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René Schmidt**

Mathematisches Institut der Westfälischen Wilhelms-Universität,
D-48149 Münster, Germany

Received October 14, 2008

Abstract—In this paper we present an approach to adelic physics via algebraic spaces. Relative
algebraic spaces X → S are considered as fundamental objects which describe space-time. This
yields a number field invariant formulation of general relativity which, in the special case S = Spec C,
may be translated back into the language of manifolds. With regard to adelic physics the case of an
excellent Dedekind scheme S as base scheme is of interest (e.g. S = Spec Z). Some solutions of the
arithmetic Einstein equations are studied.
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1. INTRODUCTION

Unless otherwise specified, let K ⊂ R be an algebraic number field (i.e. a finite algebraic extension
of Q), and let OK be the ring of integral numbers of K (i.e. the integral closure of Z in K). For example,
think of OK = Z and K = Q.

Since 1987, there have been many interesting applications of p-adic numbers in physics. In his influ-
ential paper [11], I.V. Volovich draws the vision of number theory as the ultimate physical theory, where
numbers are proposed as the fundamental entities of the universe. It is argued that the development of
physics over arbitrary (number) fields might be necessary. In particular, this implies the incorporation
of p-adic numbers in physical theories. Since then, many p-adic and even adelic models have been
constructed. Adeles enable us to regard real and p-adic numbers simultaneously. More precisely, an
adele is an infinite tuple

x = (x2, . . . , xp, . . . , x∞),

where x∞ ∈ R and xp ∈ Qp with the restriction that one has xp ∈ Zp for all but a finite set of primes. In
a certain way, these adelic models unify the ordinary (i.e. R-valued) and p-adic models.

Adelic models of gravity are the starting point of this paper. But, instead of working directly with
adeles and the respective adelic space-time models as it is usually done, we will study a new, purely
geometric approach to adelic physics based on relative algebraic spaces X → S, S = SpecOK . However,
there are close relations between these two approaches as it may be seen in the following example.

Example 7. Let us choose K = Q. Consequently, OK = Z and S = SpecZ. Furthermore assume that
the relative algebraic space X over S is representable by a smooth S-scheme, i.e. let us consider
a smooth morphism π : X → SpecZ of schemes. Set-theoretically, SpecZ consists of infinitely many
closed points (one point for each prime number p) plus one generic point which we will denote by ∞, and
which corresponds to the zero ideal of Z. Furthermore, X may be viewed as union

⋃
p π−1(p) ∪ π−1(∞)

of the fibres of π. In our arithmetic setting (and in analogy to complex algebraic geometry), a “physical
point” x is given by an S-valued point of X, i.e. by a section s : SpecZ ↪→ X of the structure morphism π
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(i.e. π ◦ s = id). More precisely, x is given by the image of s. But, set-theoretically, s cuts out one closed
point in each fibre. Thus, in analogy to the adelic situation, an S-valued point x may be viewed as a set
of points:

x = {x2, . . . , xp, . . . , x∞}.

Furthermore, according to the point of view of adelic physics, each archimedean point (resp. each
morphism over the archimedean prime spot at infinity) is only the archimedean component of an adelic
point (resp. an adelic morphism). In short, everything in the archimedean world comes from the adelic
level. If now ϕ : Y → SpecZ is an arbitrary smooth S-scheme and if we denote by YK the pre-image
ϕ−1(∞) of ∞ under ϕ, the above extension property (from the archimedean to the adelic level) reads as
follows in algebraic geometry:

For every K-morphism fK : YK → XK , there is an S-morphism f : Y → X which extends fK . (�)

All in all, instead of adeles, the set X(S) of S-valued points of an algebraic space X → S is the
set of interest in our approach. The objective of this paper is the investigation of a new approach to
general relativity based on algebraic spaces. The condition (�) makes clear why Néron models will occur
naturally. Let us finally remark that it is straightforward to include Yang-Mills fields in this framework
using the notion of torsors (which are the algebraic geometric analogue of the differential geometric
principal bundles).

2. THE ARITHMETIC SPACE-TIME

According to the theory of general relativity, space-time may be described by means of a differentiable
manifold. Thereby, gravity is encoded in a metrical tensor g which satisfies the Einstein equations.
More precisely, our starting point are the complex gravitational field equations. Then, any solution of
the Einstein equations gives rise to a complex manifold. For technical reasons, we will once and for all
assume that this classical space-time manifold may be realized as a compact complex manifold X which
is Moishezon. The latter condition means that

transdeg
C

(
K(X)

)
= dimC X,

where K(X) denotes the field of meromorphic functions on X. For example, all algebraic manifolds
fulfill this equation. Therefore, following the ideas of [1], where it is among other things argued that one
should restrict to algebraic manifolds in quantum cosmology, our assumption seems not too restrictive.
However, let us at least mention that there are Moishezon manifolds which are not algebraic. The
technical reason why we restrict attention to Moishezon manifolds is the following beautiful theorem
due to Artin.

Theorem 1. There is an equivalence of categories
(

Moishezon manifolds
)

�
(

smooth, proper algebraic spaces over C

)
.

This theorem enables us to consider the ordinary complex space-time manifold X as a complex
algebraic space. Now the following observation is crucial. While, on the level of manifolds, the theory
is essentially adapted to the complex numbers, the language of algebraic spaces offers to possibility to
replace C by any commutative ring.

