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1. INTRODUCTION

Let X be a finite, connected, unoriented graph with first Betti number g ≥ 2 (from now on called the
genus) and valencies ≥ 3. Let EX denote the universal covering tree of X. The fundamental group Γ of
X, which is a free group of rank g, acts on EX and we have

X ∼= EX/Γ. (1.1)

The action of the fundamental group induces an action on the boundary ∂X of EX . The dynamics of
the action on the boundary endowed with the Patterson-Sullivan measure encodes the graph, that is,
equivariant, non-singular homeomorphisms only exist between boundaries coming from isomorphic
graphs (see Proposition 7). In this article we will show that, using this, the graph can be encoded
by a finitely summable, commutative spectral triple (see Definition 8). This is a notion from non-
commutative geometry describing a non-commutative analogue of Riemannian manifolds (see [5] for
an extensive treatment of non-commutative geometry). In fact, we will show that the zeta function
formalism available for finitely summable spectral triples encodes the Patterson-Sullivan measure and
hence the isomorphism class of the graph.

This article is inspired by [10] where a similar construction was applied to Riemann surfaces, which
was based on [11] where, among other things, θ-summable spectral triples are constructed for actions
on trees, which was in fact a refinement of [7]. The chain of ideas started in [3] with a construction of
spectral triples for AF C∗-algebras and closely related work in [16].

Construction of the spectral triple SX = (A,H,D). Given a graph of genus g as above, then after
representing Γ as group of isometries of EX , there exists a Γ-equivariant homeomorphism ΦX : ∂Fg →
∂X (see Proposition 2), where ∂Fg is the boundary of the Cayley graph of Γ. For the algebra we take
A = C(∂Fg, C), the continuous, complex valued functions on the boundary of the Cayley graph. Note
that by the Gelfand-Naimark theorem this algebra encodes the topology on ∂Fg . As a side remark,
the natural candidate for A in non-commutative geometry would have been A � Γ, but by Connes’
result on non-amenable groups, this would not give rise to a finitely summable spectral triple (see
[5], Theorems 17 and 19, pp. 214-215). We will also need A∞ = C(∂Fg, Z) ⊗Z C, the locally constant
functions on the boundary. The Hilbert-space H will be the completion of A with respect to integration,
i.e. ||f ||2 =

∫
|f |2dν, of the induced measure from the Patterson-Sullivan measure on ∂X to ∂Fg via

ΦX . The Dirac operator D is composed of projection operators depending on the word grading in Γ (see
Definition 12).The result is the following (see Theorem 5):

∗The text was submitted by the author in English.
**E-mail: J.W.W.deJong@uu.nl

286



GRAPHS, SPECTRAL TRIPLES 287

Theorem 1. The spectral triple SX determines the graph X.

In fact, this theorem follows from zeta function rigidity, which means that the (spectral) zeta
functions, defined by ζX

a (s) = Tr(a|D|s) for a ∈ A∞, already contain all the information of the graph
and hence of the triple (see Theorem 3). The construction depends on the choice of an origin and on a
minimal set of chosen generators for Γ. To deal with these choices, we collect them all in a set, called
ζ[X] (see Definition 14).

Theorem 2 (Main theorem). Let X1,X2 be finite, connected graphs of genus g ≥ 2 and valencies
≥ 3. Then either

ζ[X1] ∩ ζ[X2] = ∅, (1.2)

or

ζ[X1] = ζ[X2] and X1
∼= X2 as graphs. (1.3)

Here the intersection is defined as follows: One starts by comparing at the unit of the algebras,
i.e. ζXi

1 : If these are different, the intersection is defined to be ∅; If they are the same, the genus
g is the same by Proposition 5. Now consider ∂Fg and fix the algebra A∞. The infinitely long
rows (ζXi

a )a∈A∞ ∈ ζ[Xi] are now indexed by the same algebra A∞ and we can compare elements
(ζXi

a )a∈A∞ ∈ ζ[Xi].

