EXERCISE : RESEARCH ARTICLES =

New Results on Applications of Nevanlinna Methods to Value Sharing Problems^{*}

A. Escassut^{1**}, K. Boussaf^{1***}, and J. Ojeda^{2****}

¹Laboratoire de Mathematiques UMR 6620, Université Blaise Pascal Les Cézeaux, 63171 Aubiere, France ²Departamento de Matematica, Facultad de Ciencias Fisicas y Matematicas

Universidad de Concepcion, Concepcion, Chile

Received August 18, 2013

Abstract—Let \mathbb{K} be a complete algebraically closed p-adic field of characteristic zero. We give a new Nevanlinna-type theorem that lets us obtain results of uniqueness for two meromrphic functions inside a disk, sharing 4 bounded functions CM. Let P be a polynomial of uniqueness for meromorphic functions in \mathbb{K} or in an open disk, let f, g be two transcendental meromorphic functions in the whole field \mathbb{K} or meromorphic functions in an open disk of \mathbb{K} that are not quotients of bounded analytic functions and let α be a small meromorphic function with respect to f and g. We apply results in algebraic geometry and a new Nevanlinna theorem for p-adic meromorphic functions in order to prove a result of uniqueness for functions: we show that if f'P'(f) and g'P'(g) share α counting multiplicity, then f = g, provided that the multiplicity order of zeros of P' satisfy certain inequalities. A breakthrough in this paper consists of replacing inequalities $n \ge k+2$ or $n \ge k+3$ used in previous papers by a new Hypothesis (G). Another consists of using the new Nevanlinna-type Theorem.

DOI: 10.1134/S2070046613040031

Key words: meromorphic, Nevanlinna, sharing value, unicity, distribution of values.

1. INTRODUCTION

Notations and definitions: Let \mathbb{K} be an algebraically closed field of characteristic zero, complete with respect to an ultrametric absolute value $| \cdot |$. We denote by $\mathcal{A}(\mathbb{K})$ the \mathbb{K} -algebra of entire functions in \mathbb{K} , by $\mathcal{M}(\mathbb{K})$ the field of meromorphic functions in \mathbb{K} , i.e. the field of fractions of $\mathcal{A}(\mathbb{K})$ and by $\mathbb{K}(x)$ the field of rational functions. Throughout the paper, a is a point in \mathbb{K} and R is a strictly positive number and we denote by d(a, R) the disk $\{x \in \mathbb{K} \mid |x - a| \leq R\}$ and by $d(a, R^-)$ the "open" disk $\{x \in \mathbb{K} : |x - a| < R\}$, by $\mathcal{A}(d(a, R^-))$ the \mathbb{K} -algebra of analytic functions in $d(a, R^-)$ i.e. the \mathbb{K} -algebra of power series $\sum_{n=0}^{\infty} a_n(x - a)^n$ converging in $d(a, R^-)$ and we denote by $\mathcal{M}(d(a, R^-))$ the following function \mathbb{K} and $\mathbb{$

by $\mathcal{M}(d(a, R^{-}))$ the field of meromorphic functions inside $d(a, R^{-})$, i.e. the field of fractions of $\mathcal{A}(d(a, R^{-}))$. Moreover, we denote by $\mathcal{A}_b(d(a, R^{-}))$ the K-subalgebra of $\mathcal{A}(d(a, R^{-}))$ consisting of the bounded analytic functions in $d(a, R^{-})$, i.e. which satisfy $\sup |a_n| R^n < +\infty$. And we denote

by $\mathcal{M}_b(d(a, R^-))$ the field of fractions of $\mathcal{A}_b(d(a, R^-))$. Finally, we denote by $\mathcal{A}_u(d(a, R^-))$ the set of unbounded analytic functions in $d(a, R^-)$, i.e. $\mathcal{A}(d(a, R^-)) \setminus \mathcal{A}_b(d(a, R^-))$. Similarly, we set $\mathcal{M}_u(d(a, R^-)) = \mathcal{M}(d(a, R^-)) \setminus \mathcal{M}_b(d(a, R^-))$.

 $n \in \mathbb{N}$

⁰Based on talk at the International Workshop on p-Adic Methods for Modelling of Complex Systems, Bielefeld, April 15–19, 2013.

^{*}The text was submitted by the authors in English.

^{**}E-mail: alain.escassut@math.univ-bpclermont.fr

^{****}E-mail: kamal.boussaf@math.univ-bpclermont.fr

^{*****} E-mail: jacqojeda@udec.cl

NEW RESULTS

Let $f \in \mathcal{M}(d(a, R^{-}))$, and let $r \in]0, R[$. By classical results [7] we know that |f(x)| has a limit when |x| tends to r, while being different from r. We set $|f|(r) = \lim_{|x-a| \to r, |x| \neq r} |f(x)|$.

Let $f, g, \alpha \in \mathcal{M}(\mathbb{K})$ (resp. let $f, g, \alpha \in \mathcal{M}(d(a, R^{-}))$). We say that f and g share the function α C.M., if $f - \alpha$ and $g - \alpha$ have the same zeros with the same multiplicities in \mathbb{K} (resp. in $d(a, R^{-})$) and we say that f and g share the function α I.M., if $f - \alpha$ and $g - \alpha$ have the same zeros without considering multiplicities in \mathbb{K} (resp. in $d(a, R^{-})$). In particular, those definitions apply to constants as small functions.

Throughout the paper, the symbol \forall means for all.

The paper aims at showing a new Nevanlinna-type theorem for meromorphic functions both in the whole field and inside a disk $d(a, R^-)$, which is not a direct consequence of the classical *p*-adic Second Main Theorem. Concerning functions inside the disk, our reasoning lets us obtain a kind of "Second Main Theorem on *n* small functions" provided small functions are bounded inside the disk. Indeed, in the general situation, Yamanoi's Theorem proven in [17] in the complex context has no equivalent in the field \mathbb{K} .

Let us recall the definition of the Nevanlinna Functions for meromorphic functions in \mathbb{K} . Let log be a real logarithm function of base b > 1 and let $f \in \mathcal{M}(\mathbb{K})$ (resp. $f \in \mathcal{M}(d(0, \mathbb{R}^{-}))$) having no zero and no pole at 0. Let $r \in]0, +\infty[$ (resp. $r \in]0, \mathbb{R}[$) and let $\gamma \in d(0, r)$. If f has a zero of order n at γ , we put $\omega_{\gamma}(f) = n$. If f has a pole of order n at γ , we put $\omega_{\gamma}(f) = -n$ and finally, if $f(\gamma) \neq 0, \infty$, we set $\omega_{\gamma}(f) = 0$.

We denote by Z(r, f) the counting function of zeros of f in d(0, r), counting multiplicity, defined as follows:

if f has no zero at 0, we set

$$Z(r, f) = \sum_{\omega_{\gamma}(f) > 0, \ |\gamma| \le r} \omega_{\gamma}(f) (\log r - \log |\gamma|),$$

and if f has a zero of order q at 0, we set

$$Z(r, f) = q \log r + \sum_{\omega_{\gamma}(f) > 0, \ |\gamma| \le r} \omega_{\gamma}(f) (\log r - \log |\gamma|),$$

Similarly, we denote by $\overline{Z}(r, f)$ the counting function of zeros of f in d(0, r), ignoring multiplicity: if f has no zero at 0, we set

$$Z(r,f) = \sum_{\omega_{\gamma}(f)>0, \ |\gamma| \leq r} (\log r - \log |\gamma|),$$

and if f has a zero of order at 0, we set

$$Z(r, f) = \log r + \sum_{\omega_{\gamma}(f) > 0, |\gamma| \le r} (\log r - \log |\gamma|),$$

In the same way, we set $N(r, f) = Z\left(r, \frac{1}{f}\right)$ (resp. $\overline{N}(r, f) = \overline{Z}\left(r, \frac{1}{f}\right)$) to denote the *counting* function of poles of f in d(0, r), counting multiplicity (resp. ignoring multiplicity).

For $f \in \mathcal{M}(d(0, \mathbb{R}^{-}))$ the characteristic Nevanlinna function is defined by

$$T(r, f) = \max\left\{Z(r, f), N(r, f)\right\}$$

Remark: There exist other definitions of the Nevanlinna functions, involving for instance |f(0)| when the function f has no zero and no pole at 0. Actually, all definitions are equivalent through inequalities, up to an additive constant.

As usual, given a function $f \in \mathcal{M}(\mathbb{K})$ (resp. $\mathcal{M}(d(0, R^-))$), we denote by $S_f(r)$ a function of r defined in $]0, +\infty[$ (resp. in]0, R[) such that $\lim_{r \to +\infty} \frac{S_f(r)}{T(r, f)} = 0$ (resp. $\lim_{r \to R} \frac{S_f(r)}{T(r, f)} = 0$).

Let us first recall the well known *p*-adic Nevanlinna Theorems:

Theorem N1. [6] Let $a_1, ..., a_n \in \mathbb{K}$ with $n \ge 2, n \in \mathbb{N}$, and let $f \in \mathcal{M}(\mathbb{K})$ (resp. let $f \in \mathcal{M}(d(0, \mathbb{R}^-))$). Let $S = \{a_1, ..., a_n\}$. Then, for r > 0 we have

$$(n-1)T(r,f) \le \sum_{j=1}^{n} \overline{Z}(r,f-a_j) + \overline{N}(r,f) - \log r + O(1),$$

(resp.

$$(n-1)T(r,f) \le \sum_{j=1}^{n} \overline{Z}(r,f-a_j) + \overline{N}(r,f) + O(1)).$$

Now, we must recall the definition of a *small function* with respect to a meromorphic function and some pertinent properties.

Definition. Let $f \in \mathcal{M}(\mathbb{K})$ (resp. let $f \in \mathcal{M}(d(0, R^{-}))$) such that $f(0) \neq 0, \infty$. A function $\alpha \in \mathcal{M}(\mathbb{K})$ (resp. $\alpha \in \mathcal{M}(d(0, R^{-}))$) is called a small function with respect to f, if it satisfies $\lim_{r \to +\infty} \frac{T(r, \alpha)}{T(r, f)} = 0$ (resp. $\lim_{r \to R^{-}} \frac{T(r, \alpha)}{T(r, f)} = 0$).

We denote by $\mathcal{M}_f(\mathbb{K})$ (resp. $\mathcal{M}_f(d(0, R^-))$) the set of small meromorphic functions with respect to f in \mathbb{K} (resp. in $d(0, R^-)$) and similarly we denote by $\mathcal{A}_f(\mathbb{K})$ (resp. $\mathcal{A}_f(d(0, R^-))$) the set of small analytic functions with respect to f in \mathbb{K} (resp. in $d(0, R^-)$).

Remark: Thanks to classical properties of the Nevanlinna function T(r, f) [9] with respect to the operations in a field of meromorphic functions, such as $T(r, f + g) \leq T(r, f) + T(r, g) + O(1)$ and $T(r, fg) \leq T(r, f) + T(r, g) + O(1)$, for $f, g \in \mathcal{M}(\mathbb{K})$ and r > 0, it is easily proven that $\mathcal{M}_f(\mathbb{K})$ (resp. $\mathcal{M}_f(d(0, R^-))$) is a subfield of $\mathcal{M}(\mathbb{K})$ (resp. $\mathcal{M}(d(0, R^-))$) and that $\mathcal{M}(\mathbb{K})$ (resp. $\mathcal{M}(d(0, R^-))$) is a transcendental extension of $\mathcal{M}_f(\mathbb{K})$ (resp. of $\mathcal{M}_f(d(0, R^-))$).

Theorem N2: [9, 11] Let $f \in \mathcal{A}(\mathbb{K})$ (resp. let $f \in \mathcal{A}(d(0, \mathbb{R}^-))$) and let $u \in f \in \mathcal{A}_f(\mathbb{K})$ (resp. let $u \in \mathcal{A}_f(d(0, \mathbb{R}^-))$). Then $T(r, f) \leq \overline{Z}(r, f) + \overline{Z}(r, f - u) + S_f(r)$.

A) A new Nevanlinna-type Theorem

2. RESULTS

Now, we can give here a new theorem which will be useful to obtain results in Part B comparatively to results of [4] and first we can obtain new results of uniqueness for functions inside a disk.