In 1987, I. V. Volovich suggested that a fundamental physical theory should be formulated in such
a way that it is invariant under change of the underlying number field (see [11]). This motivates the
following program which will be studied within the first part of this paper:

1. Replace the pair (X, g) consisting of a (complex) manifold X and a metric g by a pair
(
X → S, g

)
,

where X is a smooth, separated algebraic space over a base S, and where g is a metric over X
(see Definition 18).
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2. Starting from exactly the same physical principles as in the realm of manifolds, deduce the
equations of Einstein’s theory of general relativity in the setting of algebraic spaces over an
arbitrary base S (thus realizing a number field invariant theory). Determine the pair (X → S, g)
in such a way that Einstein’s equations are fulfilled.

3. Investigate properties of hypothetical space-time models (X → S, g) depending on the choice of
the base S.

Remark 1. Principally, there are many interesting possible choices for S. For example, there is the case
of positive characteristic, i.e. S might be chosen as the spectrum of a (finite) field or as function field of
an algebraic curve over a finite field. However, in those models (X → S, g), which will be studied within
the bounds of this paper, we will choose S to be representable by an excellent Dedekind-scheme with
field of fractions K of characteristic zero. Then the following two cases are of interest:

1. S is Zariski zero-dimensional and given by the spectrum SpecK of a field K of characteristic zero.
Especially in the case K = C, everything may be translated back into the language of manifolds
(by Theorem 1).

2. S is Zariski one-dimensional. In this case we are interested in the choice S = SpecOK , where
OK ⊂ K is the ring of integral numbers of an algebraic number field K (e.g. K = Q and OK = Z).

But what is the physics behind the choice S = SpecOK? Why should we consider number fields instead
of real or complex numbers? Following the ideas of B. Dragovich, V.S. Vladimirov, I.V. Volovich and
many others (see, e.g. [1, 3–7, 10, 11]), let us state at least two arguments at this place. The first
argument concerns the process of measurement. While it is not clear at all whether transcendental
numbers can be the result of a measurement, integral (or rational) numbers can. Second, we know
from Einstein that gravity is encoded in deformations of space-time scales (described by means of the
metrical tensor g). Looking at the energy scale that we experience, it is an empiric fact that we may
assume that gravity is completely encoded in the archimedean scale and that non-archimedean, p-adic
scales may be neglected. Nevertheless, there is no reason why this should be true on all energy scales
down to the Planck scale. It is an appealing project to study physical models where not only the ordinary,
archimedean degrees of freedom are taken into consideration, but also the p-adic, non-archimedean
degrees of freedom. Physically, the adelic approach means:

There is one degree of freedom per primespot and dimension. (∗)
As already indicated in Example 7, the principle (∗) may as well be realized by considering algebraic
spaces over OK . This motivates the following Definition 16 (whose physical motivation will be illustrated
in Remark 2). Recall that, given two relative algebraic spaces X → S and Y → S, we denote by X(Y )
the set of S-morphisms Y → X. Furthermore recall that for an algebraic space π : X → S we denote
the fibre of π over the generic point of S by XK (physically this generic fibre represents the archimedean
component of the algebraic space).

Definition 16. Let S be an excellent Dedekind scheme with field of fractions K of characteristic zero.
Consider a pair (X → S, g) consisting of:

• a smooth, separated algebraic space π : X → S over S

• a metric g on X (see Definition 18)

such that the following conditions are fulfilled:

(i) g satisfies the Einstein equations, Definition 23.

(ii) For each smooth algebraic space Y → S and each K-morphism uK : YK → XK there is an S-
morphism u : Y → X extending uK .

Then the pair (X → S, g) is called a model of type (GR).
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Corollary 1. In the setting of Definition 16, let us assume that the algebraic space π : X → S is
representable by a smooth and separated S-scheme. Then, the morphism u in Definition 16 (ii) is
uniquely determined. In other words, X → S is the Néron model of its generic fibre XK (see [2],
Def. 1.2/1). In particular, the following statements hold:

1. If uK is an isomorphism so is u.

2. For each étale S-scheme S′ with field of fractions K ′ the canonical map X(S′) → XK(K ′)
is bijective.

Proof. In order to prove the uniqueness assertion let us choose two morphisms u, v extending uK . Using
the separatedness of X → S we conclude from [9], Prop. 3.3.11, that u and v are equal if they coincide on
a dense subset of Y . Therefore, it suffices to show that the generic fibre YK of Y is dense in Y . This may
be done as follows: Due to smoothness, the structure morphism f : Y → S is an open map of topological
spaces (use [2], Prop. 2.4/8). The openness of f implies that the pre-image f−1(D) of any dense subset
D of S is dense in Y . As the generic point of S is dense in S we are done. Consequently, X → S is the
Néron model of its generic fibre.

The statements 1. and 2. follow directly from the universal property of Néron models. For example,
choose Y = S′ in order to see 2. . �

Remark 2. If S = SpecK is the spectrum of a field K, condition (ii) of Definition 16 is empty. If
furthermore K = R, any model of type (GR) induces a solution of Einstein’s theory of general relativity
(by evaluation at R-valued points). This explains the label model of type (GR), because (GR) shall
remind of general relativity. However, in the case S = SpecOK we arrive at the following physical
interpretation:

• Condition (ii) implements the “adelic” point of view.