Remark 1. This theorem answers the non-commutative isospectrality question for graphs, namely that
one can retrieve the graph by its non-commutative spectra. The spectrum of the Dirac operator itself,
contained in ζ1(s) = Tr(|D|s), does not determine the graph. In fact, it only determines the genus by the
innocent zeta function (cf. formula 4.5):

ζX
1 (s) = 1 + (2g)3s(2g − 1)

{1 − (2g − 1)3s−1

1 − (2g − 1)3s+1

}
(1.4)

A further motivation for this article was to understand what morphisms in the (so far non-existing)
category of spectral triples should be. To achieve this, one can for instance try to map the objects of
known categories (in a sensible manner) into the objects of ’the category of spectral triples’ (i.e. the
spectral triples itself) and then study what happens with morphisms in the known category. In this article
we map the objects of the category of graphs into the objects of the ’category of spectral triples’. Note
that the constructed triple is in fact commutative. In the framework of spectral triples there should also
be morphisms not induced by the commutative analogue, but should for instance also entail Morita
equivalence.

2. PRELIMINARIES

In this section we will recall some well-known facts about graphs.

2.1. Let X be a finite, connected, unoriented graph with first Betti number g ≥ 2 and valencies ≥ 3. We
will assume this throughout this paper. Let EX denote the universal covering tree of X and let Γ be the
fundamental group of X. Then Γ is a free group of rank g and acts freely on EX , with

X ∼= EX/Γ (2.1)

(see for instance the introduction of [17]).

Remark 2. We will not distinguish between regarding an element of Γ as closed path or as isometry of
EX , it will be clear from the context.

Definition 3 (Distance on EX). The tree EX is a complete, geodesic, metric space for a natural distance
function l: Every edge is defined to be a closed interval of fixed length L ∈ R>0. Since two points in the
tree are connected by a unique sequence of edges, this induces a distance between them.
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Fig. 1. The open set UP .

Definition 4 (Boundary). Let X be a finite, connected graph with universal covering tree EX . The
boundary ∂X of EX consists of all infinite words w = w0w1w2 . . . in adjoining, unoriented edges, without
backtracking, in the covering tree. Two such words are considered the same if they agree from some point
on; more precisely w = w′ if there exist N,K such that for all n ≥ N we have wn+K = w′

n.

Remark 3. One can also define a boundary by means of a ’scalar product’ (see Chapter 2 of [8]), in our
case these two coincide.

2.2. Given a vertex V ∈ EX and an element w ∈ ∂X, then w can be uniquely represented by a word
starting at vertex V . This specific representation of w will be denoted by [V,w). Given two distinct points
ξ1, ξ2 ∈ ∂X, we can form the unique geodesic connecting these, which will be denoted by ]ξ1, ξ2[.

Definition 5 (Distance on the boundary). Let O be a distinguished vertex in the universal covering tree
EX , called the origin. The distance dX,O on ∂X is defined by

dX,O : ∂X × ∂X → R≥0

d(w,w′) = 2−n, (2.2)

with

n = #{[O,w) ∩ [O,w′)} ∈ N ∪ {+∞}, (2.3)

the number of coinciding edges of the two words, with the convention 2−∞ = 0.

2.3. The distance turns ∂X into a metric space which induces a topology on the boundary ∂X. For fixed
v = [O, v) = v0v1 . . . ∈ ∂X and N ∈ N>0, basic open balls around v of radius 2−N are described by

B(v, 2−N ) = {w ∈ ∂X | d(w, v) < 2−N}
= {w ∈ ∂X | [O,w) = v0v1 . . . vN+1Q where Q runs over

all infinite paths with no backtracking starting at the
endpoint of the path P = v0 . . . vN+1}. (2.4)

We will denote this open ball by UP (see Figure 1).

Proposition 1. The boundary is a totally disconnected Hausdorff space and the set UP as above
is clopen (open and closed).

Proof. For the Hausdorff property: Let [O,w), [O,w′) be two distinct elements of ∂X, then there exists
an N such that wN �= w′

N , define P = w0 . . . wN and Q = w′
0 . . . w′

N , then w ∈ UP and w′ ∈ UQ and
UP ∩ UQ = ∅, so ∂X is Hausdorff. Now we show that U c

P is open:

U c
P =

⋃

R�=P,l(R)=l(P )

UR, (2.5)

p-ADIC NUMBERS, ULTRAMETRIC ANALYSIS AND APPLICATIONS Vol. 1 No. 4 2009



GRAPHS, SPECTRAL TRIPLES 289

where l assigns to a word its length as in Definition 3. This is a union of open sets and hence open.
Finally, suppose that w and w′ are in a connected component A of ∂X, then, UP ∩ A and U c

P ∩ A is a
separation of A and hence w = w′, so ∂X is totally disconnected.

