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Abstract—This article discusses a mixed finite element method combined with the backward-Euler
method to study the hyperbolic p−bi-Laplace equation, where the existence and uniqueness of
solution for the discretized problem are shown in Lebesgue and Sobolev spaces. A mixed formulation
and an inf-sup condition are then given to prove the well-posedness of the scheme and optimal a
priori error estimates for fully discrete schemes are extracted. Finally, a numerical example is given
to confirm the theoretical results obtained.
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1. INTRODUCTION AND PRELIMINARIES

Let Ω be a bounded open domain of R
d with a Lipschitz-continuous boundary ∂Ω. Fixing a final time

T > 0, consider the following hyperbolic problem:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂2u

∂t2
− Δ(div(|Δu|p−2∇u)) = f(x, t) in [0, T ] × Ω,

u = Ψ, ∇u = ∇Ψ on [0, T ] × ∂Ω,

u(0, x) = u0,
∂u

∂t
(0, x) = U1 on Ω,

(1.1)

where 2 ≤ p < ∞, f(t) and Ψ(t) are given functions in Lq(Ω) and W 2,∞(Ω), respectively.
In recent years, substantial progress has been made in studying fourth order problems that are

a nonlinear generalization of bi-Laplacian problems. The main drive to study (1.1) arises from the
various applications in the field of elasticity that are used precisely in the modeling of traveling waves
in suspension bridges (see [2, 11]).

High order PDEs with a constant exponent have been studied by several authors under various
conditions on the data and by different methods, for example (see [1, 3, 10]). We also refer to some
references interesting in the study of this type of equations with a variable exponent as in [13, 18].

The authors of [16] considered the following p-biharmonic elliptic problem:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Δ(|Δu|p−2Δu) = f in Ω,

u = 0 in ∂Ω,

∂u
∂n = 0 in ∂Ω,
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where ∂
∂n is the outer normal derivative. By using a WEB-Spline mesh-free finite element method, the

authors discussed the existence and uniqueness of a weak solution and then derived a discrete variational
formulation for a p-biharmonic problem.

In [12], the authors proposed a discrete time method and uniform estimates for the following p-bi-
Laplacian parabolic equation:

ut + Δ(|Δu|p−2Δu) = |u|q − 1
|Ω|

∫

Ω

|u|dx, x ∈ Ω,

where Ω ⊂ R
N , p > 2, and λ > 0. The authors established the existence and uniqueness of weak

solutions.
The C1 finite elements and the Argyris element [4] are among the similar approaches for such

problems. But in three dimensions, we find obstacles in the design of C1 finite elements difficult to
implement. We mention other methods that can be applied to this class of problems: the discontinuous
Galerkin methods which are a class of nonconforming finite element method and the h-k dG finite
elements used for the 2-bi-Laplacian (see [7, 9]).

One of the options proposed to address our problem is to use mixed finite elements with respect to
distance and the backward Euler method with respect to time.

The mixed finite elements are among the most popular methods used to study this family of problems.
This method allows one to solve mixed problems where the unknowns are two functions. For more details
about this method see [2, 5, 6]. Moreover, the convergence of this method is subject to inf-sup conditions
taken from [8, 15].

The plan of the paper is as follows: In Section 1, we set some of the necessary and fundamental
materials of the p-bi-Laplacian. Section 2 is devoted to extracting a semi-discretization scheme based
on the backward Euler method and proving the existence and uniqueness of the solution for this scheme.
In Section 3, we give a mixed formulation and an inf-sup condition to prove that the mixed approximation
problem is well-posed. In Section 4, we deduce a fully discrete scheme and derive a priori error estimates
with assistance of the Ritz projection operator and Galerkin orthogonality properties. Finally, we finish
our work by a numerical experiment in Section 5.