In order to see this, let us choose S = SpecZ and therefore K = Q. Recall that the generic fibre
XK of X represents the archimedean component. Then condition (ii) says that the archimedean
world is only the projection from the “adelic” level to the archimedean component. In truth,
everything is defined over all prime spots, and there is one degree of freedom per prime spot.

• We saw in Corollary 1 that condition (ii) implies a canonical bijection XK(K) = X(S). Recall
that XK(K) is the set of archimedean points, and that X(S) is the set of “adelic” points. In
the special case K = Q, the bijection XK(K) ∼= X(S) means exactly that every archimedean
point x∞ ∈ XK(K) of X is in truth only the archimedean element x∞ of an infinite set of
points x = {x2, . . . , xp, . . . , x∞} ∈ X(S). Finally, the first statement of Corollary 1 reflects the
physically crucial statement that any “deformation” of the archimedean component by means of
isomorphisms extends to the “adelic” level.

Furthermore, we immediately obtain the interesting result that the pair (X → S, g) cannot be the flat
Minkowski space-time if we are in the “adelic” situation S = SpecOK .

Proof. Let S = SpecOK and assume that (X → S, g) describes the flat, topologically trivial Minkowski
space-time. Then

• g = diag(±1,±1,±1,±1) and

• X = A
n
S or X = P

n
S depending on whether we work projective or not. Recall that the affine space

A
n
S may be regarded as the algebraic geometric analogue of flat space. In order to see this, let S =

SpecR be the spectrum of a commutative ring R. Then A
n
S = SpecR[T1, . . . , Tn] is the spectrum of

a polynomial ring in n variables. Consequently, A
n
S(S) = HomR(R[T1, . . . , Tn], R) = Rn. In the

special case R = K, K = R, C, the space-time induced by A
n
S is the flat manifold A

n
S(S) = K

n.
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But if X = A
n
S , then Kn ∼= XK(K) 
= X(S) ∼= On

K , and if X = P
n
S, not every morphism uK extends to

an S-morphism u (see [2], Example 3.5/5). Therefore, the flat, topologically trivial Minkowski space-
time is impossible. �

Next, let us introduce a particularly simple class of models of type (GR).

Definition 17. Let (X → S, g) be a model of type (GR) in the sense of Definition 16, and let XK be the
generic fibre of X. Then the pair (X → S, g) is called a model of type (SR), if in addition the following
condition holds:

• (iii) XK is a commutative K-group (see [2], Def. 4.1/2).

More precisely, the K-group XK should be considered as a K-torsor under XK (in the sense of [2],
chapter 6.4). Physically, this means that the special choice of a zero element of the group is forgotten as
it should be for physical reasons.

In order to generalize this notion slightly, one may also admit K-torsors XK under K-groups GK 
=
XK . However, we will restrict attention to the case GK = XK . Definition 17 is motivated by special
relativity with electromagnetism: The Minkowski space-time of special relativity naturally carries an
additive, commutative group structure, and the gauge group of electromagnetism is commutative, too.
This explains the label model of type (SR), because (SR) shall remind of special relativity. One can
prove that the following statements are true for all models of type (SR).

Proposition 1. Let (X → S, g) be a model of type (SR). Then the following statements are true:

1. X → S is étale-invariant. More precisely, this statement means the following: Let ϕ : X →
X be an étale S-morhpism, and let (X ′ → S′, g′) be the pair obtained from (X → S, g) by
base change with an étale morphism S′ → S. Then, (X → S,ϕ∗g) and (X ′ → S′, g′) are
models of type (SR), too.

Proof. The crucial fact is that Néron models are compatible with étale base change ([2], Prop.
1.2/2 c)). �

2. X cannot be the flat, topologically trivial Minkowski space (see above).

3. The archimedean component XK(K) is bounded with respect to all p-adic norms. In the
special case K = Q and under the assumption that there is a closed immersion XK ↪→ A

n
K ,

this is the following statement: For each prime number p, the p-adic manifold XK(Qp) is a
bounded subset of some Q

n
p with respect to the canonical p-adic norm | · |p.

Proof. We know that XK possesses a global Néron model. Consequently, the local Néron models
exist ([2], Prop. 1.2/4). Therefore, due to [2], Thm. 10.2/1, it is necessary that XK(K) or even the
continuum XK(K̂) is bounded. �

4. The archimedean component XK(K) carries a discrete geometry, if XK is quasi-compact,
because in this case XK is an Abelian variety (due to the following statement 5.)).
Therefore, the Mordell-Weil theorem tells us that XK(K) is a finitely generated abelian
group, i.e.

XK(K) ∼= Z
d ⊕ Z/(pν1

1 ) ⊕ · · · ⊕ Z/(pνs
s )

for some prime numbers pi ∈ N and integers d, s, νi ∈ N. In the special case d = 0, XK(K)
consists of only finitely many points.
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5. If we do not demand the quasi-compactness of the archimedean component XK of X, one
can prove that XK possesses a Néron model if and only if there is an exact sequence

0 �� TK
�� XK

�� AK
�� 0

over some algebraic closure of K, where TK is an algebraic torus and AK is an abelian
variety. While AK is p-adically bounded, TK is not. We interpret AK as space part and the
torus TK as an internal, gauge group part which we therefore associate with electromag-
netism. Thus, XK should appear as AK-torsor under TK (which is the algebraic geometric
analogue of the differential geometric principal bundle of gauge theory).

