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1. INTRODUCTION
In recent years, the theory of Volterra (Fredholm) integral and integro-differential equations

have become as an interesting and popular field of research, because of their applications in many
engineering and scientific disciplines, such as: mechanical phenomena, control technology, electrical
engineering, models of population growth and fluid dynamics. See for details [1–7].

For this reason, a lot of works have been developed for studding a different kinds of integral
equations. For example, we list some types of these equations with only two references to each
one: Linear and nonlinear Volterra and Fredholm equations [8, 9]; integro-differential equations
[10, 11]; integral equations in the complex plane [12, 13]; equations with weakly singular kernels
[14, 15]; equations with Toeplitz plus Hankel Kernels [16, 17]; integral equations involving constant
delay [18, 19]; equations in two-dimensional space [20, 21]; Chandrasekhar integral equation [22,
23]; Abel’s integral equation [24, 25]; fuzzy integral equations [26, 27]; fractional integral equations
[28, 29]; etc.

In this study, we are interested in a new kind of Volterra equation, which have a nonlinear
convolution kernel that involves the first and second derivatives of solution. This equation is
presented in the following form:

u(t) =

∫ t

a
g(t− s)ϕ(t, s, u(s), u′(s), u′′(s))ds + f(t), ∀t ∈ I = [a, b],

where f ∈ C2(I), g ∈ C2(I2), g(0) = 0, ∂tg(0) = λ ∈ R, and ϕ ∈ C2(I2 × R
3) are given functions

and u is the unknown to be found in the space C2(I).
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On the other hand, we mention that the unknown function u and its derivatives appear
nonlinearly under the integral operator. Therefore, in order to control the solution of the proposed
equation and its derivatives, we need to derive both sides of equation twice. Which allows us to
convert our equation after doing some simple calculus to the following system:

u(t) =

t∫

a

g(t− s)ϕ(t, s, u(s), u′(s), u′′(s))ds + f(t), ∀t ∈ I, (1)

u′(t) =
t∫

a

(
∂tg(t− s)ϕ(t, s, u(s), u′(s), u′′(s)) + g(t− s)∂tϕ(t, s, u(s), u

′(s), u′′(s))
)
ds

+f ′(t), ∀t ∈ I, (2)

u′′(t) = λϕ(t, t, u(t), u′(t), u′′(t)) +
t∫

a

(
2∂tg(t− s)∂tϕ(t, s, u(s), u

′(s), u′′(s))

+ ∂2t g(t− s)ϕ(t, s, u(s), u′(s), u′′(s)) + g(t− s)∂2t ϕ(t, s, u(s), u
′(s), u′′(s))

)
ds

+f ′′(t), ∀t ∈ I. (3)

Furthermore, Eqs. (1)–(3) of this system will serve an important role throughout the study.
The paper is structured as follows: In Section 2, we prove the existence of solution to the proposed

problem by means of fixed point theorem of Schauder. Section 3, contains the uniqueness results of
problem’s solution. In Section 4, we discuss the Nyström method to give an approximate solution
of our equation. In the last section, we present some illustrative examples.

2. EXISTENCE RESULTS VIA SCHAUDER’S FIXED POINT THEOREM
In this section, we present the existence results of solution of the proposed Eq. (1) by using

Schauder fixed point theorem. Before proving the main result, we need to make the following
assumptions:
(A1): let ϕ (t, s, x, y, z) be a function belongs to C2(I2 × R

3) and there exists a constant M1 > 0
such that ∀t, s ∈ I , ∀x, y, z ∈ R

max
(|ϕ(t, s, x, y, z)|, |∂tϕ(t, s, x, y, z)|, |∂2t ϕ(t, s, x, y, z)|

) ≤M1;

(A2): let g (t, s) be a function belongs to C2(I2) that satisfies g(0) = 0, ∂tg(0) = λ, and there exists
a constant M2 > 0 such that ∀t, s ∈ I

max
(|g(t− s)|, |∂tg(t− s)|, |∂2t g(t− s)|) ≤M2.

Theorem 1. Let (A1) and (A2) be verified. Then the Volterra equation (1) has at least one solution
in the space C2(I).
Proof. Let Φ : C2(I) → C2(I) be an integral operator defined by the following form: ∀ξ ∈ C2(I),
∀t ∈ I

Φ (ξ) (t) =

t∫

a

g(t− s)ϕ
(
t, s, ξ (s) , ξ′ (s) , ξ′′ (s))

)
ds+ f(t).
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It’s clear that Eq. (1) has at least one solution in the space C2(I), if and only if the operator Φ has
a fixed point. Which we will prove by using the Schauder fixed point theorem.

First, we can see easily that Φ is continuous from C2(I) to it self. Consider the subset F ⊂ C2(I)
defined by the following way:

F :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ (a) = f(a), ξ′(a) = f ′(a),

|ξ(t)− f(t)| ≤M1M2 (b− a) ,

|ξ′(t)− f ′(t)| ≤ 2M1M2 (b− a) ,
∀ξ ∈ C2(I) such that

|ξ′′(t)− f ′′(t)| ≤M1M2

(

4(b− a) +
|λ|
M2

)

,

∀ε > 0, ∃ δε > 0, ∀t1, t2 ∈ I, |t1 − t2| < δε,

then |ξ′′(t1)− ξ′′(t2)| < ε

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

Before applying the Schauder fixed point theorem, the subset F must be nonempty, convex
and closed. Obviously, F is nonempty and convex, we just prove that is closed. Let (ξn)n∈N be
a sequence in F , assume that it converges to some ξ̃ ∈ C2(I) in the norm of the space C2(I) as
follows:

‖ξn − ξ̃‖ =
(
‖ξn − ξ̃‖∞ + ‖ξ′n − ξ̃′‖∞ + ‖ξ′′n − ξ̃′′‖∞

)
→ 0, where ‖ξ‖∞ = sup

t∈I
|ξ(t)|.