Definition 6 (Critical exponent). Let Γ be the fundamental group of X, acting as isometry on EX .
Consider the formal Poincaré series,

∑

γ∈Γ

e−sd(O,γO). (2.6)

This series converges absolutely for sufficiently big enough �(s) ∈ R ∪ {∞} (with the convention
e−∞ = 0). Define δ ∈ R≥0 ∪ {∞} as the critical exponent, i.e. for �(s) > δ the series converges and
for �(s) < δ, the series diverges. If δ /∈ {0,∞}, then Γ is called a divergence group with respect to its
action on X (see for instance [13]). In our case Γ acts as divergence group, see Remark 5.5.1.

Definition 7 (Patterson-Sullivan measure on the boundary). Let δ be the critical exponent of Γ acting
on EX and let DP be the Dirac measure at the point P ∈ EX , i.e. DP (U) = 1 if P ∈ U and 0 else. Define
the Patterson-Sullivan measure as

μ = μPS,O = lim
s↓δ

(
∑

γ∈Γ e−sd(O,γO)DγO
∑

γ∈Γ e−sd(O,γO)

)
(2.7)

(see [13]). This converges weakly to a probability measure on X ∪ ∂X with support on the boundary ∂X
and hence turns ∂X into a measure space.

3. THE SPECTRAL TRIPLE

In this section we will define a finitely summable spectral triple in the sense of Connes, a non-
commutative analogue of Riemannian manifolds, and we will study its associated zeta function for-
malism.

Definition 8 (Spectral triples). A unital spectral triple consists of a triple (A,H,D), where A is a unital
C∗-algebra, H a Hilbert-space on which A faithfully acts by bounded operators and D is an unbounded,
self adjoint operator, densely defined on H , such that (D − λ)−1 is a compact operator for λ /∈ Spec(D),
and such that all the commutators [D,a] are bounded operators for a in a dense, involutive subalgebra
A∞ ⊂ A satisfying a(Dom(D)) ⊂ Dom(D) (see [5]). A triple (A,H,D) is called p-summable if the trace
Tr((1 + D2)−p/2) is finite.

Definition 9. Let {γ1, . . . , γg} be a set of generators of the fundamental group Γ of X. Define Fg as
the graph consisting of one vertex with g loops attached to it, corresponding to the generators of the
fundamental group. Denote by ∂Fg the boundary of the universal covering tree of this graph (see figure
2). This corresponds to the boundary of the Cayley-graph of Γ, with respect to the chosen generators of
the fundamental group (see for instance [12]).

We will use Theorem 4.1 of chapter 4 in [8] with Y = EX and G = Γ, the fundamental group of X,
whose boundary is denoted by ∂Fg , which satisfy the hypotheses of the theorem:

Proposition 2. Let Y be a proper geodesic space and let G be an isometry group of Y , acting
properly discontinuous, such that the quotient Y/G is compact. Then G is hyperbolic if and only
if Y is. Moreover, if G (and hence Y ) is hyperbolic, then there is a canonical homeomorphism:

ΦY : ∂G → ∂Y. (3.1)

3.1. For a definition of hyperbolic I refer to [12]. Properly discontinuous means that for any compact set
K ⊂ Y the set

{g ∈ G | g(K) ∩ K �= ∅} (3.2)
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Fig. 2. The covering tree of F2.

is finite. After fixing an origin O, the map ΦY is induced by the map

φY : G → Y

g �→ g(O), (3.3)

which is a quasi-isometry, which means that there are K ≥ 1 and C ≥ 0 such that 1
K d(g1, g2) − C ≤

d(φY (g1, g2)) ≤ Kd(g1, g2) + C for all g1, g2 ∈ G. By Theorem 2.2 of [8], the map φY then induces a
map on the boundaries. The map φY is G-equivariant with respect to the left action of G on itself (see
next Definition 10) and hence the map ΦY is G-equivariant as well.

