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Abstract—The lattice Boltzmann method (LBM) is a numerical scheme for solving fluid dynamics
problems. One of the important and actively developing areas of LBM is correct construction of the
scheme on nonuniform spatial grids. With nonuniform grids the total number of calculations can be
significantly reduced. However, at the moment the construction of an LBM scheme near a boundary
of grids with different spatial steps inevitably requires data interpolation, which may reduce the LBM
approximation order and lead to violation of conservation laws. In this work, for the first time, we have
developed and tested a method for constructing an athermal node-based LBM on nonuniform grids
without interpolation, with the same time step for grids of different scales. The method is based on a
two-stage transformation of populations corresponding to different on-grid stencils.
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1. INTRODUCTION
The lattice Boltzmann method (LBM) [1–3] is a numerical scheme for solving fluid dynamics prob-

lems. It is based on quadrature formulas for calculating the velocity moments of a kinetic distribution
function: density, flow velocity, and temperature. The moments are expressed in terms of a set of
populations—discrete values of the distribution function. The evolution of the populations is described
by a system of discrete Boltzmann kinetic equations: each of these corresponds to a fixed velocity, ci.
The set of velocities {ci} at which the populations move along a spatial grid is called an LBM stencil.

An important and fast developing area of LBM is the construction of this scheme on nonuniform
spatial grids [4–9]. Grid refinement only in the required limited area can significantly decrease the total
number of calculations, thereby increasing the efficiency of the method. The construction of an LBM
scheme at the interface of grids with different spatial steps makes it necessary to interpolate the data in
space and/or time [4–15]. This may decrease the approximation order of the LBM and cause a violation
of the conservation laws.

The present paper describes, for the first time, a method for constructing an athermal node-based
LBM without interpolation on nonuniform grids with the same time step for these different grids. In this
method, the streaming of LBM populations at the boundary of the grids is performed by using three
different LBM stencils such that all stencils are on the grid and no interpolation is needed. However,
this causes the need for a transformation: a local transition from the set of populations corresponding
to one of the stencils to the set of populations of another stencil. This is due to the fact that the sets of
populations corresponding to different stencils are solutions to different systems of discrete Boltzmann
equations. We have developed a two-step method for a local transformation of the populations for
arbitrary stencils, which includes scaling of the nonequilibrium parts of the populations [10] and moment
matching developed for PonD [16, 17].

The method developed in the present paper has been tested by modeling a Poiseuille flow and a
damping harmonic wave on a nonuniform spatial grid.
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2. DESCRIPTION OF THE METHOD

2.1. Construction of the LBM. Free and Fixed Parameters

The Boltzmann kinetic equation has the form

∂f

∂t
+ ξ

∂f

∂r
= Ω̂, (1)

where f (t, r, ξ) is a one-particle distribution function depending on time t, a spatial coordinate r and a
velocity ξ, and Ω̂ is a collision term.

The macroscopic flow parameters (density ρ(t, r), flow velocity u(t, r), and temperature T (t, r)) are
defined by the distribution function moments:

ρ =
∫

RD

fdDξ, ρu =
∫

RD

ξfdDξ, ρ(u2 + DT ) =
∫

RD

ξ2fdDξ. (2)

Here D is the dimension of the space under consideration.
If the collision term is absent, a solution to (1) satisfying the relations (2) is the equilibrium

distribution function

f eq (ξ) =
ρ

(
√

2πξ0)D
e−(ξ−u)2

/
2ξ2

0 , T = ξ2
0 . (3)

Let us use numerical quadrature integration to calculate the moments (2). Taking into account the
particular solution (3), consider the weight factor

ω (ξ) =
1

(
√

2πξ0)D
e−ξ2/2ξ2

0 . (4)

Suppose that we have constructed a quadrature formula that is an approximation of order n:

∫

RD

g (ξ) dDξ =
∫

RD

g (ξ)
ω (ξ)

ω (ξ) dDξ =
/

ξ=ξ0v

dDξ=ξD
0 dDv

/

=
1

(2π)D/2

∫

RD

g(ξ0v)
ω(ξ0v)

e−v2/2dDv �
∑

i

wig(ci)
ω(ci)

, (5)

where ci = ξ0vi, vi is a quadrature node, and wi is the weight corresponding to this node.
The set of velocities {ci} is an LBM stencil. Thus, a stencil is defined by the quadrature being used

and the parameter ξ0.
With (2) and (5), we find

ρ =
∑

i

wif(t, r, ci)
ω(ci)