Then, we need to verify that ξ̃ ∈ F , in order to confirm the closedness of F .
It is clear that the convergence in the space C2(I) means simultaneously uniform convergence

of functions, of their derivatives and of their second derivatives, which permits us to write

∀n ∈ N ξn(a) = f(a) ⇒ lim
n→∞ ξn(a) = f(a) ⇒ ξ̃(a) = f(a),

∀n ∈ N ξ′n(a) = f ′(a) ⇒ lim
n→∞ ξ′n(a) = f ′(a) ⇒ ξ̃′(a) = f ′(a).

Also,

∀n ∈ N |ξn(t)− f(t)| ≤M1M2 (b− a) ⇒ lim
n→∞ |ξn(t)− f(t)| ≤M1M2 (b− a)

⇒
∣
∣
∣ lim
n→∞ ξn(t)− f(t)

∣
∣
∣ ≤M1M2 (b− a)

⇒ ∣
∣ξ̃(t)− f(t)

∣
∣ ≤M1M2 (b− a) .

Similarly, we obtain:

| ξ̃′(t)− f ′(t) |≤ 2M1M2 (b− a) and | ξ̃′′(t)− f ′′(t) |≤M1M2

(

4(b− a) +
| λ |
M2

)

.

Now, from the last condition of F , it is clear that ∀ε > 0, ∃ δε > 0, ∀t1, t2 ∈ I , |t1 − t2| < δε,

∣
∣ξ′′n(t1)− ξ′′n(t2)

∣
∣ <

ε

3
∀n ∈ N.

On the other hand, we have
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∣
∣ξ̃′′(t1)− ξ̃′′(t2)

∣
∣ =

∣
∣ξ̃′′(t1)− ξ′′n(t1) + ξ′′n(t1)− ξ′′n(t2) + ξ′′n(t2)− ξ̃′′(t2)

∣
∣

≤ ∣
∣ξ̃′′(t1)− ξ′′n(t1)

∣
∣+
∣
∣ξ′′n(t1)− ξ′′n(t2)

∣
∣+
∣
∣ξ′′n(t2)− ξ̃′′(t2)

∣
∣.

Also, as ξ′′n converges uniformly to ξ̃′′, we write:

if ∀ε > 0, ∃Nε ∈ N, ∀t ∈ I, ∀n ≥ Nε, then | ξ′′n(t)− ξ̃′′(t) |< ε

3
.

By passing to infinity limit (i.e., n ≥ Nε), the previous inequality gives us:

∣
∣ξ̃′′(t1)− ξ̃′′(t2)

∣
∣ <

ε

3
+
ε

3
+
ε

3
= ε.

Thus ξ̃ satisfies all conditions of subset F . Which means that F is closed.
We pass now to proving that Φ is completely continuous on the subset F .
First, from (1) and (2) we get directly Φ(ξ)(a) = f(a) and Φ(ξ)′(a) = f ′(a). Now for all ξ ∈ F

and all t ∈ I , we have

|Φ(ξ)(t)− f(t)| =
∣
∣
∣
∣

∫ t

a
g(t− s)ϕ

(
t, s, ξ (s) , ξ′ (s) , ξ′′ (s)

)
ds

∣
∣
∣
∣ ≤M1M2 (b− a) .

Also,

|Φ(ξ)′(t)− f ′(t)| ≤
∣
∣
∣
∣

∫ t

a
∂tg(t− s)ϕ

(
t, s, ξ(s), ξ′(s), ξ′′(s)

)
ds

∣
∣
∣
∣

+

∣
∣
∣
∣

∫ t

a
g(t− s)∂tϕ

(
t, s, ξ(s), ξ′(s), ξ′′(s)

)
ds

∣
∣
∣
∣ ≤ 2M1M2 (b− a) .

In the same way:

∣
∣Φ(ξ)′′(t)− f ′′(t)

∣
∣ ≤

∣
∣
∣
∣λϕ
(
t, t, ξ(t), ξ′(t), ξ′′(t)

)
+

∫ t

a
2∂tg(t− s)∂tϕ

(
t, s, ξ(s), ξ′(s), ξ′′(s)

)
ds

∣
∣
∣
∣

+

∣
∣
∣
∣

∫ t

a
∂2t g(t− s)ϕ

(
t, s, ξ(s), ξ′(s), ξ′′(s)

)
ds

∣
∣
∣
∣

+

∣
∣
∣
∣

∫ t

a
g(t− s)∂2t ϕ

(
t, s, ξ(s), ξ′(s), ξ′′(s)

)
ds

∣
∣
∣
∣

≤ M1M24(b− a) + |λ|M1 ≤M1M2

(

4(b− a) +
|λ|
M2

)

.

Now we want to verify that if ∀ε > 0, ∃δε > 0, ∀t1, t2 ∈ I with |t1 − t2| < δε then |Φ(ξ)′′(t1)−
Φ(ξ)′′(t2)| < ε. For t1, t2 ∈ I , t1 ≤ t2, we have

∣
∣Φ(ξ)′′ (t1)−Φ(ξ)′′(t2)

∣
∣

≤
∣
∣
∣λϕ
(
t1, t1, ξ(t1), ξ

′(t1), ξ′′(t1)
) − λϕ

(
t2, t2, ξ(t2), ξ

′(t2), ξ′′(t2)
)∣∣
∣+ |f ′′(t1)− f ′′(t2)|

+2

∣
∣
∣
∣

∫ t1

a
∂tg(t1−s)∂tϕ

(
t1, s, ξ(s), ξ

′(s), ξ′′(s)
)
ds−
∫ t2

a
∂tg(t2−s)∂tϕ

(
t2, s, ξ(s), ξ

′(s), ξ′′(s)
)
ds

∣
∣
∣
∣
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+

∣
∣
∣
∣

∫ t1

a
∂2t g(t1−s)ϕ

(
t1, s, ξ(s), ξ

′(s), ξ′′(s)
)
ds−
∫ t2

a
∂2t g(t2−s)ϕ

(
t2, s, ξ(s), ξ

′(s), ξ′′(s)
)
ds

∣
∣
∣
∣

+

∣
∣
∣
∣

∫ t1

a
g(t1 − s)∂2t ϕ

(
t1, s, ξ(s), ξ

′(s), ξ′′(s)
)
ds−
∫ t2

a
g(t2−s)∂2t ϕ

(
t2, s, ξ(s), ξ

′(s), ξ′′(s)
)
ds

∣
∣
∣
∣.