Definition 10 (Equivariant maps). Let Y1, Y2 be sets. Suppose that the group Gi acts on Yi and let
α : G1 → G2 be a group homomorphism, then a map f : Y1 → Y2 is called equivariant (with respect to
G1, G2, α), if for all g ∈ G1, y ∈ Y1 we have

f(g.y) = α(g).f(y).

Remark 4. Note that the map ΦY is not determined by the abstract group G, but depends on the
representation of G as an isometry group of Y and on a choice of generators when passing to the Cayley
graph. Different choices do not give isometric, but quasi-isometric Cayley graphs.

Definition 11 (Algebra of functions, Hilbert space). Let AX be the algebra of continuous, C-valued
functions on ∂Fg , i.e. C(∂Fg, C). This algebra contains the subalgebra AX,∞ = C(∂Fg, Z) ⊗Z C of
locally constant functions. Let μ be the Patterson-Sullivan measure on ∂X (see Definition 7), then the
measure Φ∗

X(μ) (see Proposition 2) induces an inner product by integration on ∂Fg and hence a norm
on AX . Let HX be the completion of AX with respect to this norm.

Remark 5. Note that after fixing the genus, only HX depends on the graph X, especially the innerprod-
uct on HX . We will use the notation A = AX and A∞ = AX,∞ and H = HX for the algebras.

Proposition 3. The subalgebra A∞ is dense in A.

Proof. The boundary is a totally disconnected Hausdorff space. The sets UP form a basis for the
topology and hence the result.

p-ADIC NUMBERS, ULTRAMETRIC ANALYSIS AND APPLICATIONS Vol. 1 No. 4 2009



GRAPHS, SPECTRAL TRIPLES 291

Definition 12 (Dirac operator). The space A∞ has a natural filtration {An}n≥0 by setting

An = span
C
{1P | P a finite word of length ≤ n}. (3.4)

This filtration is inherited by its completion H . Let Pn be the orthogonal projection operator on An, with
respect to the inner product on H ,

Pn : H → An ⊂ H. (3.5)

The Dirac operator,

D : H → H, (3.6)

is defined by

D = λ0P0 +
∑

n≥1

λnQn, (3.7)

with

Qn = Pn − Pn−1, (3.8)

λn = (dim An)3. (3.9)

Remark 6. As it turns out, we will only need the operator |D| (via the zeta functions), which leaves room
for a possibly interesting sign. For instance, in the case of non-commutative manifolds, the sign F in
D = F |D|, gives rise to the fundamental K-cohomology class of the manifold and plays an important
role in the index formula (see for instance [4, 14]). A sign F must satisfy F 2 = 1, [F, |D|] = 0, must be
bounded and [a, F ] must be compact.

Lemma 1. We have:

a. dim A0 = 1,

b. dim A1 � A0 = 2g − 1

For n ≥ 1 we have

i. dim An = 2g(2g − 1)n−1,

ii. dim An+1 � An = (2g)(2g − 2)(2g − 1)n−2.

Proof. From the origin 2g edges emerge and every next step there are 2g − 1 choices, giving the results.

Proposition 4. The data (A,H,D) as constructed forms a 1-summable spectral triple.

Proof. The ∗-operation is complex conjugation, A acts on H by multiplication which is bounded.
The operator D is real and hence self-adjoint and the compactness of (D + λ)−1 for λ /∈ Spec(D) is
easily checked. For a ∈ An and m > n we have Pm(a) = Pm−1(a). So Pm|Ak

= Pk for k ≤ m and so
[Qm, a] = 0 for m > n, in particular [D,a] is a finite linear combination of finite rank operators of the
form [Qi, a] and hence bounded. For the 1-summability, note that

Tr((1 + D2)−1/2) =
∞∑

n=0

(1 + λ2
n)−1/2(dim An − dim An−1) ≤

∞∑

n=0

(1 + λ2
n)−1/2 dim An

<

∞∑

n=0

(dim An)−2 ≤
∞∑

n=0

(n + 1)−2 < ∞, (3.10)

where we used that dim An ≥ n + 1.
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4. ZETA FUNCTIONS

Definition 13 (Zeta functions). Finitely summable spectral triples give rise to zeta functions. For any
a ∈ A∞ and �(s) � 0, the zeta function is defined by

ζX
a (s) = TrH(a|D|s). (4.1)

From the general framework of finitely summable spectral triples, it follows that this function can be
extended to a meromorphic function on C (see Proposition 1 of [6]).