6. On the “adelic” level there is some kind of entanglement of dimensions. For example, it is
in general not possible to diagonalize the metric at the “adelic” points of X(S).

Let us remark that the statements 1. and 2. are also true for models of type (GR).

3. THE ARITHMETIC EINSTEIN EQUATIONS

Let X → S be a smooth, separated S-scheme of relative dimension n. The purpose of this section is
the derivation of the fundamental equations of general relativity in our algebraic geometric setting. As
the ordinary differential geometric Einstein equations are differential equation, we must expect that this
holds in algebraic geometry, too. For the basic notions concerning smoothness and differential calculus
in algebraic geometry we refer the reader to chapter 2 of [2]. Crucial are the following notions.

Ω1
X/S sheaf of (relative) differential forms

TX/S := HomOX

(
Ω1

X/S ,OX

)
sheaf of (relative) vector fields

TX/S := V

(
Ω1

X/S

)
(relative) tangent bundle .

One can prove that

Γ(TX/S/U) := HomX(U, TX/S) ∼= TX/S(U)

for every Zariski open subset U ⊂ X. Therefore vector fields correspond to sections of the tangent bundle
(as one is used to from differential geometry).

3.1. The Metric Tensor

Due to smoothness, the sheaves Ω1
X/S and TX/S are locally free ([2], Prop. 2.2/5). Let us fix a local

base {ωi} of Ω1
X/S which is dual to the local base {∂i} of TX/S .

Definition 18. Let g : TX/S ×X TX/S → A
1
X be an X-morphism which is bilinear. Equivalently, g may

be interpreted as a global section of Ω⊗2
X/S . Locally, we may write

g =
∑

1≤i,j≤n

gij ωi ⊗ ωj ∈ Ω⊗2
X/S , gij ∈ OX .

Then g is called a metric if the following conditions hold for any sufficiently small open subset of X:

(i) The matrix (gij) is symmetric, i.e. gij = gji.

(ii) The matrix (gij) is invertible, i.e. det(gij) ∈ O ∗
X .
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3.2. Covariant Derivation

Definition 19. Let ∇ : TX/S ×X TX/S → TX/S be an X-morphism. Interpret ∇ as a map

∇ : TX/S(X) × TX/S(X) → TX/S(X), (u, v) �→ ∇uv.

Let us assume that ∇ is a OS(S)-bilinear map, where the OX(X)-module TX/S(X) is viewed as OS(S)-
module via the canonical morphism OS(S) → OX(X). Then ∇ is called a covariant derivation if the
following conditions hold for all f ∈ OX(X) and u, v ∈ TX/S(X):

(i) ∇fuv = f∇uv.

(ii) ∇u(fv) = (uf)v + f∇uv.

Thereby, uf := u(f) = (dX/Sf)(u) is the canonical action of vector fields on functions (the differential
dX/S is introduced and explained in [2], chap. 2.1).

Definition 20. Let ∇ be a covariant derivation, and let u, v and w ∈ TX/S(X).

1. T (u, v) := ∇uv −∇vu − [u, v] is called the torsion of ∇.

2. ∇ is called torsion-free if and only if T (u, v) = 0 for all u, v.

3. ∇ is called metrical if and only if ug(v,w) = g(∇uv,w) + g(u,∇uw) for all u, v,w.

In the same way as in differential geometry one proves that there exists a uniquely determined
covariant derivation ∇ which is metrical and torsion-free, the Levi-Civita connection. The Levi-Civita
connection is completely determined by the metrical tensor. More precisely, the Koszul formula holds.

2 g(∇uv,w) = ug(v,w) − wg(u, v) + vg(w, u) + g([u, v],w) + g([w, u], v) − g([v,w], u)

3.3. Curvature

From now on let ∇ be the Levi-Civita connection. Then we may introduce the curvature tensor

Ruv(w) := ∇u∇vw −∇v∇uw −∇[u,v]w.

Then the tensor Rzwuv := g(Ruv(w), z) is called the Riemannian curvature tensor. The Riemannian
curvature tensor fulfills the following identities.

Proposition 2. Let u, v,w, z ∈ TX/S(X). Then:

• Ruvwz = −Rvuwz, Ruvwz = −Ruvzw, Ruvwz = Rwzuv

• first Bianchi-identity: Rzuvw + Rzvwu + Rzwuv = 0

• second Bianchi-identity: (∇uR)vw + (∇vR)wu + (∇wR)uv = 0

Thereby, (∇uR)vw(z) := ∇u(Rvw(z)) − R∇uv,w(z) − Rv,∇uw(z) − Rvw(∇uz).

More generally, the covariant derivation of arbitrary tensor fields S and T with respect to a vector field
v may defined inductively as follows: ∇v(S ⊗ T ) := ∇vS ⊗ T + ∇vT ⊗ S.

Definition 21. The bi-quadratic form k(u, v) := Ruvuv is called intersection curvature.

Proposition 3. The Riemannian curvature tensor is completely determined by k. More precisely:

1. 4 · Ruvvw = k(u + w, v) − k(u − w, v)

2. 6 · Ruvwz = Ru,v+w,v+w,z − Ru,v−w,v−w,z − Rv,u+w,u+w,z + Rv,u−w,u−w,z
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Corollary 2. Let X → S be a smooth S-scheme with metric g. Then X is flat, i.e. k(u, v) = 0 for all
u, v ∈ TX/S(X), if and only if the Riemannian curvature tensor vanishes, i.e. R = 0.