We state some of the materials needed to prove our results.
For 1 ≤ p < ∞, we define the Lebesgue space Lp(Ω) as follows:

Lp(Ω) =

{
u : Ω → R measurable :

∫

Ω

‖f(x)‖pdx < ∞
}

, (1.2)

with the norm

‖f‖Lp =

(∫

Ω

‖f(x)‖pdx

)1/p

. (1.3)

Definition 1. For 1 ≤ p < ∞ and m ∈ N, we define the Sobolev space W m,p(Ω) as follows:

W m,p(Ω) =
{
f ∈ Lp(Ω) ; Dαf ∈ Lp(Ω)∀α ∈ N such that |α| ≤ m

}
, (1.4)

with the norm

‖f‖m,p =
∑

|α|≤m

‖Dαf‖Lp(Ω). (1.5)
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Definition 2. We define the space W 2,p
Ψ (Ω) as follows:

W 2,p
Ψ (Ω) = Ψ + W 2,p

0 (Ω) =
{
f ∈ W 2,p

Ψ (Ω) ; f\∂Ω = Ψ and ∇f\∂Ω = ∇Ψ
}
, (1.6)

here

W 2,p
0 (Ω) = C∞

0 (Ω)
W 2,p(Ω)

. (1.7)

Remark 1.
1) Let p, q ∈ [1,∞), such that q is the conjugate of p, which satisfies

1
p

+
1
q

= 1.

Then for u ∈ Lp(Ω) we have

∥∥∥ |u|p−1
∥∥∥

LqΩ)
= ‖u‖p−1

Lp(Ω). (1.8)

2) Let p, q, and r ∈ [1,∞), be such that

1
p

+
1
q

=
1
r
.

For u ∈ Lp(Ω) and v ∈ Lq(Ω), we have

fg ∈ Lr(Ω) and ‖uv‖Lr(Ω) ≤ ‖u‖Lp(Ω)‖v‖Lq(Ω). (1.9)

Definition 3. A function u is said to be a weak solution of (1.1) if

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1) u ∈ L∞(
[0, T ],W 2,p

0 (Ω)
)
∩ W 1,∞([0, T ], L2(Ω)) such that

∀v ∈ L∞(
[0, T ],W 2,p

0 (Ω)
)
∩ W 1,∞([0, T ], L2(Ω)).

2)

T∫

0

(∂2u

∂t2
, v
)
dt +

T∫

0

(
|Δu|p−2Δu,Δv

)
dt =

T∫

0

(
f, v

)
.

(1.10)

2. SEMI-DISCRETIZATION

We divide the time interval [0, T ] into n subintervals of length τ = T
n and denote by ui the values of u

at ti = iτ , i = 0, 1, . . . , n, and let

δui(x) =
ui − ui−1

τ
,

δ2ui(x) =
δui(x) − δui−1(x)

τ
.

Let u−1 be defined as u−1(x) = u0(x) − τu1(x).
For i = 1, . . . , n, a recurrent approximation scheme is written as follows:
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⎧⎪⎨
⎪⎩

find ui ∼= u(·, ti), i = 1, 2, . . . , n, such that

(
δ2ui, v

)
+
(
|Δui|p−2Δui,Δv

)
=
(
f i, v

)
.

(2.1)

This implies

⎧⎪⎨
⎪⎩

find ui ∼= u(·, ti), i = 1, 2, . . . , n, such that

(
δui − δui−1, v

)
+ τ

(
|Δui|p−2Δui,Δv

)
= τ(f i, v).

(2.2)

Theorem 1. Let f i ∈ Lq(Ω), the problem (2.2) admits a unique weak solution u ∈ W 2,p
Ψ (Ω) for

1 ≤ i ≤ n.

Proof. Let us define an operator

A : W 2,p
0 (Ω) → (W 2,p

0 (Ω))∗

such that

Aui = δui + τΔ2
pu

i. (2.3)

Here

Δ2
pu

i = Δ(|Δu|p−2Δu). (2.4)

We apply monotone operators theory to prove that A is a semi-continuous, coercive, and monotone
operator.

We introduce a functional K on W 2,p
0 (Ω) by

K(ui) =
∫

Ω

(
1
2
(δui)2 +

τ

p
|Δui|p

)
dx, (2.5)

(K ′(ui), v) =
d

dt

{
A(ui + tv)

}

t=0

=
d

dt

{
1
2

∫

Ω

(δui + tv)2dx +
τ

p

∫

Ω

|Δ(ui + tv)|pdx

}

t=0

=

{∫

Ω

(δui + tv)vdx + τ

∫

Ω

|Δ(ui + tv)|p−1Δvdx

}

t=0

=
∫

Ω

δuivdx + τ

∫

Ω

(|Δui|p−2Δui)Δvdx

=
∫

Ω

δuivdx + τ

∫

Ω

Δ(|Δui|p−2Δui)vdx

= (δui, v) + τ(Δ2
pu

i, v) = (Aui, v) ∀ ∈ W 2,p
0 (Ω).