Theorem A1: Let $f \in \mathcal{M}(\mathbb{K})$ and let $a_1, ..., a_q \in \mathbb{K}$ be distinct. Then

$$(q-1)T(r,f) \le \max_{1\le k\le q} \left(\sum_{j=1, j\ne k}^{q} Z(r,f-a_j)\right) + O(1).$$

Corollary A1.1: Let $f \in \mathcal{M}(\mathbb{K})$ and let $a_1, ..., a_q \in \mathbb{K}$ be distinct. Then

$$(q-1)T(r,f) \le \sum_{j=1}^{q} Z(r,f-a_j) + O(1).$$

Theorem A2: Let $f \in \mathcal{M}(d(0, \mathbb{R}^{-}))$ and let $\theta_1, ..., \theta_q \in \mathcal{M}_b(d(0, \mathbb{R}^{-}))$ be distinct. Then

$$(q-1)T(r,f) \le \max_{1\le k\le q} \Big(\sum_{j=1,j\ne k}^{q} Z(r,f-\theta_j)\Big) + O(1).$$

Corollary A2.1: Let $f \in \mathcal{M}(d(0, \mathbb{R}^{-}))$ and let $\theta_1, ..., \theta_q \in \mathcal{M}_b(d(0, \mathbb{R}^{-}))$ be distinct. Then

$$(q-1)T(r,f) \le \sum_{j=1}^{q} Z(r,f-\theta_j) + O(1).$$

Remark: Corollary A1.1 does not hold in complex analysis. Indeed, let f be a meromorphic function in \mathbb{C} omitting two values a and b, such as $f(x) = \frac{e^x}{e^x - 1}$. Then Z(r, f - a) + Z(r, f - b) = 0.

Concerning unbounded functions inside a disk, Corollary A2.1 may in certain sense, replace the Nevanlinna Theorem on n small functions proven by Yamanoi in \mathbb{C} [17]: this theorem does not hold for meromorphic functions defined on the whole field \mathbb{K} .

Thanks to Corollaries A1.1 and A2.1 we can obtain a new result on functions sharing 4 bounded functions inside a disk. Let us first recall results already known on value sharing IM for p-adic functions [9]:

Definition: Two functions $f, g \in \mathcal{M}(K)$ or $\mathcal{M}(d(a, R^{-}))$ are said to share I.M. a value $\alpha \in \mathbb{K}$ or a function α defined in the same domain, if $f - \alpha$ and $g - \alpha$ have the same distinct zeros, ignoring multiplicity, in their domain of definition. And f, g are said to share C.M. a value $\theta \in \mathbb{K}$ or a function α defined in the same domain, if $f - \alpha$ and $g - \alpha$ have the same distinct zeros, counting multiplicity.

Theorem AC: Let $f, g \in \mathcal{M}(\mathbb{K})$ (resp. $f, g \in \mathcal{M}_u(d(a, R^-))$) share I.M. 4 (resp.5) distinct points $a_1, a_2, a_3, a_4 \in \mathbb{K}$ (resp. $a_1, a_2, a_3, a_4, a_5 \in \mathbb{K}$). Then f = g.

Theorem AD: Let $f, g \in \mathcal{A}(\mathbb{K})$ (resp. $f, g \in \mathcal{A}_u(d(a, \mathbb{R}^-))$) share I.M. 2 (resp.3) distinct points $a_1, a_2 \in \mathbb{K}$ (resp. $a_1, a_2, a_3 \in \mathbb{K}$). Then f = g.

Now, thanks to Corollary A2.1 we can obtain a new result concerning value sharing bounded functions CM inside a disk:

Theorem A3: Let $f, g \in \mathcal{M}(\mathbb{K})$ (resp. $f, g \in \mathcal{M}_u(d(a, \mathbb{R}^-))$) share C.M. 4 distinct points $a_1, a_2, a_3, a_4 \in \mathbb{K}$. Then f = g.

Theorem A4: Let $f, g \in \mathcal{M}_u(d(a, R^-))$ share C.M. 4 distinct functions $\theta_1, \theta_2, \theta_3, \theta_4 \in \mathcal{M}_b(d(a, R^-))$. Then f = g.

In order to complete results known on this topic, we can notice Theorem A5 which does not need our new Nevanlinna theorems:

Theorem A5: Let $f, g \in \mathcal{A}_u(d(a, R^-))$ share C.M. 2 distinct functions $\theta_1, \theta_2 \in \mathcal{A}_b(d(a, R^-))$. Then f = g.

3. PROOFS OF PART A

First, we must recall Lemmas AL1 and AL2 that are classical.

Lemma AL1 [7]: For every $r \in [0, R[$, the mapping | . |(r) is an ultrametric multiplicative norm on $\mathcal{M}(d(0, R^{-}))$.

The following Lemma AL2 is the *p*-adic Schwarz formula:

Lemma AL2 [9]: Let $f \in \mathcal{A}(\mathbb{K})$ (resp. $f \in \mathcal{A}(d(0, R^{-}))$) and let $r', r'' \in]0, +\infty[$ (resp. let $r', r'' \in]0, R[$) satisfy r' < r''. Then $\log(|f|(r'')) - \log(|f|(r')) = Z(r'', f) - Z(r', f)$. If f has no zero and no pole at 0, then $\log(|f|(r)) - \log(|f(0)|) = Z(r, f)$.

By Lemma AL2, we can derive Lemma AL3 which is also classical:

Lemma AL3 [9]: Let $f, g \in \mathcal{A}(d(0, R^{-}))$ (resp. $f, g \in \mathcal{A}(\mathbb{K})$). The Nevanlinna functions T and Z satisfy T(r, f) = Z(r, f), $T(r, f + g) \leq \max(T(r, f), T(r, g)) + O(1), r \in]0, R[$. Suppose $f, g \in \mathcal{A}(d(0, R^{-}))$ have no zero at the origin and let S be a subset of]0, R[(resp. of $]0, +\infty[$) such that $Z(r, f) + \log |f(0)| > Z(r, g) + \log |g(0)|) \forall r \in S$. Then $Z(r, f + g) = Z(r, f) \forall r \in S$.

Lemma AL4 is essential and directly leads to the theorems:

Lemma AL4: Let $f \in \mathcal{M}(\mathbb{K})$ (resp. $f \in \mathcal{M}_u(d(0, \mathbb{R}^-)))$). Suppose that there exists $\theta \in \mathbb{K}$ (resp. $\theta \in \mathcal{M}_b(d(0, \mathbb{R}^-)))$ and a sequence of intervals $I_n = [u_n, v_n]$ such that

 $u_n < v_n < u_{n+1}$, $\lim_{n \to +\infty} u_n = +\infty$ (resp. $\lim_{n \to +\infty} u_n = R$) and

 $\lim_{n \to +\infty} \left(\inf_{r \in I_n} T(r, f) - Z(r, f - \theta) \right) = +\infty \text{ (resp. } \lim_{n \to +\infty} \left(\inf_{r \in I_n} T(r, f) - Z(r, f - \theta) \right) = +\infty \text{) Let } \tau \in \mathbb{K} \text{ (resp. let } \tau \in \mathcal{M}_b(d(0, R^-))) \text{ , } \tau \neq \theta. \text{ Then } Z(r, f - \tau) = T(r, f) + O(1) \forall r \in I_n \text{ when } n \text{ is big enough.}$

Proof: We know that the Nevanlinna functions of a meromorphic function f are the same in \mathbb{K} and in an algebraically closed complete extension of \mathbb{K} whose absolute value extends that of \mathbb{K} . Consequently, without loss of generality, we can suppose that \mathbb{K} is spherically complete because we know that such a field does admit a spherically complete algebraically closed extension whose absolute value expands that of \mathbb{K} . If f belongs to $\mathcal{M}(\mathbb{K})$, we can obviously set it in the form $\frac{g}{h}$ where g, h belong to $\mathcal{A}(\mathbb{K})$ and have no common zero. Next, since \mathbb{K} is supposed to be spherically complete, if f belongs to $\mathcal{M}(d(0, \mathbb{R}^-))$ we can also set it in the form $\frac{g}{h}$ where g, h belong to $\mathcal{A}(d(0, \mathbb{R}^-))$ and have no common zero [9]. Consequently, we have $T(r, f) = \max(Z(r, g), Z(r, h))$.

When θ is a constant we can obviously suppose that $\theta = 0$. Suppose now $\theta \in \mathcal{M}_b(d(0, R^-))$. Then $f - \theta$ belongs to $\mathcal{M}_u(d(0, R^-))$ like f and $\tau - \theta$ belongs to $\mathcal{M}_b(d(0, R^-))$. Consequently, in both cases, we can assume $\theta = 0$ to prove the claim. Next, up to a change of origin, we can also assume that none of the functions we consider have a pole or a zero at the origin.

Now, we have $\lim_{n \to +\infty} \left(\inf_{r \in I_n} T(r, f) - Z(r, f) \right) = +\infty$, i.e.

$$\lim_{n \to +\infty} \left(\inf_{r \in I_n} (Z(r,h) - Z(r,g)) \right) = +\infty.$$

Particularly, by Lemma AL3 we notice that T(r, f) = Z(r, h) + O(1) whenever $r \in I_n$ when n is big enough.

Consider now $Z(r, f - \tau) = Z(r, g - \tau h)$. Then $Z(r, \tau h) = Z(r, h)$, hence by Lemma AL3, $Z(r, g - \tau h) = Z(r, h) + O(1)$, whenever $r \in I_n$ when n is big enough. Therefore $Z(r, f - \tau) = Z(r, h) + O(1) = T(r, f) + O(1)$, $r \in I_n$ when n is big enough. So the claim is proven when τ is a constant.

Suppose now that $f \in \mathcal{M}(d(0, R^{-}))$ and $\tau \in \mathcal{M}_{b}(d(0, R^{-}))$. We can write τ in the form $\frac{\phi}{\psi}$ where $\phi, \psi \in \mathcal{A}_{b}((d(0, R^{-})))$ have no common zero. Consider $Z(r, f - \tau) = Z(r, \frac{\psi g - \phi h}{\psi h})$. Since g and h have no common zero and since both ϕ, ψ are bounded, we have $Z(r, \frac{\psi g - \phi h}{\psi h}) = Z(r, \psi g - \phi h) + O(1)$. Now, since the norm $| \cdot |(r)$ is multiplicative and

increasing in r, by Lemma AL3 in I_n we have $|\psi g|(r) < |\phi h|(r)$ when n is big enough. Consequently, by Lemma AL1, $|\psi g - \phi h|(r) = |\phi h|(r)$ in I_n when n is big enough. Therefore, by Lemma AL3, $Z(r, \psi g - \phi h) = Z(r, \phi h) = Z(r, h) + O(1)$ in I_n when n is big enough and consequently we $Z(r, f - \tau) = Z(r, h) + O(1) = T(r, h) + O(1) = T(r, f) + O(1)$. That finishes proving Lemma AL4.

Problems of value sharing constants or functions, counting multiplicity or ignoring multiplicity, have been the focus of a lot of papers [4, 6, 12, 13, 15, 18]. Here we will apply Corollaries A1.1 and A2.1 to functions $f, g \in \mathcal{M}_u(d(a, R^-))$ sharing C.M. four constants or four functions $\theta_j \in \mathcal{M}_b(d(a, R^-))$.

Proof of Theorems A1 and A2: Suppose Theorem A1 (resp. Theorem A2) is wrong. In order to make a unique proof for the two theorems, in Theorem A1 we set $\theta_j = a_j$. Thus, there exists $f \in \mathcal{M}(\mathbb{K})$ (resp. $f \in \mathcal{M}_u(d(0, R^-))$) and $\theta_1, ..., \theta_q \in \mathbb{K}$ (resp. $\theta_1, ..., \theta_q \in \mathcal{M}_b(d(0, R^-))$) such that $(q-1)T(r, f) - \max_{1 \le k \le q} \left(\sum_{j=1, j \ne k}^q Z(r, f - \theta_j) \right)$ admits no superior bound in $]0, +\infty[$. So, there exists a sequence of intervals $J_s = [w_s, y_s]$ such that $w_s < y_s < w_{s+1}$, $\lim_{s \to +\infty} w_s = +\infty$ (resp. $\lim_{s \to +\infty} w_s = R$) and two distinct indices m and t such that

$$\lim_{s \to +\infty} \inf_{r \in L} \left(T(r, f) - Z(r, f - \theta_m) \right) = +\infty$$

and

$$\lim_{s \to +\infty} \inf_{r \in J_s} \left(T(r, f) - Z(r, f - \theta_t) \right) = +\infty.$$

But by Lemma AL4, this is impossible. This ends the proof of Theorems A1 and A2.

Proof of Theorems A3 and A4: In Theorem A3 we put $\theta_j = a_j$, j = 1, 2, 3, 4. In Theorem A4 we can obviously assume a = 0. Suppose that f and g are not identical. We have

$$\sum_{j=1}^{4} Z(r, f - \theta_j) \le Z(r, f - g) \le T(r, f - g) \le T(r, f) + T(r, g)$$

On the other hand by Corollary A1.1 (resp. A2.1), we have $\sum_{j=1}^{4} Z(r, f - \theta_j) \ge 3T(r, f) + O(1)$. Consequently, $3T(r, f) \le T(r, f) + T(r, g)$. Similarly, $3T(r, g) \le T(r, f) + T(r, g)$, hence $3(T(r, f) + T(r, g)) \le 2(T(r, f) + T(r, g))$, a contradiction.