By subdividing the integration interval we obtain:

∣
∣Φ(ξ)′′ (t1)−Φ(ξ)′′(t2)

∣
∣

≤ ∣
∣λϕ
(
t1, t1, ξ(t1), ξ

′(t1), ξ′′(t1)
)− λϕ

(
t2, t2, ξ(t2), ξ

′(t2), ξ′′(t2)
)∣
∣+
∣
∣f ′′(t1)− f ′′(t2)

∣
∣

+2

∣
∣
∣
∣

∫ t1

a
∂tg(t1 − s)

(
∂tϕ
(
t1, s, ξ(s), ξ

′(s), ξ′′(s)
)− ∂tϕ

(
t2, s, ξ(s), ξ

′(s), ξ′′(s)
))
ds

∣
∣
∣
∣

+2

∣
∣
∣
∣

∫ t1

a
∂tϕ
(
t2, s, ξ(s), ξ

′(s), ξ′′(s)
)(
∂tg(t1 − s)− ∂tg(t2 − s)

)
ds

∣
∣
∣
∣

+2

∣
∣
∣
∣

∫ t2

t1

∂tg(t2 − s)∂tϕ
(
t2, s, ξ(s), ξ

′(s), ξ′′(s)
)
ds

∣
∣
∣
∣

+

∣
∣
∣
∣

∫ t1

a
∂2t g(t1 − s)

(
ϕ
(
t1, s, ξ(s), ξ

′(s), ξ′′(s)
)− ϕ

(
t2, s, ξ(s), ξ

′(s), ξ′′(s)
))
ds

∣
∣
∣
∣

+

∣
∣
∣
∣

∫ t1

a
ϕ
(
t2, s, ξ(s), ξ

′(s), ξ′′(s)
)(
∂2t g(t1 − s)− ∂2t g(t2 − s)

)
ds

∣
∣
∣
∣

+

∣
∣
∣
∣

∫ t2

t1

∂2t g(t2 − s)ϕ
(
t2, s, ξ(s), ξ

′(s), ξ′′(s)
)
ds

∣
∣
∣
∣

+

∣
∣
∣
∣

∫ t1

a
g(t1 − s)

(
∂2t ϕ
(
t1, s, ξ(s), ξ

′(s), ξ′′(s)
)− ∂2t ϕ

(
t2, s, ξ(s), ξ

′(s), ξ′′(s)
))
ds

∣
∣
∣
∣

+

∣
∣
∣
∣

∫ t1

a
∂2t ϕ
(
t2, s, ξ(s), ξ

′(s), ξ′′(s)
)(
g(t1 − s)− g(t2 − s)

)
ds

∣
∣
∣
∣

+

∣
∣
∣
∣

∫ t2

t1

g(t2 − s)∂2t ϕ
(
t2, s, ξ(s), ξ

′(s), ξ′′(s)
)
ds

∣
∣
∣
∣.

The application of the mean value theorem on functions ϕ, ∂tϕ, g, and ∂tg, respectively gives us:

∣
∣Φ(ξ)′′(t1)− Φ(ξ)′′(t2)

∣
∣ ≤ (|λ|M1 + 4M1M2 + 6M1M2(b− a))|t1 − t2|

+
∣
∣f ′′(t1)− f ′′(t2)

∣
∣+M1

∫ t1

a

∣
∣∂2t g(t1 − s)− ∂2t g(t2 − s)

∣
∣ds

+M2

∫ t1

a

∣
∣∂2t ϕ

(
t1, s, ξ(s), ξ

′(s), ξ′′(s)
)− ∂2t ϕ

(
t2, s, ξ(s), ξ

′(s), ξ′′(s)
)∣
∣ds.

Let ε > 0. If we took | t1 − t2 |< δ1ε , where δ1ε =
ε

4(|λ|M1+4M1M2+6M1M2(b−a)) , clearly we get

∣
∣Φ(ξ)′′(t1)− Φ(ξ)′′(t2)

∣
∣ <

ε

4
+
∣
∣f ′′(t1)− f ′′(t2)

∣
∣+M1

∫ t1

a

∣
∣∂2t g(t1 − s)− ∂2t g(t2 − s)

∣
∣ds

+M2

∫ t1

a

∣
∣∂2t ϕ

(
t1, s, ξ(s), ξ

′(s), ξ′′(s)
)−∂2t ϕ

(
t2, s, ξ(s), ξ

′(s), ξ′′(s)
)∣
∣ds.

Moreover, since f ′′, ∂2t g and ∂2t ϕ are uniformly continuous as functions of t over the interval I ,
then there exist δ2ε > 0, δ3ε > 0, and δ4ε > 0, respectively, where ∀t1, t2 ∈ I , with | t1 − t2 |< δ2ε ,
| t1 − t2 |< δ3ε , and | t1 − t2 |< δ4ε . We have
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∣
∣f ′′(t1)− f ′′(t2)

∣
∣ <

ε

4
,

∣
∣∂2t g(t1 − s)− ∂2t g(t2 − s)

∣
∣ <

ε

4M1(b− a)
,

∣
∣∂2t ϕ

(
t1, s, ξ(s), ξ

′(s), ξ′′(s)
)− ∂2t ϕ

(
t2, s, ξ(s), ξ

′(s), ξ′′(s)
)∣
∣ <

ε

4M2(b− a)
.

By choosing δε = min{δ1ε , δ2ε , δ3ε , δ4ε }, we get ∀t1, t2 ∈ I , with | t1 − t2 |< δε,

∣
∣Φ(ξ)′′(t1)− Φ(ξ)′′(t2)

∣
∣ <

ε

4
+
ε

4
+M1

∫ t1

a

ε

4M1(b− a)
ds+M2

∫ t1

a

ε

4M2(b− a)
ds

=
ε

4
+
ε

4
+
ε

4
+
ε

4
= ε.