=
∑

i

fi, (6)

where we have a discrete set of populations

fi(t, r) ≡ wif(t, r, ci)
ω(ci)

=
(√

2πξ0

)D
wif(t, r, ci)ec2i /2ξ2

0 . (7)

Similarly, for the other moments
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ρu =
∑

i

fici, ρ(u2 + DT ) =
∑

i

fic
2
i . (8)

For the populations (7) of the equilibrium distribution function (3) we obtain

f
eq
i = ρwie

(2ciu−u2)/2ξ2
0 . (9)

Assuming the flow velocity u to be small, we can expand (9) and obtain the well-known representation
of equilibrium populations:

f
eq
i = ρwi

(
1 − u2

2ξ2
0

+
ciu
ξ2
0

+
(ciu)2

2ξ4
0

)
, (10)

which exactly satisfies the relations (6), (8) if we use a quadrature of at least the fourth order of
approximation (in this case, we again have T = ξ2

0). Note that the expression (10) depends both on
the choice of the quadrature points vi and on the choice of the parameter ξ0.

Let us discuss what ξ0 means. In the above, ξ0 is a free parameter, which, in particular, allows scaling
the set of discrete velocities ci, thereby acting as an additional variable when constructing stencils. Thus,
ξ0 can be considered a parameter relating an abstract mathematical quadrature with a real space and
time/LBM stencil. In addition, based on (3), ξ2

0 can be considered as a temperature or squared sound
speed. However, here we are not interested in these quantities and consider an athermal LBM for which
fifth-order quadratures are sufficient [1].

Thus, owing to the relations (6), (8), the macroscopic parameters of the system are expressed in
terms of the discrete populations fi. Their evolution in time is determined by a set of Boltzmann kinetic
equations discretized with respect to the velocity ξ. This can be obtained from (1) by setting ξ = ci and
multiplying, according to (7), by wi/ω(ci):

∂fi

∂t
+ ci

∂fi

∂r
= Ω̂i, Ω̂i ≡

wi

ω(ci)
Ω̂

∣∣∣
ξ=ci

. (11)

Next, in the following discussion we will use the BGK collision operator [18]. In this case

Ω̂ =
f eq − f

τ
, Ω̂i =

f
eq
i − fi

τ
, (12)

where τ is another free parameter, which is the characteristic time of relaxation of the distribution
function to equilibrium.

To numerically solve equations (11), we introduce a uniform spatial grid with step size Δx. We
discretize (11) by dividing the evolution of populations corresponding to discrete time step Δt into two
successive stages:

• streaming stage:

∂fi

∂t
+ ci

∂fi

∂r
= 0 ⇒ fi(r + Δr, t + Δt) − fi(r, t) = 0, Δr ≡ ciΔt, (13)

• collision stage:

∂fi

∂t
=

f
eq
i − fi

τ
⇒ fi(r, t + Δt) − fi(r, t) =

Δt

τ

(
f

eq
i (r, t) − fi(r, t)

)
. (14)

To satisfy the last condition in (13), which allows the populations fi to propagate strictly over the
chosen spatial grid, the stencil {ci} must be normalized according to the chosen steps Δx and Δt. This
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can be done by an appropriate choice of the scaling parameter ξ0. For instance, for the D2Q9 stencil,
which corresponds to a quadrature with points

{
vD2Q9

i

}
=

{
(0, 0), (0,±

√
3), (±

√
3, 0), (±

√
3,±

√
3)

}
, (15)

we need to set ξ0 = Δx√
3Δt

.

Taking into account the above, the LBM numerical scheme takes the following simple form: at the
streaming stage the populations fi propagate strictly over the discrete spatial grid with their velocities
ci, and at the collision stage they locally get increments according to (14).

Finally, let us define one of the most important characteristics of a macroscopic flow, namely, viscosity
ν. Based on the Chapman–Enskog expansion, in terms of LBM [1] we have

ν = ξ2
0

(
τ − Δt

2

)
. (16)

Let us again list the main parameters used in the construction of a classical LBM and the relations
these parameters must satisfy. Suppose we wish to simulate a flow with viscosity ν on a uniform spatial
grid with a given spatial step Δx. In this case, the relations

nΔx = ξ0vi,kΔt, n ∈ N0, ν = ξ2
0

(
τ − Δt

2

)
, (17)

where ξ0, Δt, and τ may be considered free parameters, must be satisfied.
We may also choose a quadrature, that is, its points vi. However, first, the less nodes are in the

quadrature, the easier it is to solve the scheme numerically. Second, to satisfy the first condition in (17)
for any components of any quadrature points, these points must, up to a common scaling factor, be
strictly on the chosen spatial grid. In addition, to simulate the Navier–Stokes equations with the
viscosity (16), a quadrature of at least fifth-order approximation is required [1]. These conditions limit
the choice of quadratures considerably (but not completely).