Definition 22. Let X → S be a smooth S-scheme with metric g and consider a local base {∂i} of TX/S

and a local base {ωi} of Ω1
X/S . The curvature tensor Ruv(w) is trilinear in u, v,w and therefore induces

linear maps R•v(w). Taking the trace finally yields the symmetric bilinear form ric

ric(v,w) := Tr(R•v(w))

which is called the Ricci-form of (X → S, g). Now consider the uniquely determined tensor Ric which
is given by g(Ric(u), v) = ric(u, v) for all vector-fields u, v. The scalar curvature sc is by definition the
trace

sc := Tr(Ric(•))
of the linear map Ric(•). Furthermore, the divergence div(T ) of any symmetric (0, q)-tensor T :=∑

Ti1...iqω
i1 ⊗ . . . ⊗ ωiq is defined as follows: The covariant derivation ∇T of T is a (0, q + 1)-tensor

∇T :=
∑

Ti1...iq;jω
i1 ⊗ . . . ⊗ ωiq ⊗ ωj . Then div(T ) is the (0, q − 1)-tensor which is obtained by lifting

the new variable and contracting it:

(div(T ))i1...iq−1 = giqjTi1...iq;j .

3.4. Einstein’s Equation

Let X → S be a smooth S-scheme with metric g, and let ∇ be the Levi-Civita connection on
X. Furthermore, let T denote the energy-stress tensor. This is a symmetric (0, 2)-tensor on X with
div(T ) = 0. Then the equations of general relativity in our arithmetic setting are given by the following
system of equations:

Definition 23.

ric − 1
2

sc · g = κT ,

where κ ∈ OS(S) is a constant. Now, having written down the equations of general relativity in the
setting of arithmetic algebraic geometry, one can ask for solutions. Choosing S = SpecR and assuming
that there exists a solution of the corresponding algebraic geometric Einstein equations, it follows that
this solution gives rise to a differential geometric solution of the ordinary, differential geometric Einstein
equations. This follows from the purely algebraic nature of the notions metric, covariant derivation and
curvature.

In order to solve the Einstein equations, it is most convenient to perform all computations locally and
to glue the local solutions in a second step. We will see that these local computations may be performed
in essentially the same way as in differential geometry. On the one hand, this is due to the fact that the
local ring OX,x at a rational point x may be embedded into a ring of formal power series.

Proposition 4. Let X → S be a smooth morphism of locally Noetherian schemes. Let s ∈ S and
x ∈ Xs be a k(s)-rational point. Then there exists an isomorphism of ÔS,s-algebras

ÔX,x = ÔS,s[[x1, . . . , xn]]

where (x1, . . . , xn) is a set of variables and n = dim OXs,x.

Proof. [9], Ex. 6.3.1 �

Furthermore, we know from [2], Prop. 2.2/11, that each point x ∈ X possesses an open environment
U which is étale over some affine space A

n
S = SpecOS [x1, . . . , xn]. Therefore, the module Ω1

U/S of
differential forms over U is the free OU -module generated by the differentials dx1, . . . , dxn ([2], Cor.
2.2/10), and we may choose the base {ωi := dxi} of Ω1

U/S together with the corresponding dual base
{∂i} of TU/S .
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The functions f ∈ OU on U are algebraic over the polynomial ring OS [x1, . . . , xn], because we may
assume that U is standard étale over A

n
S (see [2], Prop. 2.3/3). Consequently, there is a canonical

differential calculus on U with respect to the coordinates x1, . . . , xn. More precisely, the vector field
∂i acts on f by means of ordinary partial derivation with respect to the i-th coordinate xi. This
may be seen as follows: On polynomials we have clearly ∂ix

n
j = δij · nxn−1

j due to the Leibniz rule
(vector-fields may be identified with derivations; see [2], chap. 2.1). If f ∈ OU is arbitrary, there is
an algebraic equation

∑m
j=0 cjf

j = 0 with polynomials cj ∈ OS [x1, . . . , xn], cm 
= 0. It follows that

0 = ∂i(
∑m

j=0 cjf
j) =

∑m
j=0(f

j∂icj + cjjf
j−1∂if) which is a linear equation in ∂if and thus may be

solved uniquely for ∂if on the locus where
∑m

j=0 cjjf
j−1 
= 0. However, by what we already know, ∂icj

is the ordinary partial derivation of cj with respect to the i-th coordinate xi, and so we are done.

Therefore, we obtain the following local formulas on U (where we make use of Einstein’s summation
convention):

• g = gijω
i ⊗ ωj with gij = gji ∈ OU , Γk

ij = 1
2gkl(∂igjk + ∂jgik − ∂kgij);

• ∇∂i
∂j = Γk

ij∂k, where the functions Γk
ij ∈ OU are called the Christoffel-symbols;

• R∂i∂j
(∂k) = Rl

kij∂l, Rl
ijk = ∂jΓl

ki − ∂kΓl
ij + Γr

kiΓ
l
jr − Γl

krΓ
r
ij ;

• Rik := ricik = Rl
ilk, R := sc = gikRik.

Now, the Einstein equations take their well known form

Rμν − 1
2
gμνR = κTμν or equivalently Rμν = κ

(

Tμν − 1
2
gμνT

)

, T := gμνTμν ,

and Theorem 2 follows from the corresponding differential geometric result.