(2.6)

This implies that K ′ = A and K is differentiable in the Gateau sense, that is, semi-continuous.

NUMERICAL ANALYSIS AND APPLICATIONS Vol. 15 No. 4 2022



ON DISCRETIZATION OF THE EVOLUTION p-BI-LAPLACE EQUATION 307

By using an inequality in [14], for p ∈ [1,∞) and a, b ∈ R
n, we have

|b|p ≥ |a|p + p|a|p−2a(b − a) +
|b − a|p
2p−1 − 1

, (2.7)

and from the mean value theorem we have

(
A(ui) − A(v)

)
=

(
δ(ui − v), ui − v

)
+ τ

(
Δ2

pu
i − Δ2

pv, ui − v
)

=
1
2
δ‖ui − v‖2 + τ(Δ2

pu
i − Δ2

pv, ui − v)

≥ C(τ)‖ui − v‖2 + τ(Δ2
pu

i − Δ2
pv, ui − v)

≥ τ(Δ2
pu

i − Δ2
pv, ui − v)

= τ

∫

Ω

|Δui|p−2Δui(Δui − Δv)dx − τ

∫

Ω

|Δv|p−2Δv(Δui − Δv)dx

=
2

p(2p−1 − 1)

∫

Ω

|Δui − Δv|pdx.

(2.8)

Since the norm ‖ · ‖W 2,p
0 (Ω) is equivalent to the semi norm ‖Δ(·)‖Lp(Ω) over the space W 2,p

0 (Ω) (by

Calderon–Zygmund and Poincaré), we have

(A(ui) − Av, ui − v) ≥ C(p)‖ui − v‖p

W 2,p
0 (Ω)

. (2.9)

This proves the monotonicity of A, then

(A(ui), ui) ≥ C(p)‖ui‖p

W 2,p
0 (Ω)

, (2.10)

from which we conclude the coercivity of A.

By Hölder’s inequality, we get

|(f i, v)| =

∣∣∣∣∣
∫

Ω

f ivdx

∣∣∣∣∣ ≤ C‖f i‖q‖v‖p, (2.11)

and using W 2,p
0 (Ω) ↪→ Lq(Ω), we obtain

|(f i, v)| ≤ C‖f i‖q‖v‖W 2,p
0 (Ω), (2.12)

this implies that f i ∈ (W 2,p
0 (Ω))∗. �
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3. MIXED FORMULATION

Taking X = W 2,p
Ψ (Ω) and Y = Lq(Ω), let us choose an auxiliary variable

wi = |Δui|p−1Δui. (3.1)

Depending on the following note: ψ(z) = |z|p−2z is such that the inverse is set as ψ(z) = sgn(z) ×
|z|

1
p−1 z = |z|q−2z, we can write the problem (1.1) as follows:

⎧⎪⎨
⎪⎩

−Δui = |wi|q−2wi,

−Δwi = f i − δ2ui.

(3.2)

A mixed system can be written as

⎧⎪⎨
⎪⎩

a(wi, v) + c(ui, v) = 0 ∀ v ∈ X,

c(wi, η) = LY (η) ∀ η ∈ Y.

(3.3)

Here

a(wi, v) :=
∫

Ω

|wi|q−2wivdx, (3.4)

c(wi, η) :=
∫

Ω

−Δwiηdx, (3.5)

LY (η) :=
∫

Ω

(f i − δ2ui)ηdx, (3.6)

where f i = f(ti, x).

Proposition (Inf-sup condition). For u ∈ X we have

γ ≤ C inf
0�=η∈Y

sup
0�=ui∈X

c(ui, η)
‖ui‖X‖η‖Y

. (3.7)

Proof. For ui ∈ W 2,p
0 (Ω) and taking η = |Δui|p−2Δui, we have

‖η‖Lq(Ω) =
∥∥ |Δui|p−1

∥∥
Lq(Ω)

= ‖Δui‖p−1
Lp(Ω) (3.8)

and

c(ui, η) = ‖Δui‖p
Lp(Ω), (3.9)

therefore

c(ui, η) = ‖Δui‖p
Lp(Ω)‖Δui‖p−1

Lp(Ω)‖Δui‖Lp(Ω) = ‖Δui‖Lp(Ω)‖η‖Lq(Ω). (3.10)
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This implies