2.2. Nonuniform Grids

Let us construct an LBM scheme without interpolation at the interface between two-dimensional
grids of different scales. Assume that we have a uniform “coarse” grid with Δxc = 1 on the left, and a
uniform “fine” grid with Δxf = 1/2 on the right (Fig. 1).

First note that there are two equivalent paradigms for the streaming stage of the LBM: Push and
Pull. In the case of paradigm Push, the new set of populations (after the streaming stage) at a grid node
is determined by the stencils of other nodes. That is, we need to take those populations of the other nodes
that propagate according to their stencils into that being considered. In the case of paradigm Pull, the
new set of populations at a grid node is determined by the stencil of this node. That is, populations are
“requested” from other nodes according to the stencil of the node being considered. If we have a uniform
spatial grid, these paradigms are indistinguishable. However, this is not the case for nonuniform grids.
In what follows, we will employ with paradigm Pull.

Now let us construct LBM schemes individually for coarse and fine uniform grids. We will use a
two-dimensional Gauss–Hermite quadrature and, accordingly, the set of nodes (15). The first condition
in (17) for both grids can be satisfied in different ways: similarly to spatial scaling, we can introduce time
step scaling for the fine grid, that is, set Δtc = 2Δtf = 1 (ξ0,c = ξ0,f = 1/

√
3) (as, for example, in [10]).

The problem with this approach is that data interpolation at the interface between the grids is inevitable,
since this is the only way to obtain information at the interface for the fine grid at the half-integer time
steps. We will use another method: stencil scaling by changing the parameter ξ0. Set

ξ0,c = 2ξ0,f =
1√
3
, Δtc = Δtf = Δt (18)
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Fig. 1. Scheme of the streaming stage at the interface between grids of different scales for three different stencils. Large
and small round nodes correspond to quadrature D2Q9 with parameters ξ0 equal to 1

/√
3 and 1

/
2
√

3, respectively.
Square nodes correspond to quadrature D2Q15 with ξ0 = 5

/√
38 (Appendix A).

and define the stencils for points on the coarse and fine grids as

{ci,c} = ξ0,c

{
vD2Q9

i

}
, {ci,f} = ξ0,f

{
vD2Q9

i

}
. (19)

Thus, in the case of paradigm Pull for large round nodes in Fig. 1 we will use stencil {ci,c},
and for small round nodes {ci,f}. For square nodes, a new stencil is needed. It is easy to see from
the location of these points at the interface that such a stencil cannot be constructed by scaling
the quadrature (15). One of the simplest stencils for square nodes in Fig. 1, which is a fifth-order
approximation, is constructed in Appendix A.

Now we have defined a stencil for each node of our nonuniform grid. Note that at the streaming stage
near the interface between grids of different scales the nodes corresponding to one of the stencils being
used will request populations from the nodes corresponding to another stencil. Thus, we see that a local
transformation of the populations of one stencil into the populations of another stencil is necessary.

2.3. Transformation Method
Let us present a method for a local (in time and space) transformation of populations between two

arbitrary stencils.
A discretized Boltzmann kinetic equation (13), (14) has the form

fi(t + Δt, r + ciΔt) = fi(t, r) +
Δt

τ

(
f

eq
i (t, r) − fi(t, r)

)
. (20)

In terms of the LBM cycle, (20) can be understood as follows: according to the right-hand side of the
equality, the populations going from point (t, r) (after the collision stage!) are determined by populations
at the same point.