Theorem 2. Let g be a metric on a smooth S-scheme X → S. The Einstein equations on X are
universal in the following sense: For x ∈ X, let {∂i} be a base of Ω1

X/S,x, and let gij ∈ OX,x be the
components of the metric tensor at x. Assume that there exists a tensor G of rank two such that
for all x ∈ X the following statements hold at x:

1. G is a polynomial over K in the variables gij , ∂kgij and ∂k(∂lgij) which is linear in ∂k(∂lgij).

2. G is a symmetrical tensor.

3. div(G) = 0.

Then, G coincides with the Einstein tensor ric − 1
2 sc · g.

4. SOLUTIONS OF THE ARITHMETIC EINSTEIN EQUATIONS

In section 3, we deduced the algebraic geometric analogue of the differential geometric Einstein
equations. Let us point to the crucial fact that the class of functions, which is available in order to solve
the equations of arithmetic general relativity, is much smaller than in the differential geometric setting,
because the local functions f ∈ OU are algebraic functions. Nevertheless we will see that there actually
exist models of type (GR) (X → S, g).
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4.1. The Case of Zariski Zero-Dimensional Base

Within this section, let S = SpecK be the spectrum of a field K. We are looking for models of type
(GR) (X → S, g) (see Definition 16). However, the condition (ii) of Definition 16 is empty in this case.
Therefore, from the adelic point of view, S = SpecK is not the physically interesting case, but rather
a toy model. The interesting “adelic” models, where all conditions of Definition 16 are non-trivial will
be considered in section 4.2 . At least there are many models of type (GR) for the choice S = SpecK,
because things are particularly easy in this case. The most easiest example is the Minkowski solution

(An
K , g0), g0 := diag (±1,±1,±1,±1).

However, there are further, less trivial examples which correspond to certain solutions of the classical
differential geometric Einstein equations.

4.1.1. Kasner solution. Again we choose XK := A
n
K with coordinates (t = x0, x1, . . . , xn−1), but this

time we choose the following non-trivial metric gK

g00 = 1, g0i = 0, i 
= 0, gij := cδij · t2ki , i 
= 0 
= j,

where δij denotes the Kronecker delta, and where c ∈ K and ki ∈ Q are constants. Then gK is well
defined in the category of algebraic spaces, and it remains to show that we can choose the constants
in such a way that the Einstein equations are fulfilled. We may do this on stalks. Recalling the
remarks below Proposition 4 and the formulas stated there, we may compute the Christoffel symbols
corresponding to the given metric. Exactly the same computation as in differential geometry shows:

Lemma 1. The Ricci tensor is diagonal in the given coordinates, i.e. Rμν = δμνRμν . For the
diagonal elements one obtains:

R00 =
1
t2

∑

j �=0

(
kj − k2

j

)
, Rii = −ckit

2(ki−1)

⎛

⎝
∑

j �=0

kj − 1

⎞

⎠ , i 
= 0.

Corollary 3. Let XK := A
n
K and gK be as stated above. Furthermore, choose the constants ki ∈ Q

such that
∑

j �=0

kj = 1 =
∑

j �=0

k2
j .

Then (XK , gK) is a model of type (GR).

4.1.2. Schwarzschild solution. The example of the Schwarzschild metric will show very clearly the
general phenomenon that the Zariski topology is too coarse for physical applications and that it is
necessary to work within the context of the étale topology. However, let us again start from the affine
space A

n
K with coordinates (t = x0, x1, . . . , xn−1), but this time we consider the K-scheme XK :=

SpecK[t, x1, . . . , xn−1, r, r−1]/(r2 −
∑

i�=0(x
i)2), whereby r :=

√∑
i�=0(xi)2 should be interpreted as

a spacial radius. By construction, XK is étale over A
n
K . In particular, the respective differential calculi

“coincide”. We choose the following metric gK on XK :

g00 =
1

1 + 2m
r

, g0i = 0, gij := −
(

1 +
2m
r

)2

δij +
xixj

r2

(

1 +
2m
r

)
2m
r

, i 
=, 0

where δij denotes the Kronecker delta, and m ∈ K is a constant. By means of a longer but standard
calculation, one can prove that the metric above solves the vacuum Einstein equations. Thus (XK , gK)
is indeed a model of type (GR). The metric gK corresponds to the Schwarzschild metric: (XK , gK)
describes the exterior of a black hole. More precisely, r scales the distance from the event horizon of the
black hole, and the constant m turns out to be the Schwarzschild diameter of the black hole.
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4.1.3. Robertson-Walker models. Last, but not least, let us briefly mention the Robertson-Walker
models. In differential geometry, these are defined in spherical coordinates by

gμν = diag
(

1,
−S(t)2

1 − kr2
,−S(t)2r2,−S(t)2r2sin2(θ)

)

Tμν = diag
(

ρ(t),
−p(t)S(t)2

1 − kr2
,−p(t)S(t)2r2,−p(t)S(t)2r2sin2(θ)

)

where S(t) is a so called scale factor, and where ρ resp. p denote the density resp. pressure of energy. In
the special case p = 0, the divergence divT of the energy-stress tensor vanishes if and only if the product
C := ρ(t) · S(t)3 is constant with respect to t. Then the Einstein equations Rμν − 1

2gμνR = κTμν yield
the differential equation

(
∂S(t)

∂t

)2

+ k =
κC

3S(t)
.