‖Δui‖Lp(Ω) ≤ C
c(ui, η)
‖η‖Lq(Ω)

. (3.11)

Thus, we conclude that

γ ≤ C inf
0�=η∈Y

sup
0�=ui∈X

c(ui, η)
‖ui‖X‖η‖Y

. (3.12)

This completes the proof. �

4. FULL DISCRETIZATION

Let ΥT be a triangulation made of triangles T such that the intersection of two different elements is
either a vertex, an edge, or empty.

∃μ > 0
hT

ρT
≤ μ ∀T ∈ Υh, (4.1)

where hT is the diameter of T and ρT is the diameter of the largest ball contained inside T . We denote
the edges by e and define the jump operator for a function v across an edge/face at point x as

[v(x)]e =

⎧⎪⎨
⎪⎩

lim v(x + αηe) − v(x + αηe) if e ∈ ξint
h ,

v(x) if e ∈ ξh − ξint
h .

(4.2)

The mesh size h is given by

h = max
T∈ΥT

hT . (4.3)

Let P
k(Υh) define the space of piecewise polynomials of degree k over a triangulation Υh:

P
k(Υh) =

{
φ : φ\T ∈ P

k(T ) ∀T ∈ Υh

}
. (4.4)

The following discrete finite spaces are given:

Xh = P
k(Υh) ∩ C0(Ω̄), (4.5)

and

Xh
Ψ =

{
φ ∈ Xh ; φ\∂Ω = RΨ

}
, (4.6)

here R is the Ritz projection operator such that

∫

Ω

∇(Rv)∇φ =
∫

Ω

∇v∇φdx ∀φ ∈ Xh ∩ H1
0 (Ω). (4.7)

The discretized Laplace operator is defined as

(Δhv)\T := (Δhv)\T ∀T ∈ Υ. (4.8)
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The fully discrete scheme for (3.3) reads as follows: find a pair (ui
h, wi

h) ∈ Xh
Ψ × Xh such that

⎧⎪⎨
⎪⎩

a(wi
h, v) + ch(ui

h, v) = 0,

ch(wi
h, η) = L(η) ∀ (v, η) ∈ Xh × Xh

0 .

(4.9)

from Green’s formulation, we have

ch(uh, v) =
∑

T∈Υh

∫

T

∇uh∇vdx −
∫

∂Ω

∇Ψρvdx =
∫

Ω

∇uh∇vdx −
∫

∂Ω

∇Ψρvdx. (4.10)

By substituting (4.10) in (4.9), the problem (3.3) can be written as follows:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫

Ω

|wi
h|q−2wi

hv dx +
∫

Ω

∇ui
h∇vd x =

∫

∂Ω

∇Ψρv dx,

∫

Ω

∇wi
h∇η dx =

∫

Ω

(
f i − δ2ui

)
ηdx ∀ (v, η) ∈ Xh × Xh

0 .
(4.11)

Lemma 1 [9]. For m ≥ 2 and u ∈ W m+1,q(Ω), we have

‖u − Ru‖Lq(Ω) + ‖h(∇u −∇(Ru))‖Lq(Ω) +

(∑
T∈Υ

‖h2(Δu − Δ(Ru))‖q
Lq(T )

)1/q

≤ Chm+1|u|W m+1,q(Ω).

(4.12)

Lemma 2 (Properties of a(·, ·), see [17, prop. 3.1). For wi ∈ Lq(Ω), wi
h, vh ∈ Xh and p ≥ 2, there exist

positive constants C1, C2, and C3 such that

C1

2

‖wi − wi
h‖2

Lq(Ω)

‖wi‖2−q
Lq(Ω) + ‖wi

h‖Lq(Ω)

+
C2

2

∫

Ω

∣∣|wi|p−2wi − |wi
h|p−2wi

h

∣∣ |wi − wi
h|dx

≤ a(wi, wi − wi
h) − a(wi

h, wi − wi
h). (4.13)

a(wi, wi − vh) − a(wi
h, wi − vh)

≤ C3

(∫

Ω

∣∣|wi|q−2wi − |wi
h|q−2wi

h

∣∣ |wi − wi
h|dx

) 1
q

‖wi − vh‖Lq(Ω). (4.14)