To find a relation between the sets of populations outgoing from a node corresponding to different
stencils, let us consider the Chapman–Enskog expansion [1, 19]. Taking into account only the linear
correction with respect to the Knudsen number ε, we have

fi � f
eq
i + εf

(1)
i , f

(1)
i = −τ

(
∂

(1)
t f

eq
i + ci∂

(1)
r f

eq
i

)
, ∂(1) =

∂

ε
, (21)
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or in explicit form

fi � f
eq
i − τ

(
∂tf

eq
i + ci∂rf

eq
i

)
= f

eq
i − τDf

eq
i , D ≡ ∂t + ci∂r. (22)

Let us consider first an existing method of transformation between the sets of populations corre-
sponding to similar stencils {ci} but different parameters Δt and τ in (20). Assume that we have a
coarse grid with parameters Δtc and τc. Substituting (22) into (20), we obtain

fi,c(t + Δtc, r + ciΔtc) − f
eq
i (t, r) = (Δtc − τc)Df

eq
i (t, r). (23)

Similarly, for a grid with Δtf = Δtc/n, τf we have

fi,f(t + Δtf , r + ciΔtf ) − f
eq
i (t, r) = (Δtf − τf )Df

eq
i (t, r). (24)

Dividing (23) by (24), we obtain the formula [10]

fi,c(t + Δtc, r + ciΔtc) − f
eq
i (t, r)

fi,f (t + Δtf , r + ciΔtf ) − f
eq
i (t, r)

=
n(1 − τc/Δtc)
1 − τf/Δtf

, (25)

in which a relation between τc and τf is given by the fact that the viscosity (17) is the same on the
different grids:

ν = ξ2
0

(
τc −

Δtc
2

)
= ξ2

0

(
τf − Δtf

2

)
⇒ τc/Δtc − 1/2

τf/Δtf − 1/2
=

1
n

. (26)

Now we obtain an expression, which is similar to (25), for the case of interest to us: Δtc = Δtf = Δt.
Let us first consider two stencils corresponding to the same quadrature {vi} but different parameters ξ0

to obtain the necessary grid scaling. Set

ξ0,f =
ξ0,c

n
, {ci,f} =

{ci,c}
n

, (27)

and

Df �= Dc, f
eq
i,f �= f

eq
i,c, (28)

and instead of the relation (26) we have

τc/Δt − 1/2
τf/Δt − 1/2

=
1
n2

. (29)

With (27), (28), instead of (25) we have the following relation between the post-collision populations:

fi,c(t + Δt, r + ci,cΔt) − f
eq
i,c(t, r)

fi,f (t + Δt, r + ci,fΔt) − f
eq
i,f(t, r)

=
(1 − τc/Δt)Dcf

eq
i,c

(1 − τf/Δt)Dff
eq
i,f

. (30)

Let us find out how Df
eq
i depends on the grid. For this, let the derivatives in the operator D explicitly

act on the moments ρ,u. From (10), (22) we find

Df
eq
i = wiε

(
∂

(1)
t ρ − 1

2ξ2
0

∂
(1)
t ρu2 +

ci,β

ξ2
0

∂
(1)
t ρuβ +

ci,βci,γ

2ξ4
0

∂
(1)
t ρuβuγ
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+ ci,α∂(1)
α ρ − ci,α

2ξ2
0

∂(1)
α ρu2 +

ci,αci,βci,γ

2ξ4
0

∂(1)
α ρuβuγ +

ci,αci,β

ξ2
0

∂(1)
α ρuβ

)
. (31)

Let us eliminate the time derivatives in (31) by using the equations for the first-order moments in ε:

∂
(1)
t ρ + ∂(1)

α (ρuα) = 0, ∂
(1)
t (ρuα) + ∂(1)

γ Πeq
αγ = 0, (32)

where

Πeq
αγ = ρuαuγ + ρξ2

0δαγ . (33)

Taking the derivative

∂
(1)
t ρuβuγ = uβ∂

(1)
t ρuγ + uγ∂

(1)
t ρuβ − uβuγ∂

(1)
t ρ (34)

and, using (32), (33), rewrite the expression (31) as follows:

Df
eq
i = wiε

(
−ρ∂(1)

α uα +
ci,αci,β

ξ2
0

ρ∂(1)
α uβ

−ci,β

ξ2
0

∂(1)
γ ρuβuγ − ci,α

2ξ2
0

∂(1)
α ρu2 +

ci,αci,βci,γ

2ξ4
0

∂(1)
α ρuβuγ + O

(
u3

))
. (35)

Let us return to the standard derivatives in (35) (according to (21)), and express the velocities of the
stencil in terms of the quadrature points (ci = ξ0vi) to obtain an explicit dependence on the parameter ξ0:

Df
eq
i = wi

(
−ρ∂αuα + vi,αvi,β ρ∂αuβ

−vi,β

ξ0
∂γρuβuγ − vi,α

2ξ0
∂αρu2 +

vi,αvi,βvi,γ

2ξ0
∂αρuβuγ + O

(
u3

))
. (36)

One can see from (36) that the underlined terms, which are linear in velocity, coincide for the stencils
on different scales. This is not the case for the quadratic and cubic terms. If we neglect them, for the
first-order terms in u the transformation formula (30) takes the form

fi,c(t + Δt, r + ci,cΔt) − f
eq
i,c(t, r)

fi,f(t + Δt, r + ci,fΔt) − f
eq
i,f(t, r)

=
1 − τc/Δt

1 − τf/Δt
. (37)

Finally, let us discuss the general case of transformation between stencils corresponding to different
quadratures {vi} and different values of ξ0 (and, hence, based on (27), (29), to different values of τ ). The
transformations (25) and (37) of populations corresponding to the same quadrature {vi} are necessary,
because these populations correspond to different values of τ . Therefore, they are used to solve Eq. (20)
with different collision terms. Thus, these transformations “align” the parameter τ . In the case that is of
interest to us (Δtc = Δtf = Δt), to change between the sets of populations corresponding to the same
value of ξ0 (to the same value of τ ) but to different quadratures, we can use moment matching [16, 17, 20,
21]. In this case, a relation between the populations is obtained by equating moments of the distribution
function, for example,

(∑
i

c p
i,xcq

i,yfi

)∣∣∣∣∣
D2Q9

=

(∑
i

c p
i,xc

q
i,yfi

)∣∣∣∣∣
D2Q15

, (38)
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where the total number of equalities is determined by the approximation order of the quadratures being
used. In our case, we demand that Eq. (38) hold up to

p + q ≤ 5, p, q ∈ N0. (39)

Note that, in addition to the equalities (38), we can write an explicit relation between the populations
corresponding to the same velocity ci. In our case, these are populations f0 corresponding to zero
velocity. It follows from (7) that

f0

w0ξ2
0

∣∣∣∣
D2Q9

=
f0

w0ξ2
0

∣∣∣∣
D2Q15

. (40)

The relations (38) and (40) are a system of linear equations with respect to the populations of the
stencil which we wish to obtain. This system may be underdetermined, and the number of independent
equations in it may be less than the number of the required populations. For instance, this is the case
when we change from the populations of stencil D2Q9 to those of stencil D2Q15. In this case, Eqs. (38)
are used for higher approximation order, but the initial moments are calculated using the equilibrium
distribution function corresponding to the node.

Let us summarize the results of Subsection 2.2: In the general case, the transformation of populations
from an LBM stencil to another one takes place in two steps:

(1) Convert to the populations of a stencil having the value of τ that is the same as that of the final
stencil (since, according to (16), the parameter ξ0 also changes, this step can be called scale alignment).

(2) Convert to the populations of a stencil with the same quadrature as that of the final stencil (form
alignment).

These two steps can be performed in any order.

3. TESTS

Let us perform a series of tests using our LBM scheme for nonuniform grids. We set

ρ = 1, Δt = 1. (41)

As the simulation domain, we take a rectangular grid refined along both axes at the lateral boundaries
with a spatial grid refinement ratio of 2 (Fig. 2). The domain sizes, taking into account the half-cells at
the lateral boundaries, are as follows:

Lx = (nx,c − 1)Δxc + (2nx,f + 1)Δxf , Ly = ny,cΔxc. (42)

We will compare the results of numerical calculations using the LBM with an analytical solution of
the Navier–Stokes equations for an incompressible fluid (∇ is the nabla operator):

∂u
∂t

+ (u∇)u = −1
ρ
∇p + νΔu (43)

with the corresponding initial and boundary conditions.
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Fig. 2. Typical form of the simulation domain for checking the LBM scheme without interpolation on nonuniform grids.

3.1. The Algorithm

Let us describe the algorithm of the LBM numerical scheme used in the tests. Taking into account
the transformation method described in the previous section, the algorithm in large part corresponds to
the classical LBM in paradigm Pull: at each time step, each node requests populations according to its
stencil. If a request is sent to a node that corresponds to another stencil, the local transformation process
(in one or two steps) takes place before the streaming stage. The transformation of populations at the
domain boundary is determined by the boundary conditions of the tests.