Whenever the solution S(t) of this differential equation is an algebraic function, the corresponding
Robertson-Walker metric would make sense in algebraic geometry. However, in general, S(t) will not
be algebraic. So, the classical Robertson-Walker models have no algebraic geometric analogues. But at
least in the case k = 0, we find the algebraic solution

S(t) = t
2
3

3
√

4/3 · κC.

Therefore, we obtain a model of type (GR) if we choose XK := A
n
K with coordinates (t = x0, x1, . . . , xn−1)

as well as the following metric and energy-stress tensor:

gμν = diag
(
1,−ct

4
3 ,−ct

4
3 ,−ct

4
3

)
, c := (4/3 · κC)

2
3 ∈ K, Tμν =

(
4

3t2
, 0, 0, 0

)

.

4.2. The Case of Zariski One-Dimensional Base

Within this section, let S = SpecO be the spectrum of a Dedekind ring which is not a field. From the
“adelic” point of view, this is the physically interesting case, because the condition (ii) of Definition 16 is
no longer empty. Consequently, it is much harder to construct models of type (GR).

In section 4.2.1, we will first consider the low dimensional case, because then the Einstein equations
are trivial. But as soon as the tangent spaces exceed three dimensions, this is no longer true. Then,
the conditions (i) and (ii) of Definition 16 are both non-trivial. This the physically interesting situation
where we are looking for models of type (GR) (X → S, g). An example, which may be interpreted as the
“adelic” Minkowski space, is presented in section 4.2.2.

4.2.1. The low dimensional case. Let X → S be a smooth S-scheme of relative dimension one or two
with metric g. We will show that the Einstein equations are trivial in this case. As it suffices to show this
locally, we may choose an open sub-scheme U of X such that Ω1

U/S is free with base {ωi}. In the one
dimensional case, our assertion is clear, because the curvature tensor has got only a single component,
and this component vanishes due to the symmetries of the curvature tensor (see Proposition 2). Thus,
also the Einstein tensor ric − 1

2 g · sc vanishes . In the two dimensional case, a small computation is
necessary. Again making use of the identities of the curvature tensor several times, we obtain with
respect to the given base:

R := sc = gμνricμν = gμνR1
μ1ν + gμνR2

μ2ν = gμ2R1
μ12 + gμ1R2

μ21 = gμ2gν1Rνμ12 + gμ1gν2Rνμ21

= g11g22R1212 + g21g12R2112 + g11g22R2121 + g21g12R1221 = 2detg · R2121.

Therefore, one derives that

Rμ
ν := Ricμ

ν = gμλricλν = gμλR1
λ1ν + gμλR2

λ2ν = gμλg1ιRιλ1ν + gμλg2ιRιλ2ν

= gμ1g12R211ν + gμ2g11R121ν + gμ1g22R212ν + gμ2g21R122ν

= R211ν(gμ1g12 − gμ2g11) + R212ν(gμ1g22 − gμ2g21)
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= δ2μδν2(g21g12 − g22g11)R2112 + δμ1δν1(−g21g12 + g22g11)R2121

= R2121detg · (δ2μδν2 + δμ1δν1) =
1
2
δμνR.

Consequently, Rμ
ν − 1

2δμνR = 0 or equivalently Rμν − 1
2gμνR = 0. In particular, there are many models

of type (GR) in the low dimensional case.

Corollary 4. Let X → S be a smooth S-scheme of relative dimension one or two such that X is
the Néron model of its generic fibre. Then X gives rise to a model of type (GR).

4.2.2. A higher dimensional solution. Again, let X → S be smooth over the Zariski one-dimensional
base scheme S. If the relative dimension exceeds two, the Einstein equations are no longer trivial.
Therefore, it is not easy to find models of type (GR) in the “adelic” situation. However, in this section
we will state at least one example, namely the fibred product X := E1 ×S . . . ×S En of smooth elliptic
curves Ei over S. In a certain way, this is the “adelic” analogue of Minkowski space-time. However,
the idea of the proof that X is indeed a model of type (GR) (Theorem 3) is as follows: Locally, every
smooth curve C over S may be embedded in some affine space A

n
S (see [2], Def. 2.2/3). Pulling back

the flat metric diag(±1, . . . ,±1) on A
n
S to C and pushing forward this metric on C to A

1
S by means of

an étale morphism C → A
1
S (which is possible by [2], Prop. 2.2/11 b) and Cor. 2.2/10), we obtain the

first fundamental form on C in local coordinates. Analogously, we obtain the first fundamental form on
a product of curves in local coordinates. (Recall that the first fundamental form is in general defined as
follows: Due to smoothness, each point x ∈ X possesses an open environment U ⊂ X such that U may
be embedded into some affine space A

m
S for some m. Pulling back the flat metric diag(±1, . . . ,±1) on

A
m
S to U , we obtain the first fundamental form on U . The first fundamental form on X is obtained by

gluing.) This metric is diagonal, because Ω1
(X1×SX2)/S

∼=
⊕

i p
∗
i Ω

1
Xi/S , where pi denotes the projection

onto the i-th factor ([2], Prop. 2.1/4). It follows that the corresponding curvature tensor vanishes (see
Corollary 5). Consequently, a product of elliptic curves is a vacuum solution of the Einstein equations
and it is even a model of type (GR), because it is the Néron model of its generic fibre. However, let us
now make the indicated steps of the proof more explicit.

Lemma 2. Let C1, . . . , Cn be n smooth curves over S. Provide X := C1 ×S . . . ×S Cn with the first
fundamental form g as metric. Then g is diagonal.