Remark: When f, g belong to $\mathcal{M}(\mathbb{K})$, it is possible to prove the statement of Theorem A3 by using the classical p-adic Second Main Theorem. But when f, g belong to $\mathcal{M}_u(d(0, \mathbb{R}^-))$, the p-adic Second Main Theorem does not let us prove that statement.

Proof of Theorem A5: Suppose that f and g are not identical. By Theorem 2.4.15 [9] we have

$$\sum_{j=1}^{2} Z(r, f - \theta_j) \le Z(r, f - g) \le T(r, f - g) \le \max(T(r, f), T(r, g)).$$

On the other hand, since θ_j is bounded, so is $T(r, \theta_j)$ and therefore $T(r, f - \theta_j) = T(r, f) + O(1)$ and similarly, $T(r, g - \theta_j) = T(r, g) + O(1)$. Now, by definition, T(r, f) = Z(r, f) + O(1), T(r, g) = Z(r, g) + O(1). Consequently, $T(r, f) + T(r, g) \leq \max(T(r, f), T(r, g)) + O(1)$, a contradiction.

B) New results on *p*-adic meromorphic functions f'P'(f), g'P'(g) sharing a small function

4. RESULTS

Throughout the paper we will denote by P(X) a polynomial in $\mathbb{K}[X]$ such that P'(X) is of the form $\prod_{i=1}^{l} (X - a_i)^{k_i}$ with $l \ge 2$ and $k_1 \ge 2$. The polynomial P will be said to satisfy Hypothesis (G) if $P(a_i) + P(a_i) \ne 0 \ \forall i \ne j$.

We will improve the main theorems obtained in [4] and [5] with the help of the new hypothesis Hypothesis (G) and by thorough examining the situation in order to avoid a lot of exclusions.

Notation: Let *L* be an algebraically closed field and let $P \in L[x] \setminus L$ and let $\Xi(P)$ be the set of zeros *c* of *P'* such that $P(c) \neq P(d)$ for every zero *d* of *P'* other than *c*. We denote by $\Phi(P)$ its cardinal.

Definitions. Let $f, g, \alpha \in \mathcal{M}(\mathbb{K})$ (resp. let $f, g, \alpha \in \mathcal{M}(d(a, \mathbb{R}^{-}))$). We say that f and g share the function α C.M., if $f - \alpha$ and $g - \alpha$ have the same zeros with the same multiplicities in \mathbb{K} (resp. in $d(0, \mathbb{R}^{-})$).

Recall that a polynomial $P \in \mathbb{K}[x]$ is called a *polynomial of uniqueness* for a family of functions \mathcal{F} if for any two functions $f, g \in \mathcal{F}$ the property P(f) = P(g) implies f = g.

The definition of polynomials of uniqueness was introduced in by H. Fujimoto [10] and was used in many papers, explicitly or implicitly, [2, 4, 9, 10, 12, 19] for complex functions and [1-3, 9, 16]for *p*-adic functions.

Let us recall general results on polynomials of uniqueness:

Theorem BU1 [8]: Let $P(X) \in \mathbb{K}[X]$. If $\Phi(P) \geq 2$ then P is a polynomial of uniqueness for $\mathcal{A}(\mathbb{K})$. If $\Phi(P) \geq 3$ then P is a polynomial of uniqueness for $\mathcal{M}(\mathbb{K})$ and for $\mathcal{A}_u(d(a, \mathbb{R}^-))$. If $\Phi(P) \geq 4$ then P is a polynomial of uniqueness for $\mathcal{M}_u(d(a, \mathbb{R}^-))$.

Concerning polynomials such that P' has exactly two distinct zeros, we know other results:

Theorem BU2 [1, 8]: Let $P \in \mathbb{K}[x]$ be such that P' has exactly two distinct zeros γ_1 of order c_1 and γ_2 of order c_2 . If $\min\{c_1, c_2\} \geq 2$, then P is a polynomial of uniqueness for $\mathcal{M}(\mathbb{K})$. Moreover, if $c_1 = 1, c_2 \geq 2$, then P is a polynomial of uniqueness for $\mathcal{A}(\mathbb{K})$ and for $\mathcal{A}(d(a, R^-))$.

Theorem BU3 [15]: Let $P \in \mathbb{K}[x]$ be of degree $n \ge 6$, such that P' only has two distinct zeros, one of them being of order 2. Then P is a polynomial of uniqueness for $\mathcal{M}_u(d(a, R^-))$.

In the present paper, thanks to the new Hypothesis (G) introduced above, we mean to avoid the hypothesis $k_1 \ge k + 2$ for $\mathcal{M}(\mathbb{K})$ and $k_1 \ge k + 3$ for $\mathcal{M}(d(a, \mathbb{R}^-))$. On the other hand, here we will use a new Nevanlinna-type theorem.

Among the first results obtained in that domain, we must cite the work by W. Lin and H. Yi [13]. Here we first have a new theorem for p-adic analytic functions:

Theorem B1: Let $P(X) \in \mathbb{K}[X]$ and let $P'(X) = b \prod_{i=1}^{l} (X - a_i)^{k_i}$ with $b \in \mathbb{K}^*$, $f, g \in \mathcal{A}(\mathbb{K})$ (resp. $f, g \in \mathcal{A}(d(0, \mathbb{R}^-))$) be a polynomial of uniqueness for $\mathcal{A}(\mathbb{K})$ (resp. for $\mathcal{A}(d(0, \mathbb{R}^-))$) and be such that f'P'(f) and g'P'(g) share a function $\alpha \in \mathcal{A}_f(\mathbb{K}) \cap \mathcal{A}_g(\mathbb{K})$ C.M. (resp. $\alpha \in \mathcal{A}_f(d(0, \mathbb{R}^-)) \cap \mathcal{A}_g(d(0, \mathbb{R}^-))$ CM). If $\sum_{j=1}^{l} k_j \geq 2l+3$, then f = g. Moreover, if $f, g \in \mathcal{A}(\mathbb{K})$ and if $\alpha \in \mathbb{K} \setminus \{0\}$ and if $\deg(P) \geq 2l+2$, then f = g.

Corollary B1.1 Let $P(x) \in \mathbb{K}[x]$ be such that $\Phi(P) \geq 2$ and let $P'(x) = \prod_{i=1}^{l} (x-a_i)^{k_i}$ and let $f, g \in \mathcal{A}(\mathbb{K})$ be transcendental such that f'P'(f) and g'P'(g) share a small function $\alpha \in \mathcal{A}_f(\mathbb{K}) \cap \mathcal{A}_g(\mathbb{K})$. If $\sum_{i=1}^{l} k_i \geq 2l+3$ then f = g. Moreover, if α is a constant and if $\deg(P) \geq 2l+2$, then f = g.

Corollary B1.2 Let $P(x) \in \mathbb{K}[x]$ be such that $\Phi(P) \geq 3$ and let $P'(x) = \prod_{i=1}^{l} (x - a_i)^{k_i}$ and let $f, g \in \mathcal{A}_u(d(0, \mathbb{R}^-))$ be such that f'P'(f) and g'P'(g) share a small function $\alpha \in \mathcal{A}_f(d(0, \mathbb{R}^-)) \cap \mathcal{A}_g(d(0, \mathbb{R}^-))$. If $\deg(P) \geq 2l + 3$, then f = g.

Example: Let $P(x) = \frac{x^9}{9} - \frac{3x^7}{7} + \frac{3x^5}{5} - \frac{x^3}{3}$. We can check that $P'(x) = x^2(x^2 - 1)^3$ hence l = 3. Next, we have P(0) = 0, $P(1) \neq 0$, P(-1) = -P(1). Consequently, $\Phi(P) = 3$ and $\deg(P) = 2l + 3$. Then, given $f, g \in \mathcal{A}(\mathbb{K})$ (resp. $f, g \in \mathcal{A}_u(d(0, \mathbb{R}^-))$) such that f'P'(f) and g'P'(g) share a small function $\alpha \in \mathcal{A}_f(\mathbb{K}) \cap \mathcal{A}_g(\mathbb{K})$ (rersp. $\alpha \in \mathcal{A}_f(d(0, \mathbb{R}^-)) \cap \mathcal{A}_g(d(0, \mathbb{R}^-))$) then f = g.

By Theorems BU2 and BU3 we can also derive Corollaries B1.3 and B1.4:

Corollary B1.3 Let $f, g \in \mathcal{A}(\mathbb{K})$, let $\alpha \in \mathcal{A}_f(\mathbb{K}) \cap \mathcal{A}_g(\mathbb{K})$ and let $a, b \in \mathbb{K} (a \neq b)$. If $(f-a)^n (f-b)^k f'$ and $(g-a)^n (g-b)^k g'$ share the function α C.M. with $\max(n,k) \geq 2$, then f = g.

Corollary B1.4: Let $f, g \in \mathcal{A}_u(d(0, R^-))$, let $\alpha \in \mathcal{A}_f(d(0, R^-)) \cap \mathcal{A}_g(d(0, R^-))$ and let $a \in \mathbb{K} \setminus \{0\}$. Suppose $(f-a)^n (f-b)^k f'$ and $(g-a)^n (g-b)^k g'$ share the function α C.M. If k = 1, and $n \geq 2$ or if k = 2 and $n \geq 3$ then f = g.

In order to improve results of [4] on p-adic meromorphic functions, we have to state Propositions BP derived from results of [3].

Notation and definition: Henceforth, we assume that $a_1 = P(a_1) = 0$ and that P'(X) is of the form $b \prod_{i=1}^{l} (X - a_i)^{k_i}$ with $n \ge 2$.

Proposition BP: Let $P \in \mathbb{K}[X]$ satisfy Hypothesis (G) and $\deg(P) \geq 3$ (resp. $\deg(P) \geq 4$). If meromorphic functions $f, g \in \mathcal{M}(\mathbb{K})$ (resp. $f, g \in \mathcal{M}(d(a, R^{-}))$) satisfy P(f(x)) = P(g(x)) + C ($C \in \mathbb{K}^{*}$), $\forall x \in \mathbb{K}$ (resp. $\forall x \in d(a, R^{-})$) then both f and g are constant (resp. f and g belong to $\mathcal{M}_{b}(d(a, R^{-}))$).

From [4] and thanks to Propositions BP we can now derive the following Theorems B2, B3, B4: **Theorem B2:** Let P be a polynomial of uniqueness for $\mathcal{M}(\mathbb{K})$ (resp. for $\mathcal{M}(d(0, R^{-}))$) with $l \geq 2$, let $P'(X) = b \prod_{i=1}^{l} (X - a_i)^{k_i}$ with $b \in \mathbb{K}^*$, $k_i \geq k_{i+1}$, $2 \leq i \leq l-1$, let $k = \sum_{i=2}^{l} k_i$. For each $m \in \mathbb{N}$, $m \geq 5$, let u_m be the biggest of the *i* such that $k_i > 4$, let $s_5 = \max(0, u_5 - 3)$ and for each $m \in \mathbb{N}$, $m \geq 6$, let $s_m = \max(0, u_m - 2)$. Suppose P satisfies the following conditions:

$$k_1 \ge 10 + \max(0, 5 - k_2) + \sum_{i=3}^{l} \max(0, 4 - k_i) - \min(\sum_{m=5}^{\infty} s_m, 2l)$$

either $k_1 \ge k + 2$ (resp. $k_1 \ge k + 3$) or P satisfies Hypothesis (G), if l = 2, then $k_1 \ne k + 1$, 2k, 2k + 1, 3k + 1, if l = 3, then $k_1 \ne \frac{k}{2}$, $k_1 \ne k + 1$, 2k + 1, $3k_i - k \ \forall i = 2$, 3. If $l \ge 4$, then $k_1 \ne k + 1$

Let $f, g \in \mathcal{M}(\mathbb{K})$ (resp. $f, g \in \mathcal{M}_u((d(0, R^-)))$ be transcendental and let $\alpha \in \mathcal{M}_f(\mathbb{K}) \cap \mathcal{M}_g(\mathbb{K})$ (resp. $\alpha \in \mathcal{M}_f(d(0, R^-)) \cap \mathcal{M}_g(d(0, R^-))$) be non-identically zero. If f'P'(f) and g'P'(g) share α C.M., then f = g.

Remark: The sum $\sum_{m=5}^{\infty} s_m$ is obviously finite.