Theorem 2. For m ≥ 2, there exists C ≥ 0 such that

‖ui − ui
h‖

p−1

W 2,p
h (Ω)

+ ‖wi − wi
h‖Lq(Ω) ≤ C

(
h

q
2
(m+1)|wi|

q
2

W m+1,q(Ω)
+ hm+1|wi|W m+1,q(Ω)

+hm−1|ui|W m+1,p(Ω) + hm+1|δ2ui|W m+1,q(Ω)

)
. (4.15)

Proof. From the triangle inequality, we have
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‖ui − ui
h‖W 2,p

h (Ω) ≤ ‖Rui − ui
h‖W 2,p

h (Ω) + ‖ui − Rui
h‖W 2,p

h (Ω). (4.16)

By the discrete inf-sup condition in Proposition, we obtain

‖Rui − ui
h‖W 2,p

h (Ω)
≤ sup

η∈Xh
0 (Ω); η �=0

ch

(
Rui − ui

h, η
)

‖η‖Lq
h(Ω)

≤ sup
η∈Xh

0 (Ω); η �=0

a(wi, η) − a(wi
h, η)

‖η‖Lq
h(Ω)

≤ C3

(∫

Ω

∣∣ |wi|p−2wi − |wi
h|p−2wi

h

∣∣ |wi − wi
h| dx

) 1
p

‖η‖Lq(Ω)

‖η‖Lq
h(Ω)

≤ C3C

(∫

Ω

∣∣ |wi|p−2wi − |wi
h|p−2wi

h

∣∣ |wi − wi
h| dx

) 1
p

.

(4.17)

Applying Lemma 2 and using Young’s inequality, we have

C2

∫

Ω

∣∣ |wi|p−2wi − |wi
h|p−2wi

h

∣∣ |wi − wi
h|dx ≤ a(wi, wi − wi

h) − a(wi
h, wi − wi

h)

≤
(∫

Ω

∣∣ |wi|p−2wi − |wi
h|p−2wi

h

∣∣ |wi − wi
h| dx

) 1
p

‖wi − wi
h‖Lq(Ω) (4.18)

≤ Cq
3

qεq
‖wi − wi

h‖
q
Lq(Ω) +

εp

p

∫

Ω

∣∣ |wi|p−2wi − |wi
h|p−2wi

h

∣∣ |wi − wi
h| dx.

Choosing ε sufficiently small so that εp

p < 1, we have

∫

Ω

∣∣|wi|p−2wi − |wi
h|p−2wi

h

∣∣ |wi − wi
h|dx ≤ C‖wi − wi

h‖
q
Lq(Ω). (4.19)

Substituting (4.19) into (4.17), we obtain

‖Rui − ui
h‖W 2,p

h (Ω)
< C‖wi − wi

h‖
q
p

Lq(Ω). (4.20)

Subtracting (4.9) from (3.3), we obtain

⎧⎪⎨
⎪⎩

a(wi, v) − a(wi
h, v) + ch(ui − ui

h, v) = 0,

ch(wi − wi
h, η) = 0.

(4.21)

From the semilinearity of a(·, ·), we conclude
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a(wi, wi − wi
h) − a(wi

h, wi − wi
h) = a(wi, wi − v) − a(wi

h, wi − v)

+a(wi, v − wi
h) − a(wi

h, v − wi
h)

= a(wi, wi−v) − a(wi
h, wi−v)︸ ︷︷ ︸

I1

+ ch(ui−ui
h, wi

h−v)︸ ︷︷ ︸
I2

.

(4.22)

Applying Lemma 2, we get

C1

2

‖wi − wi
h‖2

Lq(Ω)

‖wi‖2−q
Lq(Ω) + ‖wi

h‖
2−q
Lq(Ω)

+
C2

2

∫

Ω

∣∣|wi|p−2wi − |wi
h|p−2wi

h

∣∣ |wi − wi
h|dx ≤ I1 + I2. (4.23)

Now, by using ε-Young’s inequality and also Lemma 2, we find

I1 ≤ C3

(∫

Ω

∣∣|wi|q−2wi − |wi
h|q−2wi

h

∣∣ |wi − wi
h|dx

) 1
p

‖wi − vh)‖Lq(Ω)

≤ εp

p

∫

Ω

∣∣|wi|q−2wi − |wi
h|q−2wi

h

∣∣ |wi − wi
h|dx +

Cq
3

εqq
‖wi − vh)‖q

Lq(Ω).