Proof. Instead of proving this lemma in full generality, let us restrict attention to the special case of a
product of elliptic curves, because we will only make use of Lemma 2 in the case that X is a product of
elliptic curves. The proof of the general case may be performed in a similar (but more abstract) way.
First, we have to compute the first fundamental form. In order to do this, let us consider a smooth
elliptic curve E over a field K which is not of characteristic two. Let us now restrict E to the affine
open subset SpecK[X,Y, Y −1] ⊂ P

2
K , and let us therefore assume that E is described by an equation

P (Y,X) := Y 2 − X3 − g2X − g3 = 0. Then we have canonical morphisms of K-algebras

K[X,Y, Y −1] −→
j∗

OE := K[X,Y, Y −1]/(P ) ←−
g∗

K[X]

X �→ X � X

Y �→ Y

where g∗ is étale. Therefore, we obtain on the level of differential forms

Ω1
K[X,Y,Y −1]/K ⊗K OE −→

j∗
Ω1

OE/K
∼−→

(g∗)−1
Ω1

K[X]/K ⊗K OE

dX �→ dX �→ dX

dY �→ dY �→ 3X2+g2

2Y dX
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where we made use of the identity (3X2 + g2)dX = dY 2 = 2Y dY in Ω1
OE/K . The dual of this map is

the OE-linear map ∂X �→ ∂X + 3X2+g2

2Y ∂Y , where ∂X (resp. ∂Y ) denotes the dual of dX (resp. dY ). In
particular, the tangent vectors of E in the affine open subset SpecK[X,Y, Y −1] ⊂ P

2
K may be written as

vectors
⎛

⎝ 1
3X2+g2

2Y

⎞

⎠ .

Providing SpecK[X,Y, Y −1] with the trivial metric g0 = diag(1, 1) and interpreting g0 as bilinear form,
we derive the first fundamental form g on E:

g = g0

⎛

⎝

⎛

⎝
1

3X2+g2

2Y

⎞

⎠ ,

⎛

⎝
1

3X2+g2

2Y

⎞

⎠

⎞

⎠ = 1 +
(3X2 + g2)2

4Y 2
.

This is manifestly the same result as in differential geometry. The procedure in the case of a product of n
elliptic curves is straight forward. For example, if n = 2, we have to compose the above homomorphism
of K-algebras with the projection map K[X,Y, Y −1, Z,W ] → K[X,Y, Y −1], Z,W �→ 0, where Z and
W are the variables of the second elliptic curve. In this case we obtain the two tangent vectors

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
3X2+g2

2Y

0

0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

and

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0

0

1
3Z2+g′2

2W

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

In particular, the metric is diagonal. �

Corollary 5. Let X be as in Lemma 2. Then X is flat, i.e. the curvature tensor vanishes.

Proof. As the curvature tensor is a global section of a sheaf, it suffices to prove the statement locally.
Therefore, we may assume that the components gij of the metric tensor g are algebraic over some
polynomial ring, say with variables x1, . . . , xn. Due to Lemma 2, the metric is diagonal and the statement
may be proven in exactly the same way as in differential geometry. �

Theorem 3. Let X := E0 ×S . . . ×S En be the fibred product of smooth elliptic curves Ei over S.
Let g be the first fundamental form on X. Then (X → S, g) is a model of type (GR).

Proof. By Corollary 5, X is flat, i.e. the curvature tensor vanishes. In particular, (X, g) is a solution of the
vacuum Einstein equations. Due to the fact that Néron models fulfill the property (ii) of models of type
(GR) (see Definition 16), it suffices to show that X is the Néron model of its generic fibre. Now notice
that the fibred product of Néron models over S is again the Néron model of its generic fibre, because the
universal property of fibred products implies the universal property of Néron models. Consequently, we
are reduced to the proof that an elliptic curve over S is the Néron model of its generic fibre. Thus we are
done by [2], Theorem 1.4/3. �

Remark 3. Let X := E0 ×S . . . ×S En be the fibred product of n smooth elliptic curves Ei over S
provided with first fundamental form g. In truth, (X → S, g) is even a model of type (SR) (see Definition
17). In particular, all results, which are stated in 1, are true for X.

Let us now choose S = SpecOK , where OK is the ring of integral numbers of an algebraic number
field K ⊂ R. Let us compare X with the Minkowski space-time A

n
S . Both describe a space-time without

gravity, because the curvature tensor vanishes identically. Furthermore, both carry a canonical, commu-
tative group structure. The inverse of the respective group laws may be interpreted as a simultaneous
space and time reflection. The difference between X and Minkowski space-time is of topological nature.
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While A
n
S is a product of curves of genus zero, X is a product of curves of genus one. Therefore, X carries

a non-trivial vacuum structure.
This difference in the global topology has some interesting consequences: In the Minkowski case,

the set of archimedean points A
n
K(K) = Kn is not a finitely generated abelian group. There is even no

finitely generated abelian subgroup of A
n
K(K) which is invariant under all K-isomorphisms of A

n
K . But,

if we consider instead the model X something interesting happens: Due to a theorem of Mordell, the
set XK(K) of archimedean points of X is a finitely generated abelian group. Furthermore, XK(K) is
invariant under arbitrary K-isomorphisms of XK . Therefore, its makes sense to consider XK(K) as a
vacuum.
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