So, we conclude that Φ(F ) ⊂ F . Now to prove that operator Φ is compact, it is enough to prove
that F is a compact subset. In order to show that F is compact, it is necessary to prove that F is
uniformly bounded and equicontinuous. The uniform boundedness is evident according to the form
of subset F which gives us:

|ξ(t)| ≤ M1M2 (b− a) + max
s∈I

|f(s)|,

|ξ′(t)| ≤ 2M1M2 (b− a) + max
s∈I

|f ′(s)| = �1,

|ξ′′(t)| ≤ M1M2

(

4(b− a) +
|λ|
M2

)

+max
s∈I

|f ′′(s)| = �2.

We verify now the uniform equicontinuity. From the last property of subset F , from the boundedness
of ξ′ and ξ′′ described above and by applying the mean value theorem, directly we get: ∀ξ ∈ F ,
∀ε > 0, ∃ δ̃ε = min

{
ε
�1
, ε
�2
, δε

}
> 0, ∀t1, t2 ∈ I with |t1 − t2| < δ̃ε,

|ξ(t1)− ξ(t2)| < ε, |ξ′(t1)− ξ′(t2)| < ε, |ξ′′(t1)− ξ′′(t2)| < ε.

Which means that F is uniformly equicontinuous. Hence along with the Arzela–Ascoli theorem
[9] we confirm the compactness of subset F . So, we conclude that Φ is completely continuous.
Finally, the application of Schauder’s theorem shows that Φ has a fixed point ξ = Φ(ξ) in F , which
represents a solution of the Volterra equation (1), as well as, its derivatives verify the Eqs. (2) and
(3), respectively. �

3. UNIQUENESS RESULTS

Clearly, using Schauder fixed point theorem, only the existence of solution of the previous
equation (1) have been guaranteed. So, to prove the uniqueness of this solution, we need the
following auxiliary lemma.

Lemma. Let γ(t) be a continuous and positive function on [a, b], which satisfies:

∃L > 0, γ(t) ≤ L

∫ t

a
γ(s)ds,

then γ(t) = 0, ∀t ∈ [a, b].
Proof. See [30]. �
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On the other hand, we need also to introduce the following assumption:

(A3): There exist constants A,B,C,A,B,C, Ã, B̃, C̃ > 0 such that ∀t, s ∈ I , ∀x, y, z, x, y, z ∈ R,

|ϕ(t, s, x, y, z) − ϕ(t, s, x, y, z)| ≤ A|x− x|+B|y − y|+ C|z − z|,
|∂tϕ(t, s, x, y, z) − ∂tϕ(t, s, x, y, z)| ≤ A|x− x|+B|y − y|+ C|z − z|,
|∂2t ϕ(t, s, x, y, z) − ∂2t ϕ(t, s, x, y, z)| ≤ Ã|x− x|+ B̃|y − y|+ C̃|z − z|.

Theorem 2. Let (A1)–(A3) be verified. In addition, we assume that:

| λ | C < 1,

then the Volterra equation (1) has a unique solution in the space C2(I).
Proof. Suppose that u(t), v(t) ∈ C2(I) are two solutions of Eq. (1). Let γ(t) be a positive function
defined by

γ (t) = |u(t)− v(t)| + |u′(t)− v′(t)|+ |u′′(t)− v′′(t)|.
Going now to prove that γ (t) = 0 based on the previous lemma. Which means that u(t) = v(t),
u′(t) = v′(t), and u′′(t) = v′′(t).

First, we put

θ =M2 max(A,B,C), θ =M2 max(A,B,C), θ̃ =M2 max(Ã, B̃, C̃).

For all t ∈ I , we have

|u(t)− v(t)| =
∣
∣
∣
∣

∫ t

a
g(t− s)

(
ϕ(t, s, u(s), u′(s), u′′(s))− ϕ(t, s, v(s), v′(s), v′′(s))

)
ds

∣
∣
∣
∣

≤M2

∫ t

a

(
A|u(s)− v(s)|+B|u′(s)− v′(s)|+ C|u′′(s)− v′′(s)|) ds

≤M2 max(A,B,C)

∫ t

a

(|u(s)− v(s)|+ |u′(s)− v′(s)|+ |u′′(s)− v′′(s)|)ds

= θ

∫ t

a
γ(s)ds. (4)

In the same way, we obtain:

|u′(t)− v′(t)| ≤
∣
∣
∣
∣

∫ t

a
∂tg(t− s)

(
ϕ
(
t, s, u(s), u′(s), u′′(s)

)− ϕ
(
t, s, v(s), v′(s), v′′(s)

))
ds

∣
∣
∣
∣

+

∣
∣
∣
∣

∫ t

a
g(t− s)

(
∂tϕ
(
t, s, u(s), u′(s), u′′(s)

)− ∂tϕ
(
t, s, v(s), v′(s), v′′(s)

))
ds

∣
∣
∣
∣

≤M2

∫ t

a

(
A|u(s)− v(s)|+B|u′(s)− v′(s)|+ C|u′′(s)− v′′(s)|) ds
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+M2

∫ t

a

(
A|u(s)− v(s)|+B|u′(s)− v′(s)|+ C|u′′(s)− v′′(s)|) ds

≤M2 max(A,B,C)

∫ t

a
(|u(s)− v(s)|+ |u′(s)− v′(s)|+ |u′′(s)− v′′(s)|)ds

+M2max(A,B,C)

∫ t

a

(|u(s)− v(s)|+ |u′(s)− v′(s)|+ |u′′(s)− v′′(s)|)ds

=
(
θ + θ

)
∫ t

a
γ(s)ds. (5)

Then similar as before, we get:

∣
∣u′′(t)− v′′(t)

∣
∣ ≤ |λ|∣∣ (ϕ(t, t, u(t), u′(t), u′′(t)) − ϕ

(
t, t, v(t), v′(t), v′′(t)

)) ∣
∣

+

∣
∣
∣
∣

∫ t

a
2∂tg(t−s)

(
∂tϕ
(
t, s, u(s), u′(s), u′′(s)

)−∂tϕ
(
t, s, v(s), v′(s), v′′(s)

))
ds

∣
∣
∣
∣

+

∣
∣
∣
∣

∫ t

a
∂2t g(t− s)

(
ϕ
(
t, s, u(s), u′(s), u′′(s)

)− ϕ
(
t, s, v(s), v′(s), v′′(s)