(4.24)

Choosing ε such that εp

p = C2
2 , we have

I1 ≤ C2

2

∫

Ω

∣∣|wi|q−2wi − |wi
h|q−2wi

h

∣∣ |wi − wi
h|dx + C(q)‖wi − vh)‖q

Lq(Ω). (4.25)

On the other hand, we have

I2 = ch(ui − ui
h, wi

h − v)

= ch

(
ui − ui

h − R(ui − ui
h), wi

h − v
)

+ ch

(
R(ui − ui

h), wi
h − v

)

= ch(ui − Rui, wi
h − v) + ch(Rui − ui

h, wi
h − v)

= ch(ui − Rui, wi
h − v) +

∫

Ω

δ2(ui − ui
h)(Rui − ui

h) dx.

(4.26)

Further, using the continuity of ch, we get

ch

(
ui − Rui, wi

h − v
)

≤ C ‖ui − Rui‖
W 2,p

h
‖wi

h − v‖Lq(Ω)

=
C

2ε2
‖ui − Rui‖2

W 2,p
h

+
Cε2

2
‖wi

h − v‖2
Lq(Ω)

=
C

2ε2
‖ui − Rui‖2

W 2,p
h

+
Cε2

2
(
‖wi

h − wi‖2
Lq(Ω) + ‖wi − v‖2

Lq(Ω)

)
,

(4.27)

∫

Ω

δ2(ui − ui
h)(Rui − ui

h) dx ≤
(

1
p

+
1
p

)
‖δ2(ui − ui

h)‖Lq(Ω) ‖Rui − ui
h‖Lq(Ω)

≤ C ‖δ2(ui
h − ui)‖Lq(Ω) ‖Rui − ui

h‖W 2,p
h (Ω)

≤ C

2ε
‖δ2(ui

h − ui)‖2
Lq(Ω) +

ε

2
‖Rui − ui

h‖2
W 2,p

h (Ω)
.

(4.28)
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By applying the triangle inequality and (4.20) to the right-hand side of (4.28), and also by substituting
(4.25)–(4.28) into (4.23) and choosing ε small enough, we find

‖wi
h − wi‖2

Lq(Ω) ≤ C
(
‖wi − v‖q

Lq(Ω) + ‖Rui − ui‖2
W 2,p

h (Ω)
+ ‖wi − v‖2

Lq(Ω)

+‖δ2ui − Rδ2(ui)‖2
Lq(Ω)

)
.

(4.29)

From the properties of the Ritz projection and Lemma 1, we get the estimation of wi − wi
h. To

Fig. 1. The error results for u and w in log log-plot at t = 23τ for p = 3, 4, 5, respectively.
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Fig. 2. The surface for ui
h and wi

h on (0, 1) × (0, 1) for the 4-bi-Laplacian.

estimate ui − ui
h, we substitute (4.29) into (4.20), taking into account inequality (4.16). This completes

the proof. �

5. NUMERICAL EXPERIMENT

In this section, we turn our focus to a numerical experiment for different values of the power of p that
illustrates the accuracy and efficiency of the above-proposed method for a fully discrete scheme. First,
we prescribe the computational domain as Ω = (0, 1) × (0, 1) and the time interval as (0, 1). We use the
Newton–Raphson method to solve the above-obtained nonlinear system, so we give initial values w0,
w1, u0, and u1. The source function f and the auxiliary variable w are chosen according to the exact
solution

u(x, t) =
1
π2

sin(πx) sin(πy) sin(t)3.

In this experiment, the unknown function u(x, y, t) and the auxiliary variable w(x, y, t) are approx-
imated by a linear polynomial, that is, k = 1. For this test example we take the step length h ∈
{1

3 , 1
6 , 1

12 , 1
24 , 1

48 , 1
96} and p = 3, 4, 5. Numerically, the errors are calculated at the final time level ti = 23τ

with τ = 25.
In Fig. 1, we plot the error results for u and w, and Fig. 2 represents the surface for ui

h and wi
h on

(0, 1) × (0, 1).
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