Corollary B2.1 Let $P \in \mathbb{K}[x]$ satisfy $\Phi(P) \geq 3$ and hypothesis (G), let $P' = b \prod_{i=1}^{l} (X - a_i)^{k_i}$ with $b \in \mathbb{K}^*$, $l \geq 3$, $k_i \geq k_{i+1}$, $2 \leq i \leq l-1$, let $k = \sum_{i=2}^{l} k_i$, and for each $m \in \mathbb{N}$, $m \geq 5$, let u_m be the biggest of the *i* such that $k_i > 4$, let $s_5 = \max(0, u_5 - 3)$ and for every $m \geq 6$, let $s_m = \max(0, u_m - 2)$. Suppose P satisfies the following conditions:

$$k_1 \ge 10 + \max(0, 5 - k_2) + \sum_{i=3}^{l} \max(0, 4 - k_i) - \min(\sum_{m=5}^{\infty} s_m, 2l)$$

if $l = 3$, then $k_1 \ne \frac{k}{2}$, $k + 1$, $2k + 1$, $3k_i - k \ \forall i = 2, 3$,

if $l \geq 4$, then $n \neq k+1$. Let $f, g \in \mathcal{M}(\mathbb{K})$ be transcendental and let $\alpha \in \mathcal{M}_f(\mathbb{K}) \cap \mathcal{M}_g(\mathbb{K})$ be non-identically zero. If f'P'(f) and g'P'(g) share α C.M., then f = g.

Example: Let

$$P(X) = \frac{X^{20}}{20} - \frac{X^{19}}{19} - \frac{4X^{18}}{18} + \frac{4X^{17}}{17}$$
$$+ \frac{6X^{16}}{16} - \frac{6X^{15}}{15} - \frac{4X^{14}}{14} + \frac{4X^{13}}{13} + \frac{X^{12}}{12} - \frac{X^{11}}{11}$$

We can check that $P'(X) = X^{10}(X-1)^5(X+1)^4$ and

$$P(0) = 0, \ P(1) = \sum_{j=0}^{4} C_4^j (-1)^j \Big(\frac{1}{12+2j} - \frac{1}{11+2j} \Big),$$
$$P(-1) = -\sum_{j=0}^{4} C_4^j \Big(\frac{1}{12+2j} + \frac{1}{11+2j} \Big).$$

Consequently, we have $\Phi(P) = 3$ and we check that Hypothesis (G) is satisfied. Now, let $f, g \in \mathcal{M}(\mathbb{K})$ be transcendental and let $\alpha \in \mathcal{M}_f(\mathbb{K}) \cap \mathcal{M}_g(\mathbb{K})$ be non-identically zero. If f'P'(f) and g'P'(g) share α C.M., then f = g.

Remark: In that example, we have $k_1 = 10$, k = 9. Applying our previous work, a conclusion would have required $k_1 \ge k + 2 = 11$.

Example: Let

$$P(X) = \frac{X^{24}}{24} - \frac{10X^{23}}{23} + \frac{36X^{22}}{22} - \frac{40X^{21}}{21} - \frac{74X^{20}}{20} + \frac{226X^{19}}{19} - \frac{84X^{18}}{18} - \frac{312X^{17}}{17} + \frac{321X^{16}}{16} + \frac{88X^{15}}{15}$$

$$-\frac{280X^{14}}{14} + \frac{48X^{13}}{13} + \frac{80X^{12}}{12} - \frac{32X^{11}}{11}.$$

We can check that $P'(X) = X^{10}(X-2)^5(X+1)^4(X-1)^4$. Next, we have P(2) < -134378, $P(1) \in]-2, 11; -2, 10[$, $P(-1) \in]2, 18; 2, 19[$. Therefore, P(0), P(1), P(-1), P(2) are all distinct, hence $\Phi(P) = 4$. Moreover, Hypothesis (G) is satisfied.

Now, let $f, g \in \mathcal{M}(\mathbb{K})$ (resp. let $f, g \in \mathcal{M}_u(d(0, R^-))$) and let $\alpha \in \mathcal{M}_f(\mathbb{K}) \cap \mathcal{M}_g(\mathbb{K})$ (resp. let $\alpha \in \mathcal{M}_f(d(0, R^-)) \cap \mathcal{M}_g(d(0, R^-))$) be non-identically zero. If f'P'(f) and g'P'(g) share α C.M., then f = g.

Remark: In that example, we have $k_1 = 10$, k = 13. Applying our previous work, a conclusion would have required $k_1 \ge k + 2 = 15$ if f, g belong to $\mathcal{M}(\mathbb{K})$ and $k_1 \ge k + 3 = 16$ if f, g belong to $\mathcal{M}_u(d(0, \mathbb{R}^-))$.

As noticed in [4], if f, g belong to $\mathcal{M}(\mathbb{K})$ and if α is a constant or a Moebius function, we can get a more accurate statement:

Theorem B3: Let P be a polynomial of uniqueness for $\mathcal{M}(\mathbb{K})$, let $P' = b \prod_{i=1}^{l} (x - a_i)^{k_i}$ with $b \in$

 \mathbb{K}^* , $l \ge 2$, $k_i \ge k_{i+1}$, $2 \le i \le l-1$, let $k = \sum_{i=2}^l k_i$. For each $m \in \mathbb{N}$, $m \ge 5$, let u_m be the biggest of the *i* such that $k_i > 4$, let $s_5 = \max(0, u_5 - 3)$ and for each $m \in \mathbb{N}$, $m \ge 6$, let $s_m = \max(0, u_m - 2)$. Suppose *P* satisfies the following conditions:

$$k_1 \ge 9 + \max(0, 5 - k_2) + \sum_{i=3}^{l} \max(0, 4 - k_i) - \min(\sum_{m=5}^{\infty} s_m, 2l - 1)$$

either $k_1 \ge k+2$ or P satisfies (G)

if l = 2, then $k_1 \neq k+1$, 2k, 2k+1, 3k+1,

if l = 3, then $k_1 \neq \frac{k}{2}$, $k_1 \neq k+1$, 2k+1, $3k_i - k \ \forall i = 2, 3$.

Let $f, g \in \mathcal{M}(\mathbb{K})$ be transcendental and let α be a Moebius function. If f'P'(f) and g'P'(g) share α C.M., then f = g.

By Theorem BU1, we have Corollary B3.1.

Corollary B3.1 Let
$$P \in \mathbb{K}[x]$$
 satisfy $\Phi(P) \ge 3$, let $P' = b \prod_{i=1}^{l} (x - a_i)^{k_i}$ with $b \in \mathbb{K}^*$, $l \ge 3$,

 $k_i \ge k_{i+1}, \ 2 \le i \le l-1, \ let \ k = \sum_{i=2}^l k_i.$ For each $m \in \mathbb{N}, \ m \ge 5, \ let \ u_m$ be the biggest of the $i \ such \ that \ k_i > 4, \ let \ s_5 = \max(0, u_5 - 3) \ and \ for \ each \ m \in \mathbb{N}, \ m \ge 6, \ let \ s_m = \max(0, u_m - 2).$ Suppose $P \ satisfies \ the \ following \ conditions:$

$$k_1 \ge 9 + \max(0, 5 - k_2) + \sum_{i=3}^{l} \max(0, 4 - k_i) - \min(\sum_{m=5}^{\infty} s_m, 2l - 1)$$

either $k_1 \ge k+2$ or P satisfies (G),

if l = 3, then $k_1 \neq \frac{k}{2}$, $k_1 \neq k+1$, 2k+1, $3k_i - k \ \forall i = 2, 3$.

Let $f, g \in \mathcal{M}(\mathbb{K})$ be transcendental and let α be a Moebius function. If f'P'(f) and g'P'(g) share α C.M., then f = g.

And by Theorem BU2 we have Corollary B3.2.

Corollary B3.2 Let $P \in \mathbb{K}[x]$ be such that P' is of the form $b(x - a_1)^n (x - a_2)^k$ with $k \le n$, min $(k, n) \ge 2$ and with $b \in \mathbb{K}^*$. Suppose P satisfies the following conditions: $n \ge 9 + \max(0, 5 - k),$

either $n \ge k+2$ or P satisfies (G),

 $n \neq k+1, 2k, 2k+1, 3k+1,$

Let $f, g \in \mathcal{M}(\mathbb{K})$ be transcendental and let α be a Moebius function. If f'P'(f) and g'P'(g) share α C.M., then f = g.

Theorem B4: Let P be a polynomial of uniqueness for $\mathcal{M}(\mathbb{K})$, let $P' = b \prod_{i=1}^{l} (x - a_i)^{k_i}$ with $b \in$

 \mathbb{K}^* , $l \ge 2$, $k_i \ge k_{i+1}$, $2 \le i \le l-1$, let $k = \sum_{i=2}^l k_i$, and for each $m \in \mathbb{N}$, $m \ge 5$, let u_5 be the biggest of the *i* such that $k_i > 4$, let $s_5 = \max(0, u_5 - 3)$ and for every $m \ge 6$ let $s_m = \max(0, u_m - 2)$. Suppose *P* satisfies the following conditions:

either $k_1 \ge k+2$ or P satisfies (G)

$$k_1 \ge 9 + \max(0, 5 - k_2) + \sum_{i=3}^{l} \max(0, 4 - k_i) - \min(\sum_{m=5}^{\infty} s_m, 2l),$$

 $k_1 \neq k+1.$

Let $f, g \in \mathcal{M}(\mathbb{K})$ be transcendental and let α be a non-zero constant. If f'P'(f) and g'P'(g) share α C.M., then f = g.

By Theorem BU1, we have Corollary B4.1

Corollary B4.1 Let $P \in \mathbb{K}[x]$ satisfy $\Phi(P) \ge 3$, let $P' = b \prod_{i=1}^{l} (x - a_i)^{k_i}$ with $b \in \mathbb{K}^*$, $l \ge 3$, $k_i \ge k_{i+1}, \ 2 \le i \le l-1$, let $k = \sum_{i=2}^{l} k_i$.

For each $m \in \mathbb{N}$, $m \geq 5$, let u_m be the biggest of the *i* such that $k_i > 4$, let $s_5 = \max(0, u_5 - 3)$ and for every $m \geq 6$ let $s_m = \max(0, u_m - 2)$. Suppose *P* satisfies the following conditions:

 $k_1 \ge k+2$ or P satisfies Hypothesis (G),

$$k_1 \ge 9 + \max(0, 5 - k_2) + \sum_{i=3}^{l} \max(0, 4 - k_i) - \min(\sum_{m=5}^{\infty} s_m, 2l),$$

$$k_1 \neq k+1.$$

Let $f, g \in \mathcal{M}(\mathbb{K})$ be transcendental and let α be a non-zero constant. If f'P'(f) and g'P'(g) share α C.M., then f = g.

And by Theorem BU2, we have Corollary B4.2

Corollary B4.2 Let $P \in \mathbb{K}[x]$ be such that P' is of the form $b(x - a_1)^n (x - a_2)^k$ with $\min(k, n) \ge 2$ and with $b \in \mathbb{K}^*$. Suppose P satisfies the following conditions:

 $k_1 \ge 9 + \max(0, 5 - k),$ either $n \ge k + 2$ or P satisfies (G), $k_1 \ne k + 1.$

Let $f, g \in \mathcal{M}(\mathbb{K})$ be transcendental and let α be a non-zero constant. If f'P'(f) and g'P'(g) share α C.M., then f = g.

Example: Let

$$P(X) = \frac{X^{15}}{15} + \frac{5X^{14}}{14} + \frac{10X^{13}}{13} + \frac{10X^{12}}{12} + \frac{5X^{11}}{11} + \frac{X^{10}}{10}$$

Then $P'(X) = X^9(X+1)^5$. We can apply Corollary B4.2: given $f, g \in \mathcal{A}(\mathbb{K})$ transcendental such that f'P'(f) and g'P'(g) share a constant $\alpha \in \mathcal{M}(\mathbb{K})$ C.M., we have f = g.

Theorem B5: Let P be a polynomial of uniqueness for $\mathcal{M}(\mathbb{K})$ such that P' is of the form $b(x-a_1)^n \prod_{i=2}^{l} (x-a_i)$ with $l \ge 3$, $b \in \mathbb{K}^*$, satisfying: $n \ge l+10$, if l = 3, then $n \ne 2l-1$. Let f, $g \in \mathcal{M}(\mathbb{K})$ be transcendental and let $\alpha \in \mathcal{M}_f(\mathbb{K}) \cap \mathcal{M}_g(\mathbb{K})$ be non-identically zero. If f'P'(f)and q'P'(q) share α C.M., then f = q.