))
ds

∣
∣
∣
∣

+

∣
∣
∣
∣

∫ t

a
g(t− s)

(
∂2t ϕ
(
t, s, u(s), u′(s), u′′(s)

)− ∂2t ϕ
(
t, s, v(s), v′(s), v′′(s)

))
ds

∣
∣
∣
∣

≤ |λ| (A|u(t) − v(t)|+B|u′(t)− v′(t)|+ C|u′′(t)− v′′(t)|)

+2M2

∫ t

a

(
A|u(s)− v(s)|+B|u′(s)− v′(s)|+ C|u′′(s)− v′′(s)|) ds

+M2

∫ t

a

(
A|u(s)− v(s)|+B|u′(s)− v′(s)|+ C|u′′(s)− v′′(s)|) ds

+M2

∫ t

a

(
Ã|u(s)− v(s)|+ B̃|u′(s)− v′(s)|+ C̃|u′′(s)− v′′(s)|

)
ds.

Thus

|u′′(t)− v′′(t)| ≤ |λ|A|u(t) − v(t)|+ |λ|B|u′(t)− v′(t)|+ |λ|C|u′′(t)− v′′(t)|

+2M2 max(A,B,C)

∫ t

a

(|u(s)− v(s)|+ |u′(s)− v′(s)|+ |u′′(s)− v′′(s)|) ds

+M2max(A,B,C)

∫ t

a

(|u(s)− v(s)|+ |u′(s)− v′(s)|+ |u′′(s)− v′′(s)|) ds

+M2max(Ã, B̃, C̃)

∫ t

a

(|u(s)− v(s)|+ |u′(s)− v′(s)|+ |u′′(s)− v′′(s)|) ds

= |λ|A|u(t)−v(t)|+|λ|B|u′(t)−v′(t)|+|λ|C|u′′(t)−v′′(t)|+(2θ+θ+θ̃)

∫ t

a
γ(s)ds.

We obtain from inequalities (4) and (5) the fact that:

∣
∣u′′(t)− v′′(t)

∣
∣ ≤ |λ|C∣∣u′′(t)− v′′(t)

∣
∣+
(
|λ|Aθ + |λ|B(θ + θ) + 2θ + θ + θ̃

)∫ t

a
γ (s) ds.

By the property | λ | C < 1 we find:
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∣
∣u′′(t)− v′′(t)

∣
∣ ≤
(
θ(|λ|A+ |λ|B + 1) + θ(|λ|B + 2) + θ̃

1− |λ|C

)∫ t

a
γ (s) ds. (6)

Furthermore, according to inequalities (4), (5), and (6), we confirm that there exists a positive
parameter L which fulfils:

γ (t) ≤ L

∫ t

a
γ (s) ds,

where L is given by:

L =

(

2θ + θ +
θ(|λ|A+ |λ|B + 1) + θ(|λ|B + 2) + θ̃

1− |λ|C

)

.

Thanks to the lemma, we obtain γ(t) = 0, which implies that Eq. (1) has a unique solution in the
space C2(I). �

4. NUMERICAL STUDY
In the previous sections, under the assumptions (A1)–(A3), we have shown that Eq. (1) has a

unique solution in C2(I). As a matter of fact, this solution cannot be found exactly. For this
reason, one must approach this solution by considering some numerical methods. In this section, we
will use the Nyström method described in [9], which enables us to obtain an approximate solution
of Eq. (1). First, we start by recalling Nyström’s method. For N ∈ N, and by considering the
discretization step h = b−a

N , we define an equidistant subdivision of interval I as follows:

sj = a+ jh, 0 ≤ j ≤ N,

then, the Nyström method is a technique seeks the approximate solution of an integral equation by
replacing the integral with a chosen quadrature formula such as

b∫

a

ξ(s)ds � h

N∑

j=0

ωjξ(sj),

where ωi are real weights such that: max
0≤j≤N

| ωj |≤ � <∞.

Now, by collocating Eqs. (1), (2), and (3) at the following grid points ti = a+ ih, 0 ≤ i ≤ N ,
then by applying the Nyström method, we obtain the following algebraic system:

for i = 0: (initial values)

U0 = f(a), V0 = f ′(a), W0 = f ′′(a) + λϕ(a, a, U0, V0,W0); (7)

for 1 ≤ i ≤ N

Ui = f(ti) + h
i∑

j=0

ωjg(ti − tj)ϕ(ti, tj , Uj , Vj ,Wj), (8)

Vi = f ′(ti) + h

i∑

j=0

ωj
(
∂tg(ti − tj)ϕ(ti, tj , Uj , Vj ,Wj) + g(ti − tj)∂tϕ(ti, tj , Uj , Vj ,Wj)

)
, (9)
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Wi = f ′′(ti) + λϕ(ti, ti, Ui, Vi,Wi) + h

i∑

j=0

2ωj∂tg(ti − tj)∂tϕ(ti, tj , Uj , Vj ,Wj)

+h

i∑

j=0

ωj
(
∂2t g(ti − tj)ϕ(ti, tj , Uj , Vj ,Wj) + g(ti − tj)∂

2
t ϕ(ti, tj , Uj , Vj ,Wj)

)
, (10)

where Ui, Vi, and Wi represent the approximate values at the grid points of u(ti), u′(ti), and u′′(ti),
respectively.

Finally, we can see that the arising system is nonlinear. So, in practice, we must use a computing
environment like MATLAB software, in order to get the roots of this system. Which means that
we have found the approximate solution of Eq. (1).

On the other hand, an important question remains: Are the previous assumptions (A1)–(A3)
sufficient to ensure the existence and uniqueness of solution of the system (7)–(10)? This is what
we will see in the next subsection.

4.1. System Study
In general, the hypotheses that confirm the existence and uniqueness of the solution of an equation

in infinite dimensional space, do not remain the same hypotheses in a finite dimensional space.
Therefrom, in the next theorem we add the necessary conditions in order to ensure that the arising
system (7)–(10) has a unique solution.

Theorem 3. Let (A1)–(A3) be verified. In addition, we assume that

| λ | C < 1, | λ | A < 1, | λ | B < 1,

and for all sufficiently small h, then the system (7)–(10) has a unique solution.