4.1. Let us expand ζX
a for later convenience. Let Im stand for an inductively obtained orthogonal basis

for Am with Ak ⊂ Ak+1 for all k ∈ N≥0 (obtained by for instance a Gram-Schmidt orthogonalization
procedure). By convention, I0 corresponds to the constant functions and I−1 = ∅.

ζX
a (s) = TrH(a|D|s) =

∑

n≥0

∑

Ψ∈In−In−1

〈Ψ|λs
0aP0 +

∑

m≥1

λs
maQm|Ψ〉 =

∑

n≥0

λs
ncn(a), (4.2)

with

cn(a) :=
∑

Ψ∈In−In−1

〈Ψ|a|Ψ〉. (4.3)

Definition 14 (Equivalence of zeta functions). As noted, the zeta functions constructed above depend
on a choice of origin and on the representation of Γ as group of isometries of EX . To show the dependence
in the notation we write ζX,O,α

a . Here O ∈ X denotes the (arbitrary chosen) origin and α denotes a
representation of Γ as isometry group of X, including a minimal set of generators. Denote by R(Γ,X)
the set of all such α’s. Let

ζ[X] = {(ζX,O,α
a )a∈A∞ | O ∈ X,α ∈ R(Γ,X)} (4.4)

denote the set of all indexed rows of zeta functions, which can be obtained by varying the origin and α’s
as described.

Proposition 5. The zeta function ζX
1 does not depend on any choices and is equivalent to knowing

the genus of X.

Proof. We will explicitly calculate it. Let �(s) � 0, then

Tr(|D|s) = 1 +
∑

n≥1

λs
n(dim An − dimAn−1)

= 1 + (2g)3s(2g − 1) +
∑

n≥2

((2g)(2g − 1)n−1)3s · (2g)(2g − 1)n−2(2g − 2)

= 1 + (2g)3s(2g − 1)
{1 − (2g − 1)3s−1

1 − (2g − 1)3s+1

}
. (4.5)

The first order expansion around s = −∞ is

1 + (2g)3s(2g − 1). (4.6)

So the formula determines g and on the other hand g determines ζ1 by the formula above.

Proposition 6. Let X1,X2 be graphs with the same genus g ≥ 2. If ζX1
a = ζX2

a for all a ∈ A∞,
then the induced measures Φ∗

Xi
(μi) on ∂Fg are equal (with these specific choices of origin and

representation). More precise, lims→−∞ ζXi
a (s) equals

∫
∂Fg

ad(Φ∗
Xi

(μi)).
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Proof. It suffices to show that the zeroth term in the expansion of ζX
a is given as in the theorem as this

equals lims→−∞ ζX
a (s). For this it suffices to show the equality for a basis, i.e. it suffices to show that

ν(UP ) =
∫
∂Fg

1P dν for all P , here ν is one of the induced measures and P is a finite path starting in O

as before. Fix P and take the canonical orthogonal basis BP for A|P |, i.e.

BP = { 1Q

||1Q||
| with l(Q) = l(P )}. (4.7)

The constant term of the zeta function corresponds to Tr(aP0). First we will trace only over A|P | and get
the result. Then we prove that a refinement of the basis does not change the trace, proving the theorem.
We have

TrA|P |(aP0) =
∑

w∈BP

〈w|1P P0|w〉 =

∫
∂Fg

1P P0(1P ) dν
∫
∂Fg

1P 1P dν
= P0(1P )

ν(UP )
ν(UP )

= P0(1P ), (4.8)

here we used that P0(1P ) is a constant function and by abuse of notation we denoted its value by
P0(1P ) ∈ C as well. The projection is characterized by

1P − P0(1P ) ⊥ A0 (4.9)

and because A0
∼= C, this is equivalent with

∫

∂Fg

(1P − P0(1P )) dν = 0 (4.10)

and so P0(1P ) = ν(UP ), proving the first assertion. Now let B′ ⊃ B be an orthogonal extension of the
basis B, in particular we have for v ∈ B′ \ B,

∫
1P · vdμ = 0, so

TrB′(1P P0) = TrB(1P P0) + TrB′\B(1P P0) = μ(UP ) +
∑

v∈B′

∫

∂Fg

v · 1P · P0(v) dν

= μ(UP ) +
∑

v∈B′

P0(v)
∫

∂Fg

v · 1P dν = μ(UP ) +
∑

v∈B′

P0(v) · 0 = μ(UP ), (4.11)

proving the proposition.