By Theorem BU1, we have Corollary B5.1:

Corollary B5.1 Let $P \in \mathbb{K}[x]$ satisfy $\Phi(P) \geq 3$ and be such that P' is of the form $b(x - a_1)^n \prod_{i=2}^{l} (x - a_i)$ with $l \geq 3$, $b \in \mathbb{K}^*$ satisfying: $n \geq l + 10$, if l = 3, then $n \neq 2l - 1$. Let $f, g \in \mathcal{M}(\mathbb{K})$ be transcendental and let $\alpha \in \mathcal{M}_f(\mathbb{K}) \cap \mathcal{M}_q(\mathbb{K})$ be non-identically zero. If f'P'(f)

Let $f, g \in \mathcal{M}(\mathbb{K})$ be transcendental and let $\alpha \in \mathcal{M}_f(\mathbb{K}) \cap \mathcal{M}_g(\mathbb{K})$ be non-identically zero. If f'P'(f)and g'P'(g) share α C.M., then f = g.

Theorem B6: Let $a \in \mathbb{K}$ and R > 0. Let P be a polynomial of uniqueness for $\mathcal{M}_u(d(0, R^-))$ such that P' is of the form $P' = b(x - a_1)^n \prod_{i=2}^{l} (x - a_i)$ with $l \ge 3$, $b \in \mathbb{K}^*$ satisfying:

 $n \ge l + 10,$

if l = 3, then $n \neq 2l - 1$.

Let $f, g \in \mathcal{M}_u(d(0, R^-))$ and let $\alpha \in \mathcal{M}_f(d(0, R^-)) \cap \mathcal{M}_g(d(0, R^-))$ be non-identically zero. If f'P'(f) and g'P'(g) share α C.M., then f = g.

By Theorem BU1, we have Corollary B6.1:

Corollary B6.1 Let $a \in \mathbb{K}$ and R > 0. Let $P \in \mathbb{K}[x]$ satisfy $\Phi(P) \ge 4$ and be such that P' is of the form $P' = b(x - a_1)^n \prod_{i=2}^{l} (x - a_i)$ with $l \ge 4$, $b \in \mathbb{K}^*$ and $n \ge l + 10$.

Let $f, g \in \mathcal{M}_u(d(0, \mathbb{R}^-))$ and let $\alpha \in \mathcal{M}_f(d(0, \mathbb{R}^-)) \cap \mathcal{M}_g(d(0, \mathbb{R}^-))$ be non-identically zero. If f'P'(f) and g'P'(g) share α C.M., then f = g.

Example: Let $P(x) = \frac{x^{18}}{18} - \frac{2x^{17}}{17} - \frac{x^{16}}{16} + \frac{2x^{15}}{15}$. Then $P'(x) = x^{17} - 2x^{16} - x^{15} + 2x^{14} = x^{14}(x - 1)(x + 1)(x - 2)$. We check that: P(0) = 0, $P(1) = \frac{1}{18} - \frac{2}{17} - \frac{1}{16} + \frac{2}{15}$, $P(-1) = \frac{1}{18} + \frac{2}{17} - \frac{1}{16} - \frac{2}{15} \neq 0$, P(1), and $P(2) = \frac{2^{18}}{18} - \frac{2^{18}}{17} - \frac{2^{16}}{16} + \frac{2^{16}}{15} \neq 0$, P(1), P(-1). Then $\Upsilon(P) = 4$. So, P is a polynomial of uniqueness for both $\mathcal{M}(\mathbb{K})$ and $\mathcal{M}(d(0, R^{-}))$.

Given $f, g \in \mathcal{M}(\mathbb{K})$ transcendental or $f, g \in \mathcal{M}_u(d(0, \mathbb{R}^-))$ such that f'P'(f) and g'P'(g) share C.M. a small function α , we have f = g.

Theorem B7: Let P be a polynomial of uniqueness for $\mathcal{M}(\mathbb{K})$ such that P' is of the form $P' = b(x - a_1)^n \prod_{i=2}^{l} (x - a_i)$ with $l \ge 3$, $b \in \mathbb{K}^*$ satisfying

 $n \ge l+9,$

if l = 3, then $n \neq 2l - 1$.

Let $f, g \in \mathcal{M}(\mathbb{K})$ be transcendental and let α be a Moebius function or a non-zero constant. If f'P'(f) and g'P'(g) share α C.M., then f = g.

Example: Let $P(x) = x^q - ax^{q-2} + b$ with $a \in \mathbb{K}^*$, $b \in \mathbb{K}$, with $q \ge 5$ an odd integer. Then q and q-2 are relatively prime and hence by Theorem 3.21 in [11] P is a polynomial of uniqueness for $\mathcal{M}(\mathbb{K})$ and P' admits 0 as a zero of order n = q - 3 and two other zeros of order 1.

Let $f, g \in \mathcal{M}(\mathbb{K})$ be transcendental and let $\alpha \in \mathcal{M}(\mathbb{K})$ be a small function such that f, g share α C.M.

Suppose first $q \ge 17$. By Theorem B6 we have f = g. Now suppose $q \ge 15$ and suppose α is a Moebius function or a non-zero constant. Then by Theorems B7 we have f = g.

Theorem B8: Let $f, g \in \mathcal{M}(\mathbb{K})$ be transcendental and let $\alpha \in \mathcal{M}_f(\mathbb{K}) \cap \mathcal{M}_g(\mathbb{K})$ be nonidentically zero. Let $a \in \mathbb{K} \setminus \{0\}$. If $f'f^n(f-a)$ and $g'g^n(g-a)$ share the function α C.M. and if $n \geq 12$, then either f = g or there exists $h \in \mathcal{M}(\mathbb{K}) \setminus \mathbb{K}(x)$ such that $f = \frac{a(n+2)}{n+1} \left(\frac{h^{n+1}-1}{h^{n+2}-1}\right)h$ and $g = \frac{a(n+2)}{n+1} \left(\frac{h^{n+1}-1}{h^{n+2}-1}\right)$. Moreover, if α is a constant or a Moebius function, then the conclusion holds whenever $n \geq 11$.

Inside an open disk, we have a version similar to the general case in the whole field.

Theorem B9: Let $f, g \in \mathcal{M}_u(d(0, R^-))$, and let $\alpha \in \mathcal{M}_f(d(0, R^-)) \cap \mathcal{M}_g(d(0, R^-))$ be nonidentically zero. Let $a \in \mathbb{K} \setminus \{0\}$. If $f'f^n(f-a)$ and $g'g^n(g-a)$ share the function α C.M. and $n \ge 12$, then either f = g or there exists $h \in \mathcal{M}_u(d(0, R^-))$ such that $f = \frac{a(n+2)}{n+1} \left(\frac{h^{n+1}-1}{h^{n+2}-1}\right)h$ and $g = \frac{a(n+2)}{n+1} \left(\frac{h^{n+1}-1}{h^{n+2}-1}\right)$.

Remark: In Theorems B8 and B9, the second conclusion does occur. Indeed, let $h \in \mathcal{M}(\mathbb{K}) \setminus \mathbb{K}(x)$ (resp. let $h \in \mathcal{M}_u(d(0, R^-))$). Now, let us precisely define f and g as: $g = (\frac{n+2}{n+1})(\frac{h^{n+1}-1}{h^{n+2}-1})$ and f = hg. Then, both f, g are transcendental (resp. both f, g belong to $\mathcal{M}_u(d(0, R^-))$) and then we can check that the polynomial $P(y) = \frac{1}{n+2}y^{n+2} - \frac{1}{n+1}y^{n+1}$ satisfies P(f) = P(g), hence f'P'(f) = g'P'(g), therefore f'P'(f) and g'P'(g) trivially share any function.

5. PROOFS OF PART B:

Notation: As usual, given a function $f \in \mathcal{M}(\mathbb{K})$ (resp. $\mathcal{M}(d(0, R^-))$), we denote by $S_f(r)$ a function of r defined in $]0, +\infty[$ (resp. in]0, R[) such that $\lim_{r \to +\infty} \frac{S_f(r)}{T(r, f)} = 0$ (resp. $\lim_{r \to R} \frac{S_f(r)}{T(r, f)} = 0$) In the proof of Theorems B2, B3, B4 we will need the following Lemmas [11]:

Lemma BL1: Let $Q \in \mathbb{K}[x]$ be of degree n and let $f \in \mathcal{M}(\mathbb{K})$, (resp. $f \in \mathcal{M}(d(0, \mathbb{R}^{-}))$) be transcendental. Then $N(r, f') = N(r, f) + \overline{N}(r, f)$, $Z(r, f') \leq Z(r, f) + \overline{N}(r, f) + O(1)$, $nT(r, f) \leq T(r, f'Q(f)) \leq (n+2)T(r, f) - \log r + O(1)$ (resp. $nT(r, f) \leq T(r, f'Q(f)) \leq (n+2)T(r, f) + O(1)$). Particularly, if $f \in \mathcal{A}(\mathbb{K})$, (resp. $f \in \mathcal{A}(d(0, \mathbb{R}^{-}))$), then $nT(r, f) \leq T(r, f'Q(f)) \leq (n+1)T(r, f) - \log r + O(1)$ (resp. $nT(r, f) \leq T(r, f'Q(f)) \leq (n+1)T(r, f) - \log r + O(1)$).

Let $P \in \mathcal{M}_b(d(0, \mathbb{R}^-))[X]$ be of degree n and let $f \in \mathcal{M}_u(d(0, \mathbb{R}^-))$. Then T(r, P(f)) = nT(r, f) + O(1).

Lemma BL2: Let $f \in \mathcal{M}(d(0, R^-))$. Then, $Z(r, f') - N(f', r) \leq Z(r, f) - N(r, f) - \log r + O(1)$. Moreover, $T(r, f) - Z(r, f) \leq T(r, f') - Z(r, f') + O(1)$. Further, given $\alpha \in \mathcal{M}(d(0, R^-))$, we have $T(r, \alpha f) - Z(r, \alpha f) \leq T(r, f) - Z(r, f) + T(r, \alpha)$.

The following lemma is given in [4], for p-adic meromorphic functions. The same applies for complex meromorphic functions [5].

Lemma BL3: Let $Q(x) = (x - a_1)^n \prod_{i=2}^l (x - a_i)^{k_i} \in \mathbb{K}[x]$ $(a_i \neq a_j, \forall i \neq j)$ with $l \ge 2$ and $n \ge \max\{k_2, ..., k_l\}$ and let $k = \sum_{i=2}^l k_i$. Let $f, g \in \mathcal{M}(\mathbb{K})$ be transcendental (resp. $f, g \in \mathcal{M}_u(d(0, R^-)))$) such that $\theta = Q(f)f'Q(g)g'$ is a small function with respect to f and g. We have the following : If l = 2 then n belongs to $\{k, k+1, 2k, 2k+1, 3k+1\}$.

If l = 3 then n belongs to $\{\frac{k}{2}, k + 1, 2k + 1, 3k_2 - k, ..., 3k_l - k\}$.

If $l \geq 4$ then n = k + 1.

If θ is a constant and $f, g \in \mathcal{M}(\mathbb{K})$ then n = k + 1.

Lemma BL4: Let $P \in \mathbb{K}[x] \setminus \mathbb{K}$ with $\deg(P) > 1$ and let $f, g \in \mathcal{A}(\mathbb{K}) \setminus \mathbb{K}$ (resp. $f, g \in \mathcal{A}_u(d(a, \mathbb{R}^-)))$ be such that $P(f) = P(g) + c, c \in \mathbb{K}$ (resp. $P(f) = P(g) + h, h \in \mathcal{M}_b(d(a, \mathbb{R}^-)))$. Then c = 0 (resp. h = 0).

Proof: Let $P(x) = \sum_{k=0}^{n} a_k x^k$ with $a_n \neq 0$. For each k = 1, ..., n-1, let $Q_k(x, y) = a_k \sum_{j=0}^{k} x^j y^{k-j}$. Then $P(x) - P(y) = (x - y)(\sum_{k=1}^{n-1} Q_k(x, y))$. Suppose first $f, g \in \mathcal{A}(\mathbb{K})$ and suppose $c \neq 0$. Since $(f - g)(\sum_{k=1}^{n-1} Q_k(f,g))$ is a constant, both f - g and $\sum_{k=1}^{n-1} Q_k(f,g)$ are constants different from 0 because the semi-norm $|\cdot|(r)$ is multiplicative on $\mathcal{A}(\mathbb{K})$ (resp. on $\mathcal{A}_u(d(0, R^-))$) and is an increasing function in r. Thus we have g = f + b with $b \in \mathbb{K}$. Let $G(x) = \sum_{k=1}^{n-1} Q_k(x, x + b)$). Since \mathbb{K} has characteristic 0, we can check that G is a polynomial of degree n - 1. And since G(f) is a constant, we have n - 1 = 0, a contradiction. Consequently, c = 0.