The following four stencils are used in the simulations: {ci,c}, {ci,f} (19) for the large round nodes
of the coarse grid and the small round nodes of the fine grid, respectively, stencil {ci,b} with a parameter
ξ0,b = 5

/√
38 (Appendix A) for the square nodes at the boundaries of the coarse and fine grids, as well

as a phantom stencil

{ci,p} = ξ0,b

{
vD2Q9

i

}
, (44)

not associated with any node, but necessary as an intermediate one in the transformation process.

In the simulation we use Aiwlib library [22].

Algorithm:

• Streaming stage for the large round nodes. For the nodes at the boundaries of nonuniform grids,
when requesting three populations from small round nodes, the transformation {ci,f} → {ci,c} is
performed by formula (37).

• Streaming stage for the small round nodes. For the nodes at the boundaries of nonuniform
grids, when requesting populations from large round nodes, the transformation {ci,c} → {ci,f}
is performed by formula (37), and when requesting populations from square nodes, the two-step
transformation {ci,b} → {ci,p} → {ci,f} (first (38), (40) for convert to {ci,p}, and then (37) for
convert to {ci,f}).
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• Streaming stage for the square nodes. When requesting populations from large round nodes, the
two-step transformation {ci,c} → {ci,p} → {ci,b} (first (37) for convert to {ci,p}, and then (38),
(40) for convert to {ci,b}). When requesting populations from small round nodes, the two-step
transformation {ci,f} → {ci,p} → {ci,b} (first (37) for convert to {ci,p}, and then (38), (40) for
convert to {ci,b}).

• Local collision stage for all nodes with BGK parameters τ = Δt/2 + ν/ξ2
0 (for the large round

nodes ξ0,c = 1
/√

3, for the small round nodes ξ0,f = 1
/
(2
√

3), for the square nodes ξ0,b =
5
/√

38).

3.2. Poiseuille Flow
Consider a steady Poiseuille flow u = u(x, y) which corresponds to the following conditions:

u
(
−Lx

2
, y

)
= u

(
Lx

2
, y

)
= 0, u(x, y + Ly) = u(x, y), ∇p = (0,−g). (45)

The solution of (43) takes the form

ux = 0, uy(x) =
gL2

x

8ρν

(
1 − 4x2

L2
x

)
. (46)

To simulate the Poiseuille flow with the LBM, we use “bounce-back” boundary conditions at the x
axis [1] and zero initial conditions. To take into account the pressure gradient g at the collision stage, we
add a correction Δuy = gτ/ρ to the velocity in equilibrium populations [23]. With time, the system will
come to a steady state. The simulation results are shown in Fig. 3.

Let us compare the results of simulation with our code with the results of [5], which also considers two
methods for constructing an LBM on nonuniform grids (namely, IVP and BVP) and provides simulation
results for the Poiseuille flow. For this we constructed curves (see Fig. 4), which are similar to those in [5,
Fig. 7]. Note, however, that to decrease the error caused by the simulation domain boundaries, [5] uses
a TRT-operator of collision. For the same purpose, we choose a value of the parameter τ =

(√
3 + 2

)/
4

at which this error does not exceed the error of the classical LBM [1]. To simulate the same velocity field,
we keep the ratio g/ν as in [5]. For the same N , the resolution of the uniform grid is the same as that of
the “fine” part of the nonuniform grid.

Figure 4 shows that our scheme converges stably to the exact solution in both norms. However,
whereas the classical LBM on the uniform grid is a second-order approximation in both norms, our
scheme is a first-order one both in the L∞ and L1 norms. Our new method is comparable to the IVP
method from [5], since it has similar convergence in the L∞ norm.

Fig. 3. Errors of flow velocity components u versus coordinate x in simulation of Poiseuille flow for parameters
nx,f = 10, nx,c = 21, ny,c = 21, ν = 0.036, Δuy = 10−8 at 30000 Δt.
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Fig. 4. Absolute error in Poiseuille flow simulation on uniform (•) and nonuniform (�) grids in L1- (dashed lines)
and L∞-norms (solid lines) versus the number of nodes in the simulation domain along the x axis in logarithmic
scale, p is the modulus of the curve slope coefficient, approximation order. Simulation parameters: τ =

(√
3 + 2

)/
4,

g = 7.05 × 10−6, for nonuniform grid nx,f = nx,c, ny,c = 4.