Remark 7. The computation of the corresponding term in [10] is wrong and should be replaced by a
calculation similar to the above. This only affects the proofs, not the results, of [10].

5. THE MAIN THEOREM

Theorem 3 (Main theorem). Let X1,X2 be finite, connected graphs of genus g ≥ 2 and valencies
≥ 3. Then either

ζ[X1] ∩ ζ[X2] = ∅, (5.1)

or

ζ[X1] = ζ[X2] and X1
∼= X2 as graphs. (5.2)

Here the intersection is defined as follows: One starts by comparing at the unit of the algebras,
i.e. ζXi

1 : If these are different, the intersection is defined to be ∅; If they are the same, the genus
g is the same by Proposition 5. Now consider ∂Fg and fix the algebra A∞. The infinitely long
rows (ζXi

a )a∈A∞ ∈ ζ[Xi] are now indexed by the same algebra and we can compare elements
(ζXi

a )a∈A∞ ∈ ζ[Xi].

Before proving this theorem we will need some definitions and results.
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Fig. 3. The cross-ratio.

Definition 15 (Cross-ratio, Möbius). For ξ1, . . . , ξ4 four distinct points on the boundary ∂X, define the
cross-ratio as:

b(ξ1, ξ2, ξ3, ξ4) :=
d(ξ3, ξ1)
d(ξ3, ξ2)

:
d(ξ4, ξ1)
d(ξ4, ξ2)

. (5.3)

This can be written as exp(L) with L (up to sign) the distance between the geodesics ]ξ1, ξ3[ and ]ξ2, ξ4[,
see Figure 3.
A function f preserving the cross-ratio, i.e. such that for all distinct points ξ1, . . . , ξ4 we have

b(ξ1, ξ2, ξ3, ξ4) = b(f(ξ1), f(ξ2), f(ξ3), f(ξ4)),

is called Möbius (see [13], [9]).

Lemma 2. Let φ̃ : ∂X1 → ∂X2 be an (equivariant) isomorphism which is Möbius, then φ̃ induces
an (equivariant) isomorphism of trees F : EX1 → EX2 and hence an isomorphism of graphs
X1

∼= X2.

Proof. A similar construction is used in [9]. We define a map F as follows: Let x ∈ V (EX1), a vertex
in the covering graph. Pick ξ1, ξ2, ξ3 ∈ ∂X1 such that x is the center of the tripod induced by these (see
Figure 4). Define F (x) ∈ V (EX2) as the unique center of the tripod of φ̃(ξ1), φ̃(ξ2), φ̃(ξ3) ∈ ∂X2. To
show that this is well-defined, if x is also the center of ξ1, ξ2, ξ4, then this is the same as saying that the
geodesics ]ξ1, ξ2[ and ]ξ3, ξ4[ are touching, i.e. L = 0, this is preserved because φ̃ is Möbius and hence
the map is well-defined. The map is an isomorphism on the vertex sets, because the construction can be
reversed. To see that this extends to a map of covering trees, let e be an edge of length L1, then the initial
and terminal vertex of e are mapped to two distinct vertices in V (EX2). Connect these by a path P of
length L = L1 (because the map is Möbius it is L1 again). We have to show that P is an edge again. If
not there is a new vertex e′ on P , this point is mapped by the inverse to a point on distance on distance
K,K ′ < L from the initial and terminal vertex of e which is impossible, hence F is an isomorphism of
graphs. By well-definedness, if φ̃ is equivariant for some group-action, then so is F .

