B = 0.
Suppose A �= 1. Then, by (19), we have F = 1

A
G +

(
1 − 1

A

)
. Applying Theorem N1 to F , we

obtain

T (r, F ) ≤ Z(r, F ) + Z
(
r, F −

(
1 − 1

A

))
+ N(r, F ) − log r + O(1) ≤ Z(r, f) +

l∑

i=2
Z(r, f − ai)

+Z(r, f ′) + Z(r, g) +
l∑

i=2
Z(r, g − ai) + Z(r, g′) + N(r, f) + 3T (r, α) − log r + O(1).

But Z(r, f) ≤ T (r, f), N(r, f) ≤ T (r, f), Z(r, f − 1) ≤ T (r, f − 1) ≤ T (r, f) + O(1) and Z(r, f ′) ≤
T (r, f ′) ≤ 2T (r, f) + O(1). Moreover, by Lemma BL1, we have
T (r, F ) ≥ (n + k)T (r, f) − T (r, α). Then, considering all the previous inequalities in (12), we can
deduce that

(n + k)T (r, f) ≤ (l + 3)T (r, f) + (l + 2)T (r, g) + 4T (r, α) − log r + O(1). (23)
And similarly,

(n + k)T (r, g) ≤ (l + 3)T (r, g) + (l + 2)T (r, f) + 4T (r, α) − log r + O(1). (24)

Hence, adding (23) and (24), we have

(n + k)
[
T (r, f) + T (r, g)

]
≤ (2l + 5)

[
T (r, f) + T (r, g)

]
+ 4T (r, α) − 2 log r + O(1), (25)

which shows that n+ k|eq2l+ 5 and hence leads to a contradiction whenever n+ k ≥ (2l+ 6). Thus,
by (21), this leads to a contradiction in Theorems B2 and B3.

In the same way, in Theorem B4, we have T (r, α) = 0, hence Relation (25) shows that
n + k < 2l + 5, a contradiction to (22).

Thus, we have A = 1 and this implies that F = G. Now, αF = αG, i.e. (F̂ )′ = (Ĝ)′. We assume
n ≥ k + 2 in Theorem B2 when f, g belong to M(K) and in Theorems B3 and B4. And we assume
n ≥ k + 3 in Theorem B2 when f, g belong to M(d(0, R−)).

Consequently, by Proposition BP and by Lemma BL4, we have F̂ = Ĝ, i.e. P (f) = P (g). But in
Theorems B2, B3, B4, B5, B6, B7, P is a polynomial of uniqueness for the family of meromorphic
functions we consider, hence we have f = g. And in Theorems B8 and B9, the conclusion was given
in [4]. That finishes Case 1: B = 0.

Case 2: B �= 0.
We have Z(r, F ) ≤ Z(r, f) +

∑l
i=2 Z(r, f − ai) + Z(r, f ′) + T (r, α) and N(r, F ) ≤ N(r, f) +

T (r, α) + O(1) and similarly for G, so we can derive

Z(r, F ) + Z(r,G) + N(r, F ) + N(r,G) ≤ Z(r, f) +
l∑

i=2
Z(r, f − ai) + Z(r, f ′) + Z(r, g)

+
l∑

i=2
Z(r, g − ai) + Z(r, g′) + N(r, f) + N(r, g) + 4T (r, α) + O(1)

≤ (l + 3)
[
T (r, f) + T (r, g)

]
+ 4T (r, α) + O(1). (26)

Moreover, by (19), T (r, F ) = T (r,G) + O(1) and, by Lemma BL1, we have
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T (r, f) ≤ 1
n + k

(T (r, F ) + T (r, α)) + O(1)

and T (r, g) ≤ 1
n + k

(T (r,G) + T (r, α)) + O(1). Consequently,

T (r, f) + T (r, g) ≤ 2
[ 1
n + k

(T (r, F ) + T (r, α))
]

+ O(1).

Thus, (26) is equivalent to

Z(r, F ) + Z(r,G) + N(r, F ) + N(r,G) ≤ 2(l + 3)
n + k

T (r, F ) + (
10

n + k
+ 4)T (r, α) + O(1).

Hence in Theorems 2 and 3, by (21) we have

lim sup
r→+∞

(
T (r, F ) − (Z(r, F ) + Z(r,G) + N(r, F ) + N(r,G))

)
= +∞

(resp.

lim sup
r→R−

(
T (r, F ) − (Z(r, F ) + Z(r,G) + N(r, F ) + N(r,G))

)
= +∞.

Next, in Theorem B4, we have Z(r, F ) ≤ Z(r, f) +
∑l

i=2 Z(r, f − ai) + Z(r, f ′) and N(r, F ) ≤
N(r, f) + O(1) and similarly for G, so we can derive

Z(r, F ) + Z(r,G) + N(r, F ) + N(r,G) ≤ Z(r, f) +
l∑

i=2
Z(r, f − ai) + Z(r, f ′) + Z(r, g)

+
l∑

i=2
Z(r, g − ai) + Z(r, g′) + N(r, f) + N(r, g) + O(1)

≤ (l + 3)
[
T (r, f) + T (r, g)

]
− 2 log r + O(1),

therefore

Z(r, F ) + Z(r,G) + N(r, F ) + N(r,G) ≤ 2l + 6
n + k

T (r, F ) − 2 log r + O(1).

Consequently, by (22) we have again

lim sup
r→+∞

(
T (r, F ) − (Z(r, F ) + Z(r,G) + N(r, F ) + N(r,G))

)
= +∞.

Thus, in each theorem, the hypotheses of Lemma BL8 are satisfied and hence, either F = G, or
FG = 1.

If FG = 1, then f ′P ′(f)g′P ′(g) = α2. In Theorems B2, B3, B4 we have assumed that
if l = 2, then k1 �= k + 1, 2k, 2k + 1, 3k + 1,
if l = 3, then k1 �= k

2 , k1 �= k + 1, 2k + 1, 3ki − k ∀i = 2, 3.
If l ≥ 4, then k1 �= k + 1.

And these hypotheses are automatically satisfied in the other theorems. Consequently, by Lemma
BL3, FG = 1 is impossible. Consequently, F = G, hence (F̂ )′ = (Ĝ)′ and therefore we can conclude
as in the case B = 0.
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