Proof. First, it is obvious that Eq. (7) has a unique solution W0 in view of the condition | λ | C < 1.
Now, consider the Euclidean space R

3 having the following standard norm:

∀

⎛

⎜
⎜
⎜
⎝

X

Y

Z

⎞

⎟
⎟
⎟
⎠

∈ R
3,

∥
∥
∥
∥
∥
∥
∥
∥
∥

⎛

⎜
⎜
⎜
⎝

X

Y

Z

⎞

⎟
⎟
⎟
⎠

∥
∥
∥
∥
∥
∥
∥
∥
∥
1

=| X | + | Y | + | Z | .

For technical reasons, we define the application Ψi : R
3 → R

3, for all 1 ≤ i ≤ N , by the following

Ψi

⎛

⎜
⎜
⎜
⎝

X

Y

Z

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

Υ1(X,Y,Z)

Υ2(X,Y,Z)

Υ3(X,Y,Z)

⎞

⎟
⎟
⎟
⎠
,

where

Υ1(X,Y,Z) = f(ti) + hωig(ti − ti)ϕ(ti, ti,X, Y, Z) + h
i−1∑

j=0

ωjg(ti − tj)ϕ(ti, tj , Uj , VJ ,Wj)

= f(ti) + h

i−1∑

j=0

ωjg(ti − tj)ϕ(ti, tj , Uj , Vj ,Wj) = ϑ1i .
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Υ2(X,Y,Z) = f ′(ti) + hωi∂tg(ti − ti)ϕ(ti, ti,X, Y, Z) + hωig(ti − ti)∂tϕ(ti, ti,X, Y, Z)

+ h

i−1∑

j=0

ωj (∂tg(ti − tj)ϕ(ti, tj , Uj , Vj ,Wj) + g(ti − tj)∂tϕ(ti, tj , Uj , Vj ,Wj))

= f ′(ti) + λωihϕ(ti, ti,X, Y, Z) + ϑ2i

with

ϑ2i = h
i−1∑

j=0

ωj (∂tg(ti − tj)ϕ(ti, tj, Uj , Vj ,Wj) + g(ti − tj)∂tϕ(ti, tj , Uj , Vj ,Wj)) .

And

Υ3(X,Y,Z) = f ′′(ti) + λϕ(ti, ti,X, Y, Z) + 2hωi∂tg(ti − ti)∂tϕ(ti, ti,X, Y, Z)

+hωi∂
2
t g(ti − ti)ϕ(ti, ti,X, Y, Z) + hωig(ti − ti)∂

2
t ϕ(ti, ti,X, Y, Z) + ϑ3i ,

= f ′′(ti) + λϕ(ti, ti,X, Y, Z) + 2hλωi∂tϕ(ti, ti,X, Y, Z)

+hωi∂
2
t g(0)ϕ(ti, ti,X, Y, Z) + ϑ3i ,

where

ϑ3i = h
i−1∑

j=0

ωj
(
∂2t g(ti − tj)ϕ(ti, tj , Uj , Vj ,Wj) + g(ti − tj)∂

2
t ϕ(ti, tj , Uj , Vj ,Wj)

)

+h

i−1∑

j=0

2ωj∂tg(ti − tj)∂tϕ(ti, tj , Uj , Vj ,Wj).

Therefore, we can see that

Ψi

⎛

⎜
⎜
⎜
⎝

X1

Y1

Z1

⎞

⎟
⎟
⎟
⎠

−Ψi

⎛

⎜
⎜
⎜
⎝

X2

Y2

Z2

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

β1

β2

β3

⎞

⎟
⎟
⎟
⎠
,

where β1, β2, and β3 are given by

β1 = 0,

β2 = hλωi (ϕ(ti, ti,X1, Y1, Z1)− ϕ(ti, ti,X2, Y2, Z2)) ,

β3 = λ (ϕ(ti, ti,X1, Y1, Z1)− ϕ(ti, ti,X2, Y2, Z2))

+2λhωi (∂tϕ(ti, ti,X1, Y1, Z1)− ∂tϕ(ti, ti,X2, Y2, Z2))

+hωi∂
2
t g(0) (ϕ(ti, ti,X1, Y1, Z1)− ϕ(ti, ti,X2, Y2, Z2)) .

As a result, using assumption (A3), and by taking � =| ∂2t g(0) |, we obtain

| β2 | ≤ h | λ | � (A | X1 −X2 | +B | Y1 − Y2 | +C | Z1 − Z2 |) ,
| β3 | ≤ | λ | (A | X1 −X2 | +B | Y1 − Y2 | +C | Z1 − Z2 |)

+2 | λ | h� (Ā | X1 −X2 | +B̄ | Y1 − Y2 | +C̄ | Z1 − Z2 |
)

+h�� (A | X1 −X2 | +B | Y1 − Y2 | +C | Z1 − Z2 |) .
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Thus,

| β1 | + | β2 | + | β3 |≤ η1 | X1 −X2 | +η2 | Y1 − Y2 | +η3 | Z1 − Z2 |,
where

η1 = h | λ | �A+ | λ | A+ 2 | λ | h�Ā+ h��A,

η2 = h | λ | �B+ | λ | B + 2 | λ | h�B̄ + h��B,

η3 = h | λ | �C+ | λ | C + 2 | λ | h�C̄ + h��C.

If we denote η = max (η1, η2, η3), we find:

∥
∥
∥
∥
∥
∥
∥
∥
∥

Ψi

⎛

⎜
⎜
⎜
⎝

X1

Y1

Z1

⎞

⎟
⎟
⎟
⎠

−Ψi

⎛

⎜
⎜
⎜
⎝

X2

Y2

Z2

⎞

⎟
⎟
⎟
⎠

∥
∥
∥
∥
∥
∥
∥
∥
∥
1

≤ η

∥
∥
∥
∥
∥
∥
∥
∥
∥

⎛

⎜
⎜
⎜
⎝

X1

Y1

Z1

⎞

⎟
⎟
⎟
⎠

−

⎛

⎜
⎜
⎜
⎝

X2

Y2

Z2

⎞

⎟
⎟
⎟
⎠

∥
∥
∥
∥
∥
∥
∥
∥
∥
1

.