Similarly, suppose now $f, g \in \mathcal{A}_u(d(a, R^-))$. Since P(f) - P(g) belongs to $\mathcal{A}_b(d(a, R^-))$, both f - g and $\sum_{k=1}^{n-1} Q_k(f,g)$ are bounded and not identically 0, so we have g = f + h, with $h \in \mathcal{A}_b(d(a, R^-))$. Suppose that h is not identically zero. Consider the polynomial $B(x) = \sum_{k=1}^{n-1} Q_k(x, x + h) \in \mathcal{M}_b(d(a, R^-))[x]$. Clearly, B(x) is a polynomial with coefficients in $\mathcal{M}_b(d(a, R^-))$ and deg(B)) is n - 1, hence we have T(r, B(f)) = (n - 1)T(r, f) + o(T(r, f)). But since B(f) is bounded, it belongs to $\mathcal{M}_b(d(a, R^-))[x]$, hence T(r, B(f)) is bounded and so is (n - 1)T(r, f), which leads to n = 1, a contradiction again.

Proof of Theorem B1. Put
$$F = f'b \prod_{j=1}^{l} (f - a_j)^{k_j}$$
 and $G = g'b \prod_{j=1}^{l} (g - a_j)^{k_j}$. Since $f, g \in \mathcal{A}(\mathbb{K})$

(resp. $f, g \in \mathcal{A}_u(d(0, R^-))$) and since F and G share α C.M., then $\frac{F - \alpha}{G - \alpha}$ is a meromorphic function having no zero and no pole in \mathbb{K} (resp. in $d(0, R^-)$), hence it is a constant w in $\mathbb{K} \setminus \{0\}$ (resp. it is an invertible function $w \in \mathcal{A}_b(d(0, R^-))$).

Suppose $w \neq 1$. Then, $F = wG + \alpha(1 - w)$.

Let r > 0. Since $\alpha(1-w) \in \mathcal{A}_f(\mathbb{K})$ (resp. $\alpha(1-w) \in \mathcal{A}_f(d(0, \mathbb{R}^-))$), $\alpha(1-w)$ obviously belongs to $\mathcal{A}_F(\mathbb{K})$ (resp. to $\mathcal{A}_F(d(0, \mathbb{R}^-))$). So, applying Theorem N1 to F, we obtain

$$T(r,F) \le \overline{Z}(r,F) + \overline{Z}(r,F - \alpha(1-w)) + S_F(r) = \overline{Z}(r,F) + \overline{Z}(G) + S_F(r)$$

$$=\sum_{j=1}^{l} \overline{Z}(r, (f-a_j)^k) + \overline{Z}(r, f') + \sum_{j=1}^{l} \overline{Z}(r, (g-a_j)^k) + \overline{Z}(r, g') + S_f(r)$$

$$< l(T(r, f) + T(r, g)) + Z(r, f') + Z(r, g') + S_f(r).$$

We also notice that if $f, g \in \mathcal{A}(\mathbb{K})$ and if $\alpha \in \mathbb{K} \setminus \{0\}$, we have $T(r,F) \leq \overline{Z}(r,F) + \overline{Z}(r,F - \alpha(1-w)) - \log r + O(1)$ and therefore we obtain $T(r,F) \leq l(T(r,f) + T(r,g)) + Z(r,f') + Z(r,g') - \log r + O(1).$

Now, let us go back to the general case. Since f is entire (resp. f belongs to $\mathcal{M}_u(d(0, R^-))$), by Lemma BL1 we have $T(r, F) = (\sum_{j=1}^{l} k_j)T(r, f) + Z(r, f') + O(1)$. Consequently, $(\sum_{j=1}^{l} k_j)T(r, f) \leq l(T(r, f) + T(r, g)) + Z(r, g') + S_f(r)$. Similarly, $(\sum_{j=1}^{l} k_j)T(r, g) \leq l(T(r, f) + T(r, g)) + Z(r, f') + S_f(r)$. Therefore

$$(\sum_{j=1}^{l} k_j)(T(r,f) + T(r,g)) \le 2l(T(r,f) + T(r,g)) + Z(r,f') + Z(r,g') + S_f(r)$$
$$\le (2l+1)(T(r,f) + T(r,g)) + S_f(r).$$

So, $\sum_{j=1}^{l} k_j \le 2l + 1$. Thus, since $\sum_{j=1}^{l} k_j > 2l + 1$ we have w = 1.

And if $\alpha \in \mathbb{K} \setminus \{0\}$ and if f, g belong to $\mathcal{A}(\mathbb{K})$, by applying Theorem N1 we obtain

$$\sum_{j=1}^{l} k_j(T(r,f) + T(r,g)) \le 2l(T(r,f) + T(r,g)) + Z(r,f') + Z(r,g') - 2\log r + O(1)$$
$$\le (2l+1)(T(r,f) + T(r,g)) - 4\log r + O(1)$$

because $T(r, f') \leq T(r, f) - \log r + O(1)$, hence $\sum_{j=1}^{l} k_j \leq 2l$ which also contradicts the hypothesis

 $w \neq 1$ whenever $\sum_{j=1}^{l} k_j > 2l$.

Consequently, in the general case, whenever $\sum_{j=1}^{l} k_j > 2l+1$, we have w = 1 and therefore f'P'(f) = g'P'(g) hence P(f) - P(g) is a constant c. And by Lemma BL4 we have c = 0. But since P is a polynomial of uniqueness for $\mathcal{A}(\mathbb{K})$ (resp. for $\mathcal{A}(d(0, \mathbb{R}^-))$), that yields f = g.

And similarly, if $\alpha \in \mathbb{K}$ and $f, g \in \mathcal{A}(\mathbb{K})$, whenever $\sum_{j=1}^{l} k_j > 2l$, we have w = 1 and therefore we can conclude in the same way.

From results of [3] we can extract this:

Theorem BF: Let $P, Q \in \mathbb{K}[x]$ of respective degree m and n with $m \leq n$ and P monic and let $P'(x) = m \prod_{i=1}^{h} (x - a_i)^{k_I}, Q'(x) = nb \prod_{i=1}^{l} (x - b_i)^{q_I}$, where $a_1, ..., a_h$ are distinct and $b_1, ..., b_l$ are distinct.

Let $H = \{i \ 1 \le i \le h, \ P(a_i) \ne Q(b_j) \ \forall j = 1, ..., l\}$ and let $L = \{j \ 1 \le j \le l, \ Q(b_j) \ne P(a_i) \ \forall i = 1, ..., h\}.$

Suppose that one of the following two statement holds:

$$\sum_{a_i \in H} k_i \ge n - m + 2 \quad (resp. \sum_{a_i \in H} k_i \ge n - m + 3),$$
$$\sum_{b_j \in L} q_j \ge 2 \quad (resp. \sum_{b_i \in L} q_j \ge 3).$$

If two meromorphic functions $f, g \in \mathcal{M}(\mathbb{K})$ (resp. $f, g \in \mathcal{M}(d(0, R^{-})))$) satisfy $P(f(x)) = Q(g(x)), \forall x \in \mathbb{K}, (resp. \forall x \in d(0, R^{-}))$ then both f and g are constant (resp. belong to $\mathcal{M}_b(d(0, R^{-})))$).

Proof of Proposition BP: Let $n = \deg(P)$. Suppose that two functions $f, g \in \mathcal{M}(\mathbb{K})$ (resp. $f, g \in \mathcal{M}(d(0, R^{-}))$) satisfy P(f(x)) = P(g(x)) + C ($C \in \mathbb{K}^{*}$), $\forall x \in \mathbb{K}$ (resp. $\forall x \in d(0, R^{-})$). We can apply Theorem BF by putting Q(X) = P(X) + C and next keeping the same notations. So, here we have h = l, m = n and $b_i = a_i, i = 1, ..., l$. Let Γ be the curve of equation P(X) - P(Y) = C. By hypothesis we have $n \geq 3$, so Γ is of degree ≥ 3 . Therefore, if Γ has no singular point, it is of genus ≥ 1 and hence, by Picard-Berkovich Theorem, the conclusion is immediate. Consequently, we can assume that Γ has a singular point (α, β) . But then $P'(\alpha) = P'(\beta) = 0$ and hence (α, β) is of the form (a_h, a_k) . Consequently, $C = P(a_h) - P(a_k)$ and since $C \neq 0$, we have $h \neq k$. We will prove that either $a_1 \in H$, or $a_1 \in L$.

Suppose first that $a_1 \notin H \cup L$. Since $a_1 \notin H$, there exists $i \in \{2, ..., l\}$ such that $P(a_1) = P(a_i) + C$. Now since $1 \notin L$, there exists $j \in \{2, ..., l\}$ such that $P(a_1) + C = P(a_i)$. But since $C = -P(a_i)$, we have $P(a_j) = -P(a_i)$, therefore $P(a_i) + P(a_j) = 0$. Since P satisfies (G), we have i = j, hence $P(a_i) = 0$. But then C = 0, a contradiction. Therefore, we have proven that $a_1 \in F' \cup F''$. Now, by Theorem BF, f and g are constant (resp. f and g belong to $\mathcal{M}_b(d(0, R^-))$).

The following basic lemma applies to both complex and meromorphic functions. A proof is given in [4].

Lemma BL5: Let $f \in \mathcal{M}(\mathbb{K})$, (resp. $f \in \mathcal{M}(d(0, \mathbb{R}^{-})))$). Then $T(r, f) - Z(r, f) \leq T(r, f') - Z(r, f') + O(1)$.

Notation: Given two meromorphic functions $f, g \in \mathcal{M}(K)$ (resp. $f, g \in \mathcal{M}(d(0, R^{-}))$), we will denote by $\Psi_{f,g}$ the function

$$\frac{f''}{f'} - \frac{2f'}{f-1} - \frac{g''}{g'} + \frac{2g'}{g-1}.$$

We denote by $Z_{[2]}(r, f)$ the counting function of zeros of f in \mathbb{K} (resp. in $d(0, R^-)$) where zeros of order > 2 are only counted with multiplicity order 2. Similarly, we denote by $N_{[2]}(r, f)$ the counting function of poles of f in \mathbb{K} (resp. in $d(0, R^-)$) where poles of order > 2 are only counted with multiplicity order 2.

Now, we can extract the following Lemma BL6 from a result that is proven in several papers and particularly in Lemma 11 [4].

Lemma BL6: Let $f, g \in \mathcal{M}(\mathbb{K})$ (resp. $f, g \in \mathcal{M}(d(0, \mathbb{R}^-))$) share the value 1 CM. If $\Psi_{f,g}$ is not identically zero, then, $\max(T(r, f), T(r, g)) \leq N_{[2]}(r, f) + Z_{[2]}(r, f) + N_{[2]}(r, g) + Z_{[2]}(r, g) - 3\log r$.

We will need the following Lemma BL7:

Lemma BL7: Let $f, g \in \mathcal{M}(\mathbb{K})$ be transcendental (resp. $f, g \in \mathcal{M}_u(d(0, R^-)))$). Let $P(x) = x^{n+1}Q(x)$ be a polynomial such that $n \ge \deg(Q) + 2$ (resp. $n \ge \deg(Q) + 3$). If f'P'(f) = g'P'(g) then P(f) = P(g).

The following lemma holds in the same way in p-adic analysis and in complex analysis. It is proven in [4]:

By Lemma 8 in [4], we have the following Lemma BL8

Lemma BL8: Let $F, G \in \mathcal{M}(\mathbb{K})$ (resp. Let $F, G \in \mathcal{M}(d(0, \mathbb{R}^{-}))$) be non-constant, having no zero and no pole at 0 and sharing the value 1 C.M.

If $\Theta_{F,G} = 0$ and if

$$\lim_{r \to +\infty} \sup_{r \to +\infty} \left(T(r,F) - [\overline{Z}(r,F) + \overline{N}(r,F) + \overline{Z}(r,G) + \overline{N}(r,G)] \right) = +\infty$$

(resp.

$$\limsup_{r \to R^{-}} \left(T(r,F) - \left[\overline{Z}(r,F) + \overline{N}(r,F) + \overline{Z}(r,G) + \overline{N}(r,G) \right] \right) = +\infty)$$

then either F = G or FG = 1.

Proofs of Theorems. Theorems B5, B6, B7, B8, B9 were proven in [4]. Consequently, our work only consists of proving Theorem B2, B3 and B4.