3.3. Two-Dimensional Damping Harmonic Wave

Now consider a damping harmonic wave given by the conditions

u(0, r) = u0 cos(kr), u(t, x + Lx, y + Ly) = u(t, x, y), ∇p = 0, (47)

and parameters u0 and k that satisfy the relations

u0k = 0, kx =
2πNx

Lx
, ky =

2πNy

Ly
, Nx, Ny ∈ Z. (48)

The function

u = u0 cos(kr)e−νk2t/ρ, u0 = u0

⎛
⎝ 1√

1 + k2
x/k2

y

, − 1√
1 + k2

y/k
2
x

⎞
⎠ (49)

is a solution to (43), (47), (48).

Figure 5 shows the results of simulation of the damping harmonic wave by using the LBM scheme
on nonuniform grids.
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Fig. 5. Velocity components of flow u at node with coordinate (0, 0) versus time (left) and their relative errors (right)
in damping harmonic wave simulation for parameters nx,f = 40, nx,c = 61, ny,c = 81, ν = 0.0625, u0 = 5 × 10−3,
Nx = 3, Ny = 2.

4. CONCLUSIONS

A scheme of constructing an athermal node-based LBM without interpolation on two-dimensional
nonuniform grids, with the same time step for the grids of different scales, has been developed. The
scheme employs different stencils for different types of nodes on a nonuniform grid, in particular, a
stencil D2Q9 scaled by varying the free parameter ξ0. Data interpolation at the grid interface can be
avoided by using a new population transformation method that makes it possible to change from the
set of populations of one stencil to the set of populations of another one. The standard methods with
interpolation are often first-order approximations (see [10, 12, 14, and 24]), less often second-order ones
[5, 7, 25]. It has been shown that at the moment our scheme is a first-order approximation. Nevertheless,
it can be increased by using different transformations of other stencils for velocities, etc. Our approach is
a novel method for constructing relations between nonuniform grids, which has not been tested by other
authors and can be further developed. This method can be used to construct new, similar, and more
complex schemes and improve the existing ones.

APPENDIX

A. Stencil for Separate Boundary Nodes

Let us construct a stencil for the square interface nodes shown in Fig. 1. For a two-dimensional
(D = 2) stencil to be a fifth-order approximation (n = 5), according to (4), (5) its points {ci} and their
weights {wi} must satisfy the following relations:

1
2πξ2

0

∫

R2

ξp
xξ

q
ye

−(ξ2
x+ξ2

y)/2ξ2
0d2ξ =

∑
i

wic
p
i,xcq

i,y, p + q ≤ 5, p, q ∈ N0. (50)

In the general case, their number is (n + 1)(n + 2)/2 = 21.
At fixed points of the stencil {ci}, (50) is a system of linear algebraic equations for the coefficients

0 < wi < 1 with a parameter ξ0. If this system is solvable, the stencil can be constructed.
To simplify the system (50), assume that the stencil is symmetric about both axes, x and y. All

equations containing odd values of p or q will be satisfied automatically, and the number of nontrivial
equations will be reduced to six. Thus, we need five coefficients wi (taking into account the stencil
symmetries) in addition to the free parameter ξ0.

Consider the stencil

{ci,b} =
{

(0, 0),
(

0,±3
2

)
,

(
±1,±3

2

)
,

(
±1,±1

2

)
,

(
±2,±1

2

)}
, (51)
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Fig. 6. Stencil for separate nodes at the interface between grids of different scales, which is a fifth-order approximation.

shown in Fig. 6. The nontrivial equations to be satisfied are

p = 0, q = 0 : 1 = w0 + 2w1 + 4w2 + 4w3 + 4w4, (52)

p = 2, q = 0 : ξ2
0 = 4w2 + 4w3 + 16w4, (53)

p = 0, q = 2 : ξ2
0 =

9w1

2
+ 9w2 + w3 + w4, (54)

p = 4, q = 0 : 3ξ4
0 = 4w2 + 4w3 + 64w4, (55)

p = 2, q = 2 : ξ4
0 = 9w2 + w3 + 4w4, (56)

p = 0, q = 4 : 3ξ4
0 =

81w1

8
+

81w2

4
+

w3

4
+

w4

4
. (57)

The system (52)–(57) has a solution with

w0 =
1249
3249

, w1 =
6125

103968
, w2 =

775
23104

, w3 =
5375
69312

, w4 =
925

69312
(58)

at a parameter ξ0,b = 5
/√

38. Hence, the required stencil has been constructed.
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