For all sufficiently small h, and during conditions | λ | C < 1, | λ | A < 1, and | λ | B < 1, we get
0 < η < 1. So, we conclude that Ψi is a contraction from R

3 into itself. Consequently, the Banach
fixed point theorem confirms us that system (8)–(10) has a unique solution. �

5. ILLUSTRATIVE EXAMPLES
In this section, we discuss two main examples, in order to validate the accuracy and practicality

of the adduced results in this work.
Example 1. Consider the first equation:

u(t) =

t∫

0

ln(1 + t− s)
t((s+ 1)4 + 2s2 + 4s+ 2)

(1 + u(s) + u′(s) + u′′(s))2
ds+ f(t), t ∈ [0, 1],

Fig. 1. Plot of exact and numerical solution of Example 1.
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Fig. 2. Plot of exact and numerical derivative of solution of Example 1.

Fig. 3. Plot of exact and numerical second derivative of solution of Example 1.

if we take f(t) = 2t2 − (t2 + t) ln(t+ 1), we get the exact solution u(t) = t2.
Example 2. Consider the second equation:

u(t) =

t∫

0

(
t− s

5

)

cos
(
s+ t− 12 cos(4s)es + 13 sin(4s)es + u(s) + u′(s) + u′′(s)

)
ds+ f(t),

if we take

f(t) = sin(4t) exp(t)− 0.2(cos(t)− 2 cos2(t)− t sin(t) + 1), t ∈ [0, 1],

we get the exact solution u(t) = sin(4t) exp(t).
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Fig. 4. Plot of exact and numerical solution of Example 2.

Fig. 5. Plot of exact and numerical derivative of solution of Example 2.

First, we can see that the kernels g(t, s) and ϕ(t, s, x, y, z) of Example 1 satisfy the assumptions
(A1)–(A3). Moreover, we have g(t− s) = ln(1 + t− s), so g(0) = ln(1) = 0 and ∂tg(0) = λ = 1, as
well as the Lipschitz constants A, B, and C of the kernel ϕ verifying A = B = C = 1

4 , then we
conclude that the necessary conditions proposed above | λ | A < 1, | λ | B < 1, and | λ | C < 1 are
also fulfilled. Regarding to the second example, the kernels g(t, s), and ϕ(t, s, x, y, z) also satisfying
the assumptions (A1)–(A3). The function g(t− s) = t−s

5 , gives g(0) = 0 and ∂tg(0) =
1
5 , and the

Lipschitz constants A, B, and C verify A = B = C = 1. These confirm us that the conditions
| λ | A < 1, | λ | B < 1, and | λ | C < 1 are fulfilled. Consequently, each of the two examples has a
unique solution. Going now to approach their solutions by considering the system (7)–(10). Note
that in all simulations, we have chosen the trapezoidal technique as a quadrature rule, and we have
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Fig. 6. Plot of exact and numerical second derivative of solution of Example 2.

Table 1. Errors analysis of the present method for Example 1

Error N=10 N=100 N=250 N=500 N=1000

E1 4.37E–4 4.38E–6 7.01E–7 1.75E–7 4.38E–8

E2 1.87E–4 1.86E–6 2.99E–7 7.47E–8 1.87E–8

E3 3.27E–4 3.26E–6 5.22E–7 1.30E–7 3.33E–8

Table 2. Errors analysis of the present method for Example 2

Error N=10 N=100 N=250 N=500 N=1000

E1 2.90E–4 2.90E–6 4.64E–7 1.16E–7 2.90E–8

E2 7.51E–5 7.51E–7 1.20E–7 3.00E–8 7.51E–9

E3 2.95E–5 2.97E–7 4.81E–8 1.26E–8 3.76E–9

used the Picard method as an iterative scheme. For comparison, we need to introduce the following
error functions:

E1 = max
0≤i≤N

| u(ti)− Ui |, E2 = max
0≤i≤N

| u′(ti)− Vi |, E3 = max
0≤i≤N

| u′′(ti)−Wi |,

and by using a different values of N , we provide some tables and graphical illustrations.

In Figs. 1–6, a plot of the exact and approximate solutions of Examples 1 and 2, with their
derivatives is displayed, which appear to be almost identical with only N = 20. Moreover, Tables 1
and 2, show us that the error functions E1, E2, and E3 close to zero when N increases, which
means that the approximate solutions and its derivatives converge to the exact solutions and its
derivatives, respectively. So, these simulation results confirm the accuracy and performance of our
work.
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CONCLUSIONS
In this paper, we have suggested a class of nonlinear integro-differential Volterra equation with

a convolution kernel. First, we have discussed the necessary and sufficient conditions to guarantee
the existence and uniqueness of solution of the proposed equation. Then, we have constructed a
numerical process based on the Nyström method to obtain an approximate solution of this equation.
As well as, we have also supported our results by some illustrative examples.

CONFLICT OF INTEREST
The authors of this work declare that they have no conflicts of interest.

REFERENCES
1. Lakshmikantham, V. and Rao, M., Theory of Integro-Differential Equations, London: Gordon and

Breach, 1995.
2. He, J.H., Some Applications of Nonlinear Fractional Differential Equations and Their Approximations,

Bull. Sci. Technol., 1999, vol. 15, no. 2, pp. 86–90.
3. Kilbas, A., Srivastava, H., and Trujillo, J., Theory and Applications of Fractional Differential Equations,

Amsterdam: Elsevier, 2006.
4. Abdou, M.A., On a Symptotic Methods for Fredholm–Volterra Integral Equation of the Second Kind in

Contact Problems, J. Comput. Appl. Math., 2003, vol. 154, iss. 2, pp. 431–446.
5. Le, T.D., Moyne, C., Murad, M.A., and Lima, S.A., A Two-Scale Non-Local Model of Swelling

Porous Media Incorporating Ion Size Correlation Effects, J. Mech. Phys. Solids, 2013, vol. 61, iss. 12,
pp. 2493–2521.

6. Hu, S., Khavanin, M., and Zhuang, W.A.N., Integral Equations Arising in the Kinetic Theory of Gases,
Appl. An., 1989, vol. 34, nos. 3/4, pp. 261–266.