For simplicity, now we set $n = k_1$. Set $F = \frac{f'P'(f)}{\alpha}$, $G = \frac{g'P'(g)}{\alpha}$ and $\hat{F} = P(f)$, $\hat{G} = P(g)$. Suppose $F \neq G$. We notice that P(x) is of the form $x^{n+1}Q(x)$ with $Q \in \mathbb{K}[x]$ of degree k. Now, with help of Lemma BL5, we can check that we have Since $(\hat{F})' = \alpha F$, by Lemma BL2 we have

$$T(r, \hat{F}) \le T(r, F) + Z(r, \hat{F}) - Z(r, F) + T(r, \alpha) + O(1),$$
 (1)

hence, by (1), we obtain

$$T(r, \widehat{F}) \leq T(r, F) + (n+1)Z(r, f) + Z(r, Q(f)) - nZ(r, f)$$
$$-\sum_{i=2}^{l} k_i Z(r, f - a_i) - Z(r, f') + T(r, \alpha) + O(1),$$

i.e.

$$T(r,\hat{F}) \le T(r,F) + Z(r,f) + Z(r,Q(f)) - \sum_{i=2}^{l} k_i Z(r,f-a_i) - Z(r,f') + T(r,\alpha) + O(1), \quad (2)$$

and similarly,

$$T(r,\hat{G}) \le T(r,G) + Z(r,g) + Z(r,Q(g)) - \sum_{i=2}^{l} k_i Z(r,g-a_i) - Z(r,g') + T(r,\alpha) + O(1).$$
(3)

Now, it follows from the definition of F and G that

$$Z_{[2]}(r,F) + N_{[2]}(r,F) \le 2Z(r,f) + 2\sum_{i=2}^{l} Z(r,f-a_i) + Z(r,f') + 2\overline{N}(r,f) + T(r,\alpha) + O(1)$$
(4)

and similarly

$$Z_{[2]}(r,G) + N_{[2]}(r,G) \le 2Z(r,g) + 2\sum_{i=2}^{l} Z(r,g-a_i) + Z(r,g') + 2\overline{N}(r,g) + T(r,\alpha) + O(1).$$
(5)

And particularly, if $k_i = 1, \forall i \in \{2, .., l\}$, then

$$Z_{[2]}(r,F) + N_{[2]}(r,F) \le 2Z(r,f) + \sum_{i=2}^{l} Z(r,f-a_i) + Z(r,f') + 2\overline{N}(r,f) + T(r,\alpha) + O(1)$$
(6)

and similarly

$$Z_{[2]}(r,G) + N_{[2]}(r,G) \le 2Z(r,g) + \sum_{i=2}^{l} Z(r,g-a_i) + Z(r,g') + 2\overline{N}(r,g) + T(r,\alpha) + O(1).$$
(7)

We will now prove that $\Psi_{F,G}$ is identically zero. Indeed, suppose now that $\Psi_{F,G}$ is not identically zero.

By Lemma BL6, we have

$$T(r,F) \leq Z_{[2]}(r,F) + N_{[2]}(r,F) + Z_{[2]}(r,G) + N_{[2]}(r,G) - 3\log r$$

hence by (2), we obtain

$$T(r, \widehat{F}) \leq Z_{[2]}(r, F) + N_{[2]}(r, F) + Z_{[2]}(r, G) + N_{[2]}(r, G) + Z(r, f) + Z(r, Q(f))$$
$$-\sum_{i=2}^{l} k_i Z(r, f - a_i) - Z(r, f') + T(r, \alpha) - 3\log r + O(1)$$

and hence by (4) and (5):

$$T(r, \widehat{F}) \leq 2Z(r, f) + 2\sum_{i=2}^{l} Z(r, f - a_i) + Z(r, f') + 2\overline{N}(r, f) + 2Z(r, g) + 2\sum_{i=2}^{l} Z(r, g - a_i) + Z(r, g') + 2\overline{N}(r, g) + Z(r, f) + Z(r, Q(f)) - \sum_{i=2}^{l} k_i Z(r, f - a_i) - Z(r, f') + T(r, \alpha) - 3\log r + O(1)$$
(8)

and similarly,

$$T(r,\hat{G}) \le 2Z(r,g) + 2\sum_{i=2}^{l} Z(r,g-a_i) + Z(r,g') + 2\overline{N}(r,g) + 2Z(r,f) + 2\sum_{i=2}^{l} Z(r,f-a_i) + Z(r,f')$$

$$+2\overline{N}(r,f) + Z(r,g) + Z(r,Q(g)) - \sum_{i=2}^{l} k_i Z(r,g-a_i) - Z(r,g') + T(r,\alpha) - 3\log r + O(1).$$
(9)

Consequently,

$$T(r,\hat{F}) + T(r,\hat{G}) \le 5(Z(r,f) + Z(r,g)) + \sum_{i=2}^{l} (4-k_i)(Z(r,f-a_i) + Z(r,g-a_i)) + (Z(r,f'))$$

 $p\mbox{-}ADIC$ NUMBERS, ULTRAMETRIC ANALYSIS AND APPLICATIONS ~Vol.~5~~No.~4~~2013

295

$$+Z(r,g')) + 4(\overline{N}(r,f) + \overline{N}(r,g)) + (Z(r,Q(f)) + Z(r,Q(g))) + 6T(r,\alpha) - 6\log r + O(1).$$
(10)

By Lemma BL1 we can write $Z(r, f') + Z(r, g') \leq Z(r, f - a_2) + Z(r, g - a_2) + \overline{N}(r, f) + \overline{N}(r, g) - 2\log r$. Hence, in general, by (10) we obtain

$$T(r, \widehat{F}) + T(r, \widehat{G}) \le 5(Z(r, f) + Z(r, g))$$

$$+\sum_{i=3}^{l}(4-k_i)\big((Z(r,f-a_i)+Z(r,g-a_i))\big)+(5-k_2)\big((Z(r,f-a_2)+Z(r,g-a_2))\big)$$

 $+5(\overline{N}(r,f) + \overline{N}(r,g)) + (Z(r,Q(f)) + Z(r,Q(g))) + 6T(r,\alpha) - 8\log r + O(1)$ and hence, since T(r,Q(f)) = kT(r,f) + O(1) and T(r,Q(g)) = kT(r,g) + O(1),

$$T(r, \hat{F}) + T(r, \hat{G}) \leq 5(T(r, f) + T(r, g))$$

+
$$\sum_{i=3}^{l} (4 - k_i) ((Z(r, f - a_i) + Z(r, g - a_i))) + (5 - k_2) ((Z(r, f - a_2) + Z(r, g - a_2)))$$

+
$$5(\overline{N}(r, f) + \overline{N}(r, g)) + k(T(r, f) + T(r, g)) + 6T(r, \alpha) - 8\log r + O(1).$$
(12)

Now, since \hat{F} is a polynomial in f of degree n + k + 1, we have $T(r, \hat{F}) = (n + k + 1)T(r, f) + O(1)$ and similarly, $T(r, \hat{G}) = (n + k + 1)T(r, g) + O(1)$, hence by (12) we can derive

$$(n+k+1)(T(r,f)+T(r,g)) \le 5(T(r,f)+T(r,g))$$

+(5-k₂)(Z(r,f-a₂)+Z(r,g-a₂)) + $\sum_{i=3}^{l}$ (4-k_i)((Z(r,f-a_i)+Z(r,g-a_i)))
+5($\overline{N}(r,f)$ + $\overline{N}(r,g)$) + k(T(r,f)+T(r,g)) + 6T(r,\alpha) - 8\log r + O(1). (15)

Hence

$$(n+k+1)(T(r,f)+T(r,g)) \le 10(T(r,f)+T(r,g))$$

+ $\sum_{i=3}^{l} (4-k_i)((Z(r,f-a_i)+Z(r,g-a_i))) + (5-k_2)((Z(r,f-a_2)+Z(r,g-a_2)))$
+ $k(T(r,f)+T(r,g)) + 6T(r,\alpha) - 8\log r + O(1)),$

and hence

$$n(Tr, f) + T(r, g) \leq 9(T(r, f) + T(r, g)) + (5 - k_2)((Z(r, f - a_2) + Z(r, g - a_2)) + \sum_{i=3}^{l} (4 - k_i)((Z(r, f - a_i) + Z(r, g - a_i))) + 6T(r, \alpha) - 8\log r + O(1)).$$
(16)

Then $(5-k_2)(Z(r, f-a_2) + Z(r, g-a_2)) \le \max(0, 5-k_2)(T(r, f) + T(r, g)) + O(1)$ and at least, for each i = 3, ..., l we have $(4-k_i)(Z(r, f-a_i) + Z(r, g-a_i)) \le \max(0, 4-k_i)(T(r, f) + T(r, g)) + O(1)$.

Now suppose $s_5 > 0$. That means that $k_i \ge 5 \forall i = 3, ..., u_5$ with $l \ge 5$. We notice that the number of indices *i* superior or equal to 2 such that $k_i \ge 5$ is $u_5 - 2$. Similarly, for each m > 5, the number of indices superior or equal to 1 such that $k_i \ge m$ is $u_m - 1$.

Then we can apply Theorem A1 and we obtain

 $\sum_{i=3}^{u_5} Z(r, f - a_i) \ge (u_5 - 3)T(r, f) + O(1)$ and for each $m \ge 6$, $\sum_{i=3}^{u_m} Z(r, f - a_i) \ge (u_m - 2)T(r, f) + O(1), \text{ i.e.}$ $\sum_{i=3}^{u_5} Z(r, f - a_i) \ge s_5 T(r, f) + O(1)$ and for each $m \ge 6$, $\sum_{i=3}^{u_m} Z(r, f - a_i) \ge s_m T(r, f) + O(1),$ and similarly for g.

Consequently, by (16) we obtain

$$n(Tr, f) + T(r, g)) \leq 9(T(r, f) + T(r, g)) + \max(0, 5 - k_2)(Z(r, f - a_2) + Z(r, g - a_2)) + \sum_{i=3}^{l} \max(0, 4 - k_i)(Z(r, f - a_i) + Z(r, g - a_i)) - \sum_{m=5}^{\infty} s_m(T(r, f) + T(r, g)) + 4T(r, \alpha) - 8\log r + O(1)),$$
(17)

therefore

$$n \le 9 + \max(5 - k_2) + \sum_{i=3}^{l} \max(0, 4 - k_i) - \sum_{j=5}^{\infty} s_j,$$
(18)

a contradiction to the hypotheses of Theorem B2.

Consider now the situation in Theorems B3 and B4. Here we have $T(r, \alpha) \leq \log r + O(1)$. Consequently, Relation (16) now implies

$$n(Tr, f) + T(r, g)) \le 9(T(r, f) + T(r, g)) + \max(0, 5 - k_2)(Z(r, f - a_2) + Z(r, g - a_2))$$

$$+\sum_{i=3}^{l} \max(0,4-k_i) (Z(r,f-a_i) + Z(r,g-a_i)) - \sum_{m=5}^{\infty} s_m (T(r,f) + T(r,g)) - 2\log r + O(1)),$$

therefore

$$n < 9 + \max(0, 5 - k_2) + \sum_{i=3}^{l} \max(0, 4 - k_i) - \sum_{m=5}^{\infty} s_m$$

but this is uncompatible with the hypotheses

$$n \ge 9 + \max(5 - k_2) + \sum_{i=3}^{l} \max(0, 4 - k_i) - \min(\sum_{j=5}^{\infty} s_j, 2l - 1) \text{ in Theorem B3 and}$$
$$n \ge 9 + \max(5 - k_2) + \sum_{i=3}^{l} \max(0, 4 - k_i) - \min(\sum_{j=5}^{\infty} s_j, 2l) \text{ in Theorem B4.}$$

Thus, in the hypotheses of Theorems B2, B3 and B4 we have proven that $\Psi_{F,G}$ is identically zero. Henceforth, we can assume that $\Psi_{F,G} = 0$ in all theorems. Note that we can write $\Psi_{F,G} = \frac{\phi'}{\phi}$

ESCASSUT et al.

with $\phi = \left(\frac{F'}{(F-1)^2}\right) \left(\frac{(G-1)^2}{G'}\right)$. Since $\Psi_{F,G} = 0$, there exist $A, B \in \mathbb{K}$ such that

$$\frac{1}{G-1} = \frac{A}{F-1} + B$$
(19)

and $A \neq 0$. We notice that

 $\overline{Z}(r,f) \leq T(r,f), \quad \overline{N}(r,f) \leq T(r,f), \quad \overline{Z}(r,f-a_i) \leq T(r,f-a_i) \leq T(r,f) + O(1), \quad i = 2, ..., l \text{ and } \overline{Z}(r,f') \leq T(r,f') \leq 2T(r,f) + O(1).$ Similarly for g and g'. Moreover, by Lemma BL1 we have

$$T(r,F) \ge (n+k)T(r,f).$$
⁽²⁰⁾

We will show that F = G in each theorem. We first notice that hypotheses of Theorems B2 and B3 imply

$$n+k \ge 2l+7,\tag{21}$$

and that in Theorem B4 we have

$$n+k \ge 2l+6. \tag{22}$$

Indeed, set $t = \sum_{i=5}^{\infty} s_m$, $s = \min(t, 2l)$ and $s' = \min(t, 2l-1)$. In theorem B2 we have

$$n+k \ge 10 + k + \max(0, 5 - k_2) + \sum_{i=3}^{\infty} \max(0, 4 - k_i) - s$$
$$= 10 + [k_2 + \max(0, 5 - k_2)] + \sum_{i=3}^{\infty} [k_i + \max(0, 4 - k_i)] - s$$

$$= 10 + \max(k_2, 5) + \sum_{i=3}^{\infty} [\max(k_i, 4)] - s \ge 10 + 5 + 4(l-2) - 2l = 2l + 7.$$

And in Theorem B3 we have

$$n+k \ge 9+k+\max(0,5-k_2) + \sum_{i=3}^{\infty} \max(0,4-k_i) - s'$$
$$= 9 + [k_2 + \max(0,5-k_2)] + \sum_{i=3}^{\infty} [k_i + \max(0,4-k_i)] - s'$$

$$= 9 + \max(k_2, 5) + \sum_{i=3}^{\infty} [\max(k_i, 4)] - s' \ge 9 + 5 + 4(l-2) - 2l = 2l + 7.$$

That finishes proving (21) in Theorems B2 and B3.