In the proof of the main theorem we will use the following theorem (see [13], Theorem A):

Theorem 4. Let Y1, Y2 be locally compact complete CAT(−1) metric spaces. Let G1 and G2 be
discrete groups of isometries of Y1 and Y2, having the same critical exponent. Suppose that G2 is
a divergence group. Let φ̃ : ∂Y1 → ∂Y2 be a Borel map, equivariant for some morphism G1 → G2,
which is non-singular with respect to the Paterson-Sullivan measures. Then φ̃ is Möbius on the
limit set of G1.
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Fig. 4. The tripod.

5.1. Let us apply this theorem for Y1 = EX1 , Y2 = EX2 , the covering trees of the graphs X1 and X2

respectively, having the same genus g ≥ 2 with G1 = Γ = G2, the fundamental groups of X1 and X2.
The trees under consideration are locally compact and are CAT(k) metric spaces for any k (see for
instance [2]) and the fundamental group acts as isometries. To construct an equivariant map φ̃, note
that by Proposition 2 we have an equivariant homeomorphism ΦXi : ∂Fg → ∂Xi, so φ̃ = ΦX2 ◦ Φ−1

Xi
:

∂X1 → ∂X2 is an equivariant homeomorphism. The group Γ acts as divergence group on EXi . This
is because the Poincaré series is bounded by the one of the covering tree of Fg (because the group

acts free and Fg is a retract of X) and the graph Fg has δ = log(2g−1)
l as critical exponent, as one easily

computes. Furthermore, δ > 0 because the fundamental group is infinite. So we have proven that Γi acts
as divergence group on Xi. Note that if we scale the metric of the covering tree by λ, the critical exponent
scales by λ−1, so by rescaling we can assume that the critical exponents are the same. Combining this
with the previous lemma, we get the following proposition:

Proposition 7. Let X1,X2 be graphs of genus g ≥ 2 with covering trees EX1 , EX2 . If φ̃ = ΦX2 ◦
Φ−1

Xi
: ∂X1 → ∂X2 is non-singular with respect to the Patterson-Sullivan measures, then φ̃ in-

duces an equivariant isomorphism of EX1 → EX2 and hence an isomorphism of X1 → X2.

Proof of the main theorem, Theorem 3. First, suppose that the intersection defined as above is empty.
This implies that the graphs are not isomorphic, because isomorphic graphs give rise to the same
set ζ[X]. Suppose now that ζ[X1] ∩ ζ[X2] �= ∅. We must show that the graphs are isomorphic. The
intersection is nonempty, so by definition they have the same genus g. Suppose that (ζXi

a )a∈A∞ is in the
intersection. We have the following commuting diagram

(Fg,Φ∗
X1

(μ1)) id �� (Fg,Φ∗
X2

(μ2))

(∂X1, μ1)
φ̃ ��

ΦX1

��

(∂X2, μ2).

ΦX2

��

The zeta functions are equal, so we know that Φ∗
X1

(μ1) = Φ∗
X2

(μ2) and hence μ2 = φ̃∗(μ1) and so φ̃

is non-singular with respect to the Patterson-Sullivan measures and hence the previous proposition
applies to the equivariant map φ̃.

Theorem 5. The spectral triple SX determines the graph X.
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Proof. The spectral triple determines the zeta functions which by the main theorem determines the
graph.

Remark 8. It would be desirable to give a functorial version of the construction. The graphs under
consideration form a category in the obvious way, the objects being graphs and the arrows being graph-
homomorphisms. By Theorem 3 the map

(X,O,α) �→
(
ζX,O,α
a

)
a∈A∞

(5.4)

descends to a bijection of isomorphism classes

[X] �→ ζ[X], (5.5)

where the isomorphism classes and the image on the right are defined as the images of the isomorphism
classes of X. Furthermore, by Theorem 5 this induces an equivalence relation on spectral triples coming
from the construction as well, so this defines a map:

{graphs}/{isomorphisms} → {spectral triples}/{induced isomorphisms}
[X] �→ [SX ] . (5.6)

At this very moment however, there does not exist a (generally accepted) category of spectral triples
(see [1] for some ideas using strict equivalence, but not (yet) involving Morita equivalence). The spectral
triples constructed here are commutative, which is restrictive, and therefore missing morphisms which
are not clearly visible in the commutative setting. For instance, two commutative algebras are Morita
equivalent if and only if these are isomorphic as algebras, a statement which is not true in the non-
commutative setting (see for instance [15]).
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