7. Argyros, I.K., On a Class of Nonlinear Integral Equations Arising in Neutron Transport, Aequ. Math.,
1988, vol. 36, pp. 99–111.

8. Wazwaz, A.M., Linear and Nonlinear Integral Equations, Berlin: Springer, 2011.
9. Atkinson, K.E., The Numerical Solution of Integral Equations of the Second Kind, Cambridge University

Press, 1997.
10. Bounaya, M.C., Lemita, S., Ghiat, M., and Aissaoui, M.Z., On a Nonlinear Integro-Differential Equation

of Fredholm Type, Int. J. Comput. Sci. Math., 2021, vol. 13, no. 2, pp. 194–205.
11. Tamimi, H., Saiedinezhad, S., and Ghaemi, M.B., Study on the Integro-Differential Equations on

C1(R+), Comp. Appl. Math., 2023, vol. 42, no. 2, article no. 93; DOI:10.1007/s40314-023-02239-4
12. Lemita, S., Touati, S., and Derbal, K., The Approximate Solution of Nonlinear Fredholm Implicit

Integro-Differential Equation in the Complex Plane, Asian-Eur. J. Math., 2022, vol. 15, no. 7, article
no. 2250131.

13. Erfanian, M., Zeidabadi, H., and Parsamanesh, M., Using of PQWs for Solving NFID in the Complex
Plane, Adv. Diff. Eq., 2020, article no. 52; DOI:10.1186/s13662-020-2528-z

14. Touati, S., Lemita, S., Ghiat, M., and Aissaoui, M.Z., Solving a Nonlinear Volterra–Fredholm Integro-
Differential Equation with Weakly Singular Kernels, Fasc. Math., 2019, vol. 62, pp. 155–168.

15. Ghiat, M., Guebbai, H., Kurulay, M., and Segni, S., On the Weakly Singular Integro-Differential
Nonlinear Volterra Equation Depending in Acceleration Term, Comp. Appl. Math., 2020, vol. 39, no. 3,
article no. 206; https://doi.org/10.1007/s40314-020-01235-2

16. Altürk, A. and Sahin, S., An Application of the Weighted Mean Value Method to Fredholm Integral
Equations with Toeplitz Plus Hankel Kernels, J. Interpolat. Approx. Sci. Comput., 2017, vol. 2, pp. 9–17.

17. Dung, V.T. and Ha, Q.T., Approximate Solution for Integral Equations Involving Linear Toeplitz Plus
Hankel Parts, Comput. Appl. Math., 2021, vol. 40, no. 5, article no. 172.

18. Sarkar, N., Sen, M., and Saha, D., Solution of Nonlinear Fredholm Integral Equation Involving Constant
Delay by BEM with Piecewise Linear Approximation, J. Interdiscip. Math., 2020, vol. 23, iss. 2,
pp. 537–544.

19. Amin, R., Shah, K., Asif, M., and Khan, I., Efficient Numerical Technique for Solution of Delay Volterra–
Fredholm Integral Equations Using Haar Wavelet, Heliyon, 2020, vol. 6, iss. 10, pp. 1–6.

20. Abdou, M.A., Elhamaky, M.N., Soliman, A.A., and Mosa, G.A., The Behaviour of the Maximum and
Minimum Error for Fredholm–Volterra iNtegral Equations in Two-Dimensional Space, J. Interdiscip.
Math., 2021, vol. 24, iss. 8, pp. 2049–2070.

21. Mi, J. and Huang, J., Collocation Method for Solving Two-Dimensional Nonlinear Volterra–Fredholm
Integral Equations with Convergence Analysis, J. Comput. Appl. Math., 2023, vol. 428, article
no. 115188.

22. Cardinali, T., Matucci, S., and Rubbioni, P., Controllability of Nonlinear Integral Equations of
Chandrasekhar Type, J. Fixed Point Theory Appl., 2022, vol. 24, iss. 3, article no. 58.

NUMERICAL ANALYSIS AND APPLICATIONS Vol. 17 No. 3 2024



ON EXISTENCE AND NUMERICAL SOLUTION OF A NEW CLASS 261

23. Hernández-Verón, M.A. and Mart́ınez, E., Iterative Schemes for Solving the Chandrasekhar H-Equation
Using the Bernstein Polynomials, J. Comput. Appl. Math., 2022, vol. 404, article no. 113391.

24. Ashpazzadeh, E., Chu, Y.M., Hashemi, M.S., Moharrami, M., and Inc, M., Hermite Multiwavelets
Representation for the Sparse Solution of Nonlinear Abel’s Integral Equation, Appl. Math. Comput.,
2022, vol. 427, article no. 127171.

25. Wang, T., Liu, S., and Zhang, Z., Singular Expansions and Collocation Methods for Generalized Abel
Integral Equations, J. Comput. Appl. Math., 2023, vol. 429, article no. 115240.

26. Fariborzi Araghi, M.A. and Noeiaghdam, S., Finding Optimal Results in the Homotopy Analysis
Method to Solve Fuzzy Integral Equations, Adv. Fuzzy Int. Diff. Eq., 2022, vol. 412, pp. 173–195;
https://doi.org/10.1007/978-3-030-73711-5_7

27. Alijani, Z. and Kangro, U., Numerical Solution of a Linear Fuzzy Volterra Integral Equation of the
Second Kind with Weakly Singular Kernels, Soft. Comput., 2022, vol. 26, pp. 12009–12022.

28. Kazemi, M., Deep, A. and Nieto, J., An Existence Result with Numerical Solution of Nonlinear Fractional
Integral Equations, Math. Methods Appl. Sci., 2023, vol. 46, iss. 9, pp. 10384–10390.

29. Pu, T. and Fasondini, M., The Numerical Solution of Fractional Integral Equations via Orthogonal
Polynomials in Fractional Powers, Adv. Comput. Math., 2023, vol. 49, article no. 7.

30. Linz, P., Analytical and Numerical Methods for Volterra Equations, Philadelphia: SIAM, 1985.

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

NUMERICAL ANALYSIS AND APPLICATIONS Vol. 17 No. 3 2024