Now, in Theorem B4 we have

$$n+k \ge 9+k+\max(0,5-k_2) + \sum_{i=3}^{\infty} \max(0,4-k_i) - s'$$
$$= 9 + [k_2 + \max(0,5-k_2)] + \sum_{i=3}^{\infty} [k_i + \max(0,4-k_i)] - s'$$
$$= 9 + \max(k_2,5) + \sum_{i=3}^{\infty} [\max(k_i,4)] - s \ge 9 + 5 + 4(l-2) - 2l = 2l + 6.$$

298

We will consider the following two cases: B = 0 and $B \neq 0$.

Case 1: B = 0.

Suppose $A \neq 1$. Then, by (19), we have $F = \frac{1}{A}G + \left(1 - \frac{1}{A}\right)$. Applying Theorem N1 to F, we obtain

$$T(r,F) \le \overline{Z}(r,F) + \overline{Z}\left(r,F - \left(1 - \frac{1}{A}\right)\right) + \overline{N}(r,F) - \log r + O(1) \le \overline{Z}(r,f) + \sum_{i=2}^{l} \overline{Z}(r,f - a_i)$$

$$+\overline{Z}(r,f') + \overline{Z}(r,g) + \sum_{i=2}^{l} \overline{Z}(r,g-a_i) + \overline{Z}(r,g') + \overline{N}(r,f) + 3T(r,\alpha) - \log r + O(1).$$

But $\overline{Z}(r, f) \leq T(r, f)$, $\overline{N}(r, f) \leq T(r, f)$, $\overline{Z}(r, f-1) \leq T(r, f-1) \leq T(r, f) + O(1)$ and $\overline{Z}(r, f') \leq T(r, f') \leq 2T(r, f) + O(1)$. Moreover, by Lemma BL1, we have

 $T(r,F) \ge (n+k)T(r,f) - T(r,\alpha)$. Then, considering all the previous inequalities in (12), we can deduce that

$$(n+k)T(r,f) \le (l+3)T(r,f) + (l+2)T(r,g) + 4T(r,\alpha) - \log r + O(1).$$
(23)

And similarly,

$$(n+k)T(r,g) \le (l+3)T(r,g) + (l+2)T(r,f) + 4T(r,\alpha) - \log r + O(1).$$
(24)

Hence, adding (23) and (24), we have

$$(n+k)[T(r,f) + T(r,g)] \le (2l+5)[T(r,f) + T(r,g)] + 4T(r,\alpha) - 2\log r + O(1),$$
(25)

which shows that n + k | eq2l + 5 and hence leads to a contradiction whenever $n + k \ge (2l + 6)$. Thus, by (21), this leads to a contradiction in Theorems B2 and B3.

In the same way, in Theorem B4, we have $T(r, \alpha) = 0$, hence Relation (25) shows that n + k < 2l + 5, a contradiction to (22).

Thus, we have A = 1 and this implies that F = G. Now, $\alpha F = \alpha G$, i.e. $(\widehat{F})' = (\widehat{G})'$. We assume $n \ge k+2$ in Theorem B2 when f, g belong to $\mathcal{M}(\mathbb{K})$ and in Theorems B3 and B4. And we assume $n \ge k+3$ in Theorem B2 when f, g belong to $\mathcal{M}(d(0, \mathbb{R}^{-}))$.

Consequently, by Proposition BP and by Lemma BL4, we have $\hat{F} = \hat{G}$, i.e. P(f) = P(g). But in Theorems B2, B3, B4, B5, B6, B7, P is a polynomial of uniqueness for the family of meromorphic functions we consider, hence we have f = g. And in Theorems B8 and B9, the conclusion was given in [4]. That finishes Case 1: B = 0.

Case 2: $B \neq 0$.

We have $\overline{Z}(r,F) \leq \overline{Z}(r,f) + \sum_{i=2}^{l} \overline{Z}(r,f-a_i) + \overline{Z}(r,f') + T(r,\alpha)$ and $\overline{N}(r,F) \leq \overline{N}(r,f) + T(r,\alpha) + O(1)$ and similarly for G, so we can derive

$$\overline{Z}(r,F) + \overline{Z}(r,G) + \overline{N}(r,F) + \overline{N}(r,G) \leq \overline{Z}(r,f) + \sum_{i=2}^{l} \overline{Z}(r,f-a_i) + \overline{Z}(r,f') + \overline{Z}(r,g) + \sum_{i=2}^{l} \overline{Z}(r,g-a_i) + \overline{Z}(r,g') + \overline{N}(r,f) + \overline{N}(r,g) + 4T(r,\alpha) + O(1) \leq (l+3)[T(r,f) + T(r,g)] + 4T(r,\alpha) + O(1).$$
(26)

Moreover, by (19), T(r, F) = T(r, G) + O(1) and, by Lemma BL1, we have

 $T(r, f) \leq \frac{1}{n+k} (T(r, F) + T(r, \alpha)) + O(1)$ and $T(r, g) \leq \frac{1}{n+k} (T(r, G) + T(r, \alpha)) + O(1)$. Consequently, $T(r, f) + T(r, g) \leq 2 \left[\frac{1}{n+k} (T(r, F) + T(r, \alpha)) \right] + O(1).$

Thus, (26) is equivalent to

$$\overline{Z}(r,F) + \overline{Z}(r,G) + \overline{N}(r,F) + \overline{N}(r,G) \le \frac{2(l+3)}{n+k}T(r,F) + (\frac{10}{n+k} + 4)T(r,\alpha) + O(1).$$

Hence in Theorems 2 and 3, by (21) we have

$$\limsup_{r \to +\infty} \left(T(r,F) - (\overline{Z}(r,F) + \overline{Z}(r,G) + \overline{N}(r,F) + \overline{N}(r,G)) \right) = +\infty$$

(resp.

$$\limsup_{r \to R^-} \left(T(r,F) - (\overline{Z}(r,F) + \overline{Z}(r,G) + \overline{N}(r,F) + \overline{N}(r,G)) \right) = +\infty.$$

Next, in Theorem B4, we have $\overline{Z}(r,F) \leq \overline{Z}(r,f) + \sum_{i=2}^{l} \overline{Z}(r,f-a_i) + \overline{Z}(r,f')$ and $\overline{N}(r,F) \leq \overline{N}(r,f) + O(1)$ and similarly for G, so we can derive

$$\overline{Z}(r,F) + \overline{Z}(r,G) + \overline{N}(r,F) + \overline{N}(r,G) \leq \overline{Z}(r,f) + \sum_{i=2}^{l} \overline{Z}(r,f-a_i) + \overline{Z}(r,f') + \overline{Z}(r,g)$$
$$+ \sum_{i=2}^{l} \overline{Z}(r,g-a_i) + \overline{Z}(r,g') + \overline{N}(r,f) + \overline{N}(r,g) + O(1)$$
$$\leq (l+3) [T(r,f) + T(r,g)] - 2\log r + O(1),$$

therefore

$$\overline{Z}(r,F) + \overline{Z}(r,G) + \overline{N}(r,F) + \overline{N}(r,G) \le \frac{2l+6}{n+k}T(r,F) - 2\log r + O(1).$$

Consequently, by (22) we have again

$$\limsup_{r \to +\infty} \left(T(r,F) - (\overline{Z}(r,F) + \overline{Z}(r,G) + \overline{N}(r,F) + \overline{N}(r,G)) \right) = +\infty.$$

Thus, in each theorem, the hypotheses of Lemma BL8 are satisfied and hence, either F = G, or FG = 1.

If FG = 1, then $f'P'(f)g'P'(g) = \alpha^2$. In Theorems B2, B3, B4 we have assumed that if l = 2, then $k_1 \neq k + 1$, 2k, 2k + 1, 3k + 1,

if l = 3, then $k_1 \neq \frac{k}{2}$, $k_1 \neq k+1$, 2k+1, $3k_i - k \ \forall i = 2$, 3.

If $l \ge 4$, then $k_1 \ne k+1$.

And these hypotheses are automatically satisfied in the other theorems. Consequently, by Lemma BL3, FG = 1 is impossible. Consequently, F = G, hence $(\hat{F})' = (\hat{G})'$ and therefore we can conclude as in the case B = 0.

300

NEW RESULTS

ACKNOWLEDGMENTS

Partially funded by the research project CONICYT ("Inserción de nuevos investigadores en la academia" $N^{\circ}79090014$) from the Chilean Government. We thank the referee for pointing out to us a few misprints.

REFERENCES

- 1. T. T. H. An, J. T. Y. Wang and P. M. Wong, "Unique range sets and uniqueness polynomials in positive characteristic II.," Acta Arithm. 115–143 (2005).
- T. T. H. An, J. T. Y. Wang and P. M. Wong, "Strong uniqueness polynomials: the complex case," Complex Var. 49 (1), 25–54 (2004).
- 3. T. T. H. An and A. Escassut, "Meromorphic solutions of equations over non-Archimedean fields," Ramanujan J. 15 (3), 415–433 (2008).
- 4. K. Boussaf, A. Escassut and J. Ojeda, "p-Adic meromorphic functions f'P'(f), g'P'(g) sharing a small function," Bull. Scien. Mathématiques **136** (2), 172–200 (2012).
- 5. K. Boussaf, A. Escassut and J. Ojeda, "Complex meromorphic functions f'P'(f), g'P'(g) sharing a small function," Indagationes (N.S.) **24** (1), 15–41 (2013).
- 6. A. Boutabaa, "Théorie de Nevanlinna p-adique," Manuscripta Math. 67, 251–269 (1990).
- A. Escassut, Analytic Elements in p-Adic Analysis (World Scientific Publ. Co. Pte. Ltd. Singapore, 1995).
- A. Escassut, "Meromorphic functions of uniqueness," Bull. Scien. Mathématiques 131 (3), 219–241 (2007).
- 9. A. Escassut, "p-Adic value distribution," Some Topics on Value Distribution and Differentability in Complex and p-Adic Analysis 42–138, Mathematics Monograph, Series 11 (Science Press, Beijing, 2008).
- H. Fujimoto, "On uniqueness of meromorphic functions sharing finite sets," Amer. J. Math. 122 (6), 1175–1203 (2000).
- 11. P. C. Hu and C. C. Yang, *Meromorphic Functions over non-Archimedean Fields* (Kluwer Academic Publ., 2000).
- 12. X. Hua and C. C. Yang, "Uniqueness and value-sharing of meromorphic functions," Ann. Acad. Sci. Fenn. Math. 22, 395–406 (1997).
- W. Lin and H. Yi, "Uniqueness theorems for meromorphic functions concerning fixed-points," Complex Var. Theory Appl. 49 (11), 793–806 (2004).
- 14. R. Nevanlinna, Le théoreme de Picard-Borel et la théorie des fonctions méromorphes (Gauthiers-Villars, Paris, 1929).
- J. Ojeda, "Uniqueness for ultrametric analytic functions," Bull. Math. Sci. Mathématiques de Roumanie 54 (102, 2), 153–165 (2011).
- 16. J. T. Y. Wang, "Uniqueness polynomials and bi-unique range sets," Acta Arithm. 104, 183–200 (2002).
- 17. K. Yamanoi "The second main theorem for small functions and related problems," Acta Math. 192, 225–294 (2004).
- 18. C. C. Yang and P. Li, "Some further results on the functional equation P(f) = Q(g)," Series Advances in Complex Analysis and Applications, Value Distribution Theory and Related Topics, pp. 219–231 (Kluwer Academic Publ., Dordrecht-Boston-London, 2004).
- C. C. Yang and X. Hua, "Unique polynomials of entire and meromorphic functions," Matemat. Fizika Anal. Geom. 4 (3), 391–398 (1997).