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Abstract—An explicit representation of filter banks is obtained for constructing wavelet trans-
forms of spaces of linear minimal splines on nonuniform grids on a segment. Decomposition and
reconstruction operators are constructed, and it is proved that they are mutually inverse. Some
interrelations between the corresponding filters are established. The approach to constructing spline
wavelet decompositions used in the present paper is based on using the approximating relations as
initial structures for constructing spaces of minimal splines and the calibration relations to prove
that the corresponding spaces are embedded An advantage of the approach is the possibility of using
nonuniform grids and arbitrary nonpolynomial spline wavelets without using the formalism of Hilbert
spaces.
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1. INTRODUCTION

Splines and wavelets are widely used in information theory. Wavelet decompositions are associated
with the development of efficient algorithms for processing (compression or refinement) of large flows
of digital data and signals of various kinds. They have been widely used in many technical areas, in
particular, in coding theory.

It is well-known that there are no explicit finite decomposition formulas for classical spline wavelets.
Therefore, approximate relations are used for the leading decomposition coefficients [1] or the corre-
sponding sparse systems of linear algebraic equations are solved. However, it is not guaranteed that
they are well-conditioned [2]. For instance, such a system can be split into systems with strict diagonal
dominance [3] and then solved by the double-sweep method with guaranteed correctness and stability.
Another method is to construct an extension matrix whose elements are values of an extended system
of biorthogonal functionals on the original basis [4, 5]. However, the above-mentioned papers do not
provide an explicit representation of the decomposition and reconstruction filters which could be used to
construct, for example, noise-resistant codes.

G. Faber [6] constructed a sequence of continuous piecewise linear functions that converge pointwise
to a continuous nowhere differentiable function. He introduced a hierarchical representation of the
functions in the form of a series based on piecewise linear interpolation on nested binary grids and an
explicit representation of the first “lazy” wavelet (with a compact support). From the point of view of data
compression, the Faber decomposition is useful owing to the stability of linear B-splines. It provides
good and fast compression without much effort. However, wavelet theory was initiated by A. Haar [7],
with a study of partial sums of Fourier series, which resulted in the first classical orthogonal wavelet with
a compact support. Major theoretical approaches used in the study of wavelets involve constructing an
orthogonal basis of wavelets in a Hilbert space and using shifts and compressions (expansions) of the
argument of a fixed function called a scaling function. The requirement of space embedding on a twice
refined infinite uniform grid on a real axis leads to multi-scale relations such that each basis function on
a refined grid can be expressed as a linear combination of basis functions on a dense grid. Specifically,
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splines are subject to such relations. Unfortunately, it is difficult to solve the scaling equations in general
form. A more appropriate method for nonuniform grids is to construct calibration relations generalizing
the classical scaling equations for uniform grids. This allows constructing systems of embedded spline
spaces with arbitrary refining/coarsening of a nonuniform grid. Also, this results in corresponding
adaptive wavelet decompositions on nonuniform grids on an interval, that is, wavelet decompositions
of finite spaces.

An important problem in constructing a spline-wavelet decomposition is choosing an appropriate
method of constructing nested grids. In [8–10], spline-wavelet decompositions were constructed by
successively removing or adding nodes of a nonuniform grid. In this case a procedure of constructing
a system of functionals that is biorthogonal to a wavelet basis is used instead of the requirement of
orthogonality of the wavelet basis. Paper [11] considered a single local coarsening of a nonuniform grid
with nodes forming a dyadic system of indices. This provided decompositions that could be used to
construct either “lazy” wavelets or wavelets with a shifted support. In [12, 13], the set of grids to be used
was increased, and a once locally refined nonuniform grid was used. However, no explicit representation
of decomposition and reconstruction filters had been made. In the present paper, the same approach to
constructing spline-wavelet decompositions with a single local refinement of a nonuniform grid is used.
It leads, in the general case, to the construction of biorthogonal wavelets or lifting schemes. It is used
to construct spline-wavelet decompositions on an interval with the approximating relations as initial
structures for constructing spaces of linear minimal splines and the calibration relations to prove that the
corresponding spaces are embedded. Also, decomposition and reconstruction operators are constructed,
and it is proved that they are mutually inverse. An explicit representation of filter banks for constructing
corresponding wavelet transforms is obtained. It is found that the decomposition and reconstruction
matrices are sparse. An advantage of this approach is the possibility of using nonuniform grids and
arbitrary nonpolynomial spline wavelets without using the formalism of Hilbert spaces.

2. SPACE OF COORDINATE SPLINES

Let Z, R be the sets of integer and real numbers, respectively; Cr[a, b] is the set of functions that are
r times continuously differentiable on an interval [a, b] assuming that C0[a, b] = C[a, b].

On an interval [a, b] ⊂ R
1, let us consider a grid X with two additional nodes outside the interval

[a, b]:

X : x−1 < a = x0 < x1 < · · · < xn−1 < xn = b < xn+1. (1)

Let us introduce the following notation:

Ji,k
def= {i, i + 1, . . . , k}, i, k ∈ Z, i < k.

Let {aj}j∈J−1,n−1 be an ordered set of vectors aj ∈ R
2. For convenience, the components of the

vectors will be denoted by square brackets and numbered. For instance, aj =
(
[aj]0, [aj]1

)T
, where T

denotes transposition.

Assume that the square matrices (aj−1, aj) consisting of a pair of vectors aj−1, aj are nonsingular:

det(aj−1, aj) �= 0 ∀ j ∈ J−1,n−1. (2)

The union of all elementary grid intervals is denoted by M
def=

⋃

j∈J−1,n

(xj , xj+1). Let X(M) be the

linear space of real-valued functions defined on the set M.

Consider a generating vector-function ϕ : [a, b] → R
2 with components from the space C1[a, b] and

a nonzero Wronskian:

|det(ϕ,ϕ′)(t)| ≥ const > 0 ∀ t ∈ [a, b].
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Assume that functions ωj ∈ X(M) and j ∈ J−1,n−1 satisfy the following approximating relations:

k∑

j′=k−1

aj′ ωj′(t) ≡ ϕ(t) ∀ t ∈ (xk, xk+1), ∀ k ∈ J−1,n−1,

ωj(t) ≡ 0 ∀ t /∈ [xj , xj+2]
⋂

M.

(3)

For every fixed t ∈ (xk, xk+1) relations (3) may be considered as a system of linear algebraic equations
for the unknowns ωj(t). By virtue of assumption (2), system (3) is uniquely solvable, and suppωj(t) ⊂
[xj , xj+2].

Using Cramer’s formulas, from the system of linear algebraic equations (3) we find that

ωj(t) =

⎧
⎪⎪⎨

⎪⎪⎩

det(aj−1,ϕ(t))
det(aj−1, aj)

, t ∈ [xj , xj+1),

det(ϕ(t), aj+1)
det(aj, aj+1)

, t ∈ [xj+1, xj+2).
(4)

It is well-known [14] that if vectors aj ∈ R
2, j ∈ J−1,n−1 are given by the formula

aj
def= ϕj+1,

where ϕj
def= ϕ(xj), the functions ωj ∈ C[a, b]. Also, if [ϕ(t)]0 ≡ 1, that is, ϕ(t) = (1, ρ(t))T , where

ρ ∈ C1[a, b], the following partition of unity is valid:

n−1∑

j=−1

ωj(t) ≡ 1 ∀ t ∈ [a, b].

In this case formulas (4) take the form

ωj(t) =

⎧
⎪⎪⎨

⎪⎪⎩

det(ϕj ,ϕ(t))
det(ϕj ,ϕj+1)

=
ρ(t) − ρj

ρj+1 − ρj
, t ∈ [xj, xj+1),

det(ϕ(t),ϕj+2)
det(ϕj+1,ϕj+2)

=
ρj+2 − ρ(t)
ρj+2 − ρj+1

, t ∈ [xj+1, xj+2),
(5)

where ρj
def= ρ(xj).

The space

S(X) def=

{

u | u =
n−1∑

j=−1

cj ωj ∀ cj ∈ R
1

}

is called the space of linear minimal Bϕ-splines (of order 2) on the grid X. The splines themselves
are called coordinate minimal splines of maximum smoothness. If the generating vector function
ϕ has polynomial components, the degree of a spline is defined. Then the (polynomial) splines of
maximum smoothness are splines of the first degree. The difference between the degree of a spline and the
order of its highest continuous derivative is called the spline deficiency. Thus, the splines of maximum
smoothness are splines with the minimum deficiency (equal to 1).

It is clear that

ωj(xi) = δj,i−1,

where δj,i is the Kronecker symbol.
Also, if ρ(t) is a strictly monotone function on the set M, the spline

ωj(t) > 0 ∀ t ∈ (xj , xj+2).
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At ϕ(t) = (1, t)T , that is, ρ(t) = t, the functions ωj coincide with well-known polynomial B-splines
of the first degree (second order), that is, with one-dimensional Courant functions:

ωB
j (t) =

⎧
⎪⎪⎨

⎪⎪⎩

t − xj

xj+1 − xj
, t ∈ [xj , xj+1),

xj+2 − t

xj+2 − xj+1
, t ∈ [xj+1, xj+2).

3. DECOMPOSITION AND RECONSTRUCTION FILTERS
IN SPLINE-WAVELET DECOMPOSITION

A grid (1) in which n = 2Lm, where L,m ∈ Z, L ≥ 0, m ≥ 1, is denoted by ΔL. Both the left node of
the support (5) and the central node can be used to number the splines. For the splines numbered by the

central node of the support we will use the notation φj(t)
def= ωj−1(t).

In what follows, the objects on the grid ΔL will have superscript L. For instance, the splines φj(t)
constructed on the grid ΔL will be denoted by φL

j (t), j ∈ J0,2Lm. The space of such splines on the interval
[a, b] is denoted by

V L def= S(ΔL) =

⎧
⎨

⎩
sL | sL(t) =

2Lm∑

j=0

cL
j φL

j (t) ∀ cL
j ∈ R

1, t ∈ [a, b]

⎫
⎬

⎭
, (6)

dimV L = 2Lm + 1.

Let us compose the following row vector from the basis functions φL
j :

φL def=
(
φL

0 , φL
1 , . . . , φL

2Lm

)
.

Denote the vector consisting of the approximation coefficients by

cL def=
(
cL
0 , cL

1 , . . . , cL
2Lm

)T
,

and write (6) in vector form:

sL(t) = φL(t) cL.

Let a grid ΔL+1 be obtained by a twice refined grid ΔL with the addition of new nodes ξL
j ∈

(xL
j , xL

j+1), j ∈ J0,2Lm−1, that is,

xL+1
j

def=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

xL
−1, j = −1,

xL
j/2, j = 2k, k ∈ J0,2Lm,

ξL
(j−1)/2, j = 2k − 1, k ∈ J1,2Lm,

xL
2Lm+1

, j = 2L+1m + 1.

Then there exists a matrix of refining reconstruction of scaling functions (or a matrix of successive
refinement) P L+1 of dimension (2L+1m + 1) × (2Lm + 1) such that

φL = φL+1 P L+1, (7)

where the column elements consist of the coefficients of calibration relations [12]:

φL
j (t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

φL+1
0 (t) + pL+1

−1,2 φL+1
1 (t), j = 0,

pL+1
j−1,0 φL+1

2j−1(t) + pL+1
j−1,1 φL+1

2j (t) + pL+1
j−1,2 φL+1

2j+1(t), j ∈ J1,2Lm−1,

pL+1
2Lm−1,0

φL+1
2L+1m−1

(t) + φL+1
2L+1m

(t), j = 2Lm,

(8)
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and the coefficients pL+1
j,i ∈ R

1, i = 0, 1, 2, are calculated by the formulas

pL+1
j,0 =

det(ϕL+1
2j ,ϕL+1

2j+1)

det(ϕL+1
2j ,ϕL+1

2j+2)
=

ρL+1
2j+1 − ρL+1

2j

ρL+1
2j+2 − ρL+1

2j

, j ∈ J0,2Lm−1,

pL+1
j,1 = 1, j ∈ J−1,2Lm−1,

pL+1
j,2 =

det(ϕL+1
2j+3,ϕ

L+1
2j+4)

det(ϕL+1
2j+2,ϕ

L+1
2j+4)

=
ρL+1
2j+4 − ρL+1

2j+3

ρL+1
2j+4 − ρL+1

2j+2

, j ∈ J−1,2Lm−2.

The matrix P L+1 has the following form:

P L+1 =

⎡

⎢⎢
⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢
⎢⎢
⎢⎢
⎣

1 0 0 . . . 0 0

pL+1
−1,2 pL+1

0,0 0 . . . 0 0

0 1 0 . . . 0 0

0 pL+1
0,2 pL+1

1,0 . . . 0 0

0 0 1 . . . 0 0

0 0 pL+1
1,2 . . . 0 0

...
...

...
...

...
...

0 0 0 . . . pL+1
2Lm−2,0

0

0 0 0 . . . 1 0

0 0 0 . . . pL+1
2Lm−2,2

pL+1
2Lm−1,0

0 0 0 . . . 0 1

⎤

⎥⎥
⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥
⎥⎥
⎥⎥
⎦

.

By virtue of the calibration relations (8), we have the embedding of the spaces

V L ⊂ V L+1,

and, hence, the wavelet decomposition

V L+1 = V L � W L, (9)

where � denotes the direct sum of the spaces V L and W L.

The space of wavelets W L can be defined as a complement of the space V L with respect to the space
V L+1 such that any function of the space V L+1 can be written as the sum of a function from the space
V L and a function from the space W L. There are various possibilities for constructing basic functions in
the space W L.

For instance, as basic functions in the space W L one can use basic functions from the space V L+1

with centers at odd nodes. This is how “lazy” wavelets are obtained. They do not need additional
calculations, being a subset of the scaling functions. It is clear that

dim W L = 2Lm.

Then the dimensions of the spaces under consideration are complementary, that is,

dim V L+1 = dim V L + dim W L.

Let us denote the basic wavelet functions by

ψL
i (t) def= φL+1

2i+1(t), i = 0, 1, . . . , 2Lm − 1,
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and introduce a row vector

ψL def=
(
ψL

0 , ψL
1 , . . . , ψL

2Lm−1

)
.

We denote the corresponding wavelet approximation coefficients by dL
i , i = 0, 1, . . . , 2Lm − 1, and

introduce a vector

dL def=
(
dL
0 , dL

1 , . . . , dL
2Lm−1

)T
.

Since by definition the space of wavelets W L is a subspace of V L+1, the wavelet functions ψL
i can be

presented as a linear combination of the scaling functions φL+1
j . Thus, there exists a matrix of refining

reconstruction of the wavelet functions QL+1 of dimension (2L+1m + 1) × 2Lm such that

ψL = φL+1 QL+1, (10)

where all elements of the columns of the matrix QL+1 are zeros, except for a single unity, since each
“lazy” wavelet is one “narrow” basis function.

The matrix QL+1 has the following form:

QL+1 =

⎡

⎢⎢
⎢⎢
⎢⎢
⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢
⎢
⎣

0 0 0 . . . 0
1 0 0 . . . 0
0 0 0 . . . 0
0 1 0 . . . 0
0 0 0 . . . 0
0 0 1 . . . 0
...

...
...

...
...

0 0 0 . . . 0
0 0 0 . . . 0
0 0 0 . . . 1
0 0 0 . . . 0

⎤

⎥⎥
⎥⎥
⎥⎥
⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥
⎥
⎦

.

With the notation for block matrices, representations (7) and (10) can be written as a single
calibration relation for the scaling functions and wavelets as follows:

[
φL | ψL

]
= φL+1

[
P L+1 | QL+1

]
. (11)

By virtue of the decomposition (9) any function from the space V L+1 can be written as the sum of a
function from the space V L and a function from the space W L, and the following chain of equalities is
valid:

sL+1(t) = φL+1(t) cL+1 = φL(t) cL + ψL(t)dL = φL+1(t)P L+1 cL + φL+1(t)QL+1 dL.

Let the coefficients cL and dL be known. Then the coefficients cL+1 can be obtained from the
coefficients cL and dL as

cL+1 = P L+1 cL + QL+1 dL (12)

or, using the notation for block matrices, as

cL+1 =
[
P L+1 | QL+1

]
[

cL

dL

]
. (13)
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The block matrix
[
P L+1 | QL+1

]
has the following form:

[
P L+1 | QL+1

]
=

⎡

⎢⎢
⎢⎢
⎢⎢
⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢
⎢
⎣

1 0 0 . . . 0 0 0 0 0 . . . 0
pL+1
−1,2 pL+1

0,0 0 . . . 0 0 1 0 0 . . . 0
0 1 0 . . . 0 0 0 0 0 . . . 0
0 pL+1

0,2 pL+1
1,0 . . . 0 0 0 1 0 . . . 0

0 0 1 . . . 0 0 0 0 0 . . . 0
0 0 pL+1

1,2 . . . 0 0 0 0 1 . . . 0
...

...
...

...
...

...
...

...
...

...
...

0 0 0 . . . pL+1
2Lm−2,0

0 0 0 0 . . . 0
0 0 0 . . . 1 0 0 0 0 . . . 0
0 0 0 . . . pL+1

2Lm−2,2
pL+1
2Lm−1,0

0 0 0 . . . 1
0 0 0 . . . 0 1 0 0 0 . . . 0

⎤

⎥⎥
⎥⎥
⎥⎥
⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥
⎥
⎦

. (14)

Theorem 1. The matrix
[
P L+1 | QL+1

]−1 (that is inverse of (14)) exists and has the following
form:

[
P L+1 | QL+1

]−1
=

⎡

⎢
⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢
⎢⎢
⎢
⎣

1 0 0 0 0 . . . 0 0 0
0 0 1 0 0 . . . 0 0 0
...

...
...

...
...

...
...

...
...

0 0 0 0 0 . . . 1 0 0
0 0 0 0 0 . . . 0 0 1

−pL+1
−1,2 1 −pL+1

0,0 0 0 . . . 0 0 0
0 0 −pL+1

0,2 1 −pL+1
1,0 . . . 0 0 0

...
...

...
...

...
...

...
...

...
0 0 0 0 0 . . . −pL+1

2Lm−2,2
1 −pL+1

2Lm−1,0

⎤

⎥
⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥
⎥⎥
⎥
⎦

. (15)

Proof. Consider the tridiagonal matrix

[
P L+1 | QL+1

]′ def=

⎡

⎢⎢
⎢⎢
⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢
⎢
⎣

1 0
pL+1
−1,2 1 pL+1

0,0

0 1 0
pL+1
0,2 1 pL+1

1,0

0 1
. . .

pL+1
1,2

. . .

. . . pL+1
2Lm−2,0

1 0
pL+1
2Lm−2,2

1 pL+1
2Lm−1,0

0 1

⎤

⎥⎥
⎥⎥
⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥
⎥
⎦

, (16)

which is obtained by permuting the columns of the matrix (14) with the permutation

σ
def=

⎛

⎝ 0 1 2 . . . 2Lm 2Lm + 1 2Lm + 2 . . . 2L+1m

0 2 4 . . . 2L+1m 1 3 . . . 2L+1m − 1

⎞

⎠ . (17)

Let the matrix with the permutation of columns (17) be denoted by T . Then the following represen-
tation is valid:
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[
P L+1 | QL+1

]′
=
[
P L+1 | QL+1

]
T . (18)

It is evident that the determinant of the tridiagonal matrix (16) is equal to the product of its diagonal
elements. Thus, det

[
P L+1 | QL+1

]′ = 1, and, hence, there exists a matrix
[
P L+1 | QL+1

]′−1 that is
inverse of (16), which also turns out to be tridiagonal and has the following form:

[
P L+1 | QL+1

]′−1
=

⎡

⎢
⎢⎢
⎢⎢
⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢
⎢⎢
⎢⎢
⎢⎢
⎢
⎣

1 0

−pL+1
−1,2 1 −pL+1

0,0

0 1 0

−pL+1
0,2 1 −pL+1

1,0

0 1
. . .

−pL+1
1,2

. . .

. . .−pL+1
2Lm−2,0

1 0

−pL+1
2Lm−2,2

1 −pL+1
2Lm−1,0

0 1

⎤

⎥
⎥⎥
⎥⎥
⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥
⎥⎥
⎥⎥
⎥⎥
⎥
⎦

. (19)

From representation (18) we find

[
P L+1 | QL+1

]−1
= T

[
P L+1 | QL+1

]′−1
.

It follows from the above equality that to find the matrix
[
P L+1 | QL+1

]−1 the rows of the matrix (19)
are subject to the permutation that is inverse of (17), that is, the permutation σ−1 in which the image
and the preimage change their places. From this we obtain the required representation (15). �

Consider the space LN , N ∈ Z, N ≥ 0, of all numerical sequences represented by the column vectors
l = (l0, l1, . . . , lN )T . Consider two copies of the space LN and denote them by CL and DL, respectively.
The elements of the space CL are vectors cL, and the elements of the space DL are vectors dL. Let
CL × DL denote the direct product of the spaces CL and DL, that is,

CL × DL def=
{[

cL

dL

] ∣∣
∣ cL ∈ CL,dL ∈ DL

}
.

Consider an operator R : CL × DL → CL+1, R
def=

[
P L+1 | QL+1

]
, for which

cL+1 = R

[
cL

dL

]
=
[
P L+1 | QL+1

]
[

cL

dL

]
.

The operator R is called a reconstruction (or synthesis) operator, formulas (12) and (13) are called
reconstruction formulas, and the matrices P L+1 and QL+1 are called reconstruction filters.

Consider the reverse process of splitting the known coefficients cL+1 into a coarse version cL and
refining coefficients dL, which is determined by the following matrix equations:

cL = AL+1cL+1, (20)
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dL = BL+1cL+1, (21)

where AL+1 are matrices of dimension (2Lm + 1) × (2L+1m + 1) and BL+1 of dimension 2Lm ×
(2L+1m + 1), which are determined from relation (11) as follows:

[
φL | ψL

] [AL+1

BL+1

]
= φL+1. (22)

Consider an operator D : CL+1 → CL × DL, D
def=

[
AL+1

BL+1

]
, for which

[
cL

dL

]
= D cL+1 =

[
AL+1

BL+1

]
cL+1.

The operator D is called a decomposition (or analysis) operator, formulas (20) and (21) are called
decomposition formulas, and the matrices AL+1 and BL+1 are called decomposition filters.

Theorem 2. The operators D and R are mutually inverse. They realize a linear isomorphism of
the spaces CL+1 and CL × DL.

Proof. From relations (11) and (22), since the matrix
[
P L+1 | QL+1

]−1 exists, we have

[
AL+1

BL+1

]
=
[
P L+1 | QL+1

]−1
. (23)

With representation (23), from the definitions of the operators R and D we have

RD =
[
P L+1 | QL+1

]
[
AL+1

BL+1

]
= P L+1AL+1 + QL+1BL+1 = I, (24)

where I is the unit matrix of the corresponding dimension.
On the other hand, the following representation takes place:

DR =
[
AL+1

BL+1

]
[
P L+1 | QL+1

]
=
[

AL+1P L+1 | AL+1QL+1

BL+1P L+1 | BL+1QL+1

]
= I, (25)

where I is the unit matrix of the corresponding dimension. �

Corollary. From the equalities (24) and (25) we have the following relations between the matrices
AL+1, BL+1, P L+1, and QL+1:

P L+1AL+1 + QL+1BL+1 = I, (26)

AL+1P L+1 = I, BL+1QL+1 = I, (27)

AL+1QL+1 = O, BL+1P L+1 = O, (28)

where Is denote the unit matrices and Os denote the zero matrices of the corresponding dimen-
sions.

Remark 1. By virtue of relations (27) and (28), the above-constructed matrices can be used as
generating and verifying matrices in constructing a noise-resistant coding scheme with the exact
reconstruction condition (26) (see, for instance, [15] for more details).
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It follows from representation (14) that
[
P L+1 | QL+1

]
are sparse matrices. However, in the general

case the matrices that are inverse of
[
P L+1 | QL+1

]
are no longer sparse. Then the decomposition can

be made without constructing decomposition filters in explicit form. For this one has to solve the sparse
system of linear equations (13) whose solvability is guaranteed by the fact that the basic functions are
linearly independent. To solve it for the coefficients cL and dL it is proposed to make the system matrix
a band one by changing the order of the unknowns, and then use a special method for solving it [2].
Another method is to construct an extension matrix whose elements are values of an extended system of
biorthogonal functionals on the initial basis [4].

In our case the matrices
[
AL+1

BL+1

]
, which are inverse of the matrices

[
P L+1 | QL+1

]
, are sparse.

From equality (14) we find an explicit representation of the decomposition filters:

AL+1 =

⎡

⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎣

1 0 0 0 0 . . . 0 0 0

0 0 1 0 0 . . . 0 0 0
...

...
...

...
...

...
...

...
...

0 0 0 0 0 . . . 1 0 0

0 0 0 0 0 . . . 0 0 1

⎤

⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎦

,

BL+1 =

⎡

⎢
⎢⎢
⎢⎢
⎢⎢
⎢
⎣

−pL+1
−1,2 1 −pL+1

0,0 0 0 . . . 0 0 0

0 0 −pL+1
0,2 1 −pL+1

1,0 . . . 0 0 0
...

...
...

...
...

...
...

...
...

0 0 0 0 0 . . . −pL+1
2Lm−2,2

1 −pL+1
2Lm−1,0

⎤

⎥
⎥⎥
⎥⎥
⎥⎥
⎥
⎦

.

Remark 2. The matrix AL+1 is 2-circulant, but the matrix BL+1, in general, is not circulant.

Remark 3. Note that after “lazy” wavelets and corresponding filters are constructed, their improvement
provides a simple way of constructing biorthogonal wavelets and lifting schemes (for more details, see [2,
16, 